Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 883
Filter
1.
Oncol Lett ; 28(2): 400, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38979554

ABSTRACT

α-solanine is a glycoalkaloid that is commonly found in nightshades (Solanum) and has a toxic effect on the human organism. Among other things, it is already known to inhibit tumor cell proliferation and induce apoptosis in tumor cell lines. Due to its potential as a tumor therapeutic, the current study investigated the effect of α-solanine on head and neck squamous cell carcinoma (HNSCC). In addition, genotoxic and antiangiogenic effects on human umbilical vein endothelial cells (HUVECs) were evaluated at subtoxic α-solanine concentrations. Cytotoxicity and apoptosis rates were measured in two human HNSCC cell lines (FaDu pharynx carcinoma cells and CAL-33 tongue carcinoma cells), as well as in HUVECs. MTT and Annexin V analyses were performed 24 h after α-solanine treatment at increasing doses up to 30 µM to determine cytotoxic concentrations. Furthermore, genotoxicity at subtoxic concentrations of 1, 2, 4 and 6 µM in HUVECs was analyzed using single-cell gel electrophoresis (comet assay). The antiangiogenic effect on HUVECs was evaluated in the capillary tube formation assay. The MTT assay indicated an induction of concentration-dependent viability loss in FaDu and CAL-33 cancer cell lines, whereas the Annexin V test revealed α-solanine-induced cell death predominantly independent from apoptosis. In HUVECs, the cytotoxic effect occurred at lower concentrations. No genotoxicity or inhibition of angiogenesis were detected at subtoxic doses in HUVECs. In summary, α-solanine had a cytotoxic effect on both malignant and non-malignant cells, but this was only observed at higher concentrations in malignant cells. In contrast to existing data in the literature, tumor cell apoptosis was less evident than necrosis. The lack of genotoxicity and antiangiogenic effects in the subtoxic range in benign cells are promising, as this is favorable for potential therapeutic applications. In conclusion, however, the cytotoxicity in non-malignant cells remains a severe hindrance for the application of α-solanine as a therapeutic tumor agent in humans.

2.
Sci Rep ; 14(1): 15113, 2024 07 02.
Article in English | MEDLINE | ID: mdl-38956421

ABSTRACT

The aims of this study were to determine whether human umbilical cord mesenchymal stem cells (hucMSCs) modified by miRNA-25-3p (miR-25-3p) overexpression could promote venous endothelial cell proliferation and attenuate portal endothelial cell injury. HucMSCs and human umbilical vein endothelial cells (HUVEC) were isolated and cultured from human umbilical cord and characterized. Lentiviral vectors expressing miRNA-25-3p were transfected into hucMSCs and confirmed by PCR. We verified the effect of miR-25-3p-modified hucMSCs on HUVEC by cell co-culture and cell supernatant experiments. Subsequently, exosomes of miR-25-3p-modified hucMSCs were isolated from cell culture supernatants and characterized by WB, NTA and TEM. We verified the effects of miR-25-3p-modified exosomes derived from hucMSCs on HUVEC proliferation, migration, and angiogenesis by in vitro cellular function experiments. Meanwhile, we further examined the downstream target genes and signaling pathways potentially affected by miR-25-3p-modified hucMSC-derived exosomes in HUVEC. Finally, we established a rat portal vein venous thrombosis model by injecting CM-DiR-labeled hucMSCs intravenously into rats and examining the homing of cells in the portal vein by fluorescence microscopy. Histological and immunohistochemical experiments were used to examine the effects of miRNA-25-3p-modified hucMSCs on the proliferation and damage of portal vein endothelial cells. Primary hucMSCs and HUVECs were successfully isolated, cultured and characterized. Primary hucMSCs were modified with a lentiviral vector carrying miR-25-3p at MOI 80. Co-culture and cell supernatant intervention experiments showed that overexpression of miRNA-25-3p in hucMSCs enhanced HUVEC proliferation, migration and tube formation in vitro. We successfully isolated and characterized exosomes of miR-25-3p-modified hucMSCs, and exosome intervention experiments demonstrated that miR-25-3p-modified exosomes derived from hucMSCs similarly enhanced the proliferation, migration, and angiogenesis of HUVECs. Subsequent PCR and WB analyses indicated PTEN/KLF4/AKT/ERK1/2 as potential pathways of action. Analysis in a rat portal vein thrombosis model showed that miR-25-3p-modified hucMSCs could homing to damaged portal veins. Subsequent histological and immunohistochemical examinations demonstrated that intervention with miR-25-3p overexpression-modified hucMSCs significantly reduced damage and attenuated thrombosis in rat portal veins. The above findings indicate suggest that hucMSCs based on miR-25-3p modification may be a promising therapeutic approach for use in venous thrombotic diseases.


Subject(s)
Cell Proliferation , Exosomes , Human Umbilical Vein Endothelial Cells , Mesenchymal Stem Cells , MicroRNAs , Portal Vein , MicroRNAs/genetics , MicroRNAs/metabolism , Humans , Human Umbilical Vein Endothelial Cells/metabolism , Animals , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Rats , Exosomes/metabolism , Exosomes/genetics , Portal Vein/metabolism , Cell Movement/genetics , Rats, Sprague-Dawley , Male , Venous Thrombosis/genetics , Venous Thrombosis/metabolism , Venous Thrombosis/pathology , Venous Thrombosis/therapy , Cells, Cultured , Coculture Techniques , Signal Transduction , Umbilical Cord/cytology
3.
Int J Mol Med ; 54(2)2024 Aug.
Article in English | MEDLINE | ID: mdl-38940352

ABSTRACT

Following the publication of this paper, it was drawn to the Editor's attention by a concerned reader that certain of the immunochemistry data shown in Figs. 4K and 7G were strikingly similar to data appearing in different form in other research articles written by different authors at different research institutes that had either already been published, or were submitted for publication at around the same time. Owing to the fact that contentious data in the above article had already been published elsewhere prior to its submission to International Journal of Molecular Medicine, the Editor has decided that this paper should be retracted from the Journal. The authors were asked for an explanation to account for these concerns, but the Editorial Office did not receive a satisfactory reply. The Editor apologizes to the readership for any inconvenience caused. [International Journal of Molecular Medicine 44: 89­102, 2019; DOI: 10.3892/ijmm.2019.4185].

4.
J Mater Sci Mater Med ; 35(1): 35, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38900360

ABSTRACT

Bioabsorbable sutures can improve the medical functions of existing non-absorbable sutures, and may produce new medical effects, and are expected to become a new generation of medical degradable materials. In this study, the cytocompatibility of triclosan coated polyglactin910 sutures (CTS-PLGA910) was analyzed and different concentrations of sutures were prepared. The effects of sutures on the cytotoxicity and cell proliferation of HUVEC were studied by CCK-8 assay. The hemolysis, total antioxidant capacity (T-AOC) activity and nitric oxide (NO) content were investigated to improve the blood compatibility of sutures. The results showed that the hemolysis rate of CTS-PLGA910 was less than 5%. After treatment on HUVEC cells for 48 and 72 h, there was no significant change in NO content in CTS-PLGA910 groups compared with the control group, while T-AOC activity and antioxidant capacity were significantly increased in medium and high dose groups. In summary, the blood compatibility and cell compatibility were significantly improved, which provided a basis for the clinical application of sutures in the future.


Subject(s)
Cell Proliferation , Coated Materials, Biocompatible , Human Umbilical Vein Endothelial Cells , Materials Testing , Polyglactin 910 , Sutures , Triclosan , Humans , Triclosan/pharmacology , Triclosan/chemistry , Polyglactin 910/chemistry , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Cell Proliferation/drug effects , Hemolysis/drug effects , Antioxidants/pharmacology , Antioxidants/chemistry , Biocompatible Materials/chemistry , Nitric Oxide/metabolism , Cell Survival/drug effects
5.
Cell Tissue Bank ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38944663

ABSTRACT

An injury that affects the integrity of the skin, either inside or externally, is called a wound. Damaged tissue is repaired by a set of cellular and molecular mechanisms known as wound healing. Quercetin, a naturally occurring flavonoid, may hasten the healing of wounds. The study's objective was to investigate any potential impacts of quercetin on the wound-healing process. Human umbilical vein endothelial cells (HUVECs) were treated to varying dose ranges of quercetin (5-320 nM) for 24 and 48 h. Cultured cells were evaluated by using the MTT analysis, wound scratch assay and vascular tube formation. Furthermore the gene expression of VEGF and FGF were evaluated by qRT-PCR to determine the effects of quercetin on angiogenezis and wound repair. Positive effects of quercetin on cellular viability were demonstrated by the MTT experiment. In HUVECs quercetin promoted tube formation, migration, and proliferation while also averting wound breakage. Moreover, quercetin increased the expression of the FGF and VEGF genes, which aid in the healing of wounds in HUVECs. Quercetin may be bioactive molecule that successfully speeds up wound healing by regulating the vasculogenezis and healing cells.

6.
Front Cell Dev Biol ; 12: 1378035, 2024.
Article in English | MEDLINE | ID: mdl-38770153

ABSTRACT

Stem cell spheroid is a promising graft substitute for bone tissue engineering. Spheroids obtained by 3D culture of STRO1+ Gingival Mesenchymal Stem Cells (sGMSCs) (sGMSC spheroids, GS) seldom express angiogenic factors, limiting their angiogenic differentiation in vivo. This study introduced a novel stem cell spheroid with osteogenic and angiogenic potential through 3D co-culture of sGMSCs and Human Umbilical Vein Endothelial Cells (HUVECs) (sGMSC/HUVEC spheroids, GHS). GHS with varying seeding ratios of sGMSCs to HUVECs (GHR) were developed. Cell fusion within the GHS system was observed via immunofluorescence. Calcein-AM/PI staining and chemiluminescence assay indicated cellular viability within the GHS. Furthermore, osteogenic and angiogenic markers, including ALP, OCN, RUNX2, CD31, and VEGFA, were quantified and compared with the control group comprising solely of sGMSCs (GS). Incorporating HUVECs into GHS extended cell viability and stability, initiated the expression of angiogenic factors CD31 and VEGFA, and upregulated the expression of osteogenic factors ALP, OCN, and RUNX2, especially when GHS with a GHR of 1:1. Taken together, GHS, derived from the 3D co-culture of sGMSCs and HUVECs, enhanced osteogenic and angiogenic capacities in vitro, extending the application of cell therapy in bone tissue engineering.

7.
Int Heart J ; 65(3): 466-474, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38749754

ABSTRACT

Endothelial cell dysfunction is the main pathology of atherosclerosis (AS). Sirtuin 6 (SIRT6), a deacetylase, is involved in AS progression. This study aimed to investigate the impacts of SIRT6 on the pyroptosis of endothelial cells and its underlying mechanisms. ApoE-/- mice were fed a high-fat diet (HFD) to establish the AS mouse model, atherosclerotic lesions were evaluated using oil red O staining, and blood lipids and inflammatory factors were measured using corresponding kits. Human umbilical vein endothelial cells (HUVECs) were treated with oxidized low-density lipoprotein (ox-LDL) to establish the cell model, and pyroptosis was evaluated by flow cytometry, ELISA, and western blot. Immunoprecipitation (IP), co-IP, western blot, and immunofluorescence were used to detect the molecular mechanisms. The results showed that SIRT6 expression was downregulated in the blood of HFD-induced mice and ox-LDL-induced HUVECs. Overexpression of SIRT6 reduced atherosclerotic lesions, blood lipids, and inflammation in vivo and suppressed pyroptosis of HUVECs in vitro. Moreover, SIRT6 interacted with ASC to inhibit the acetylation of ASC, thus, reducing the interaction between ASC and NLRP3. Moreover, SIRT6 inhibits endothelial cell pyroptosis in the aortic roots of mice by deacetylating ASC. In conclusion, SIRT6 deacetylated ASC to inhibit its interaction with NLRP3 and then suppressed pyroptosis of endothelial cells, thus, decelerating the progression of AS. The findings provide new insights into the function of SIRT6 in AS.


Subject(s)
Atherosclerosis , Human Umbilical Vein Endothelial Cells , Lipoproteins, LDL , Pyroptosis , Sirtuins , Animals , Atherosclerosis/metabolism , Atherosclerosis/pathology , Sirtuins/metabolism , Mice , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Lipoproteins, LDL/metabolism , Lipoproteins, LDL/pharmacology , CARD Signaling Adaptor Proteins/metabolism , Disease Models, Animal , Diet, High-Fat , Male , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Mice, Inbred C57BL
8.
Photodiagnosis Photodyn Ther ; 47: 104196, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38710260

ABSTRACT

SIGNIFICANCE: Hemoporfin-mediated photodynamic therapy (HMME-PDT) has been recognized as a safe and effective treatment for port wine stain (PWS). However, some patients show limited improvement even after multiple treatments. Herein, we aim to explore the effect of autophagy on HMME-PDT in human umbilical vein endothelial cells (HUVECs), so as to provide theoretical basis and treatment strategies to enhance clinical effectiveness. METHODS: Establish the in vitro HMME-PDT system by HUVECs. Apoptosis and necrosis were identified by Annexin Ⅴ-FITC/PI flow cytometry, and autophagy flux was detected by monitoring RFP-GFP-LC3 under the fluorescence microscope. Hydroxychloroquine and rapamycin were employed in the mechanism study. Specifically, the certain genes and proteins were qualified by qPCR and Western Blot, respectively. The cytotoxicity was measured by CCK-8, VEGF-A secretion was determined by ELISA, and the tube formation of HUVECs was observed by angiogenesis assay. RESULTS: In vitro experiments revealed that autophagy and apoptosis coexisted in HUVECs treated by HMME-PDT. Apoptosis was dominant in early stage, while autophagy gradually increased in the middle and late stage. AMPK, AKT and mTOR participated in the regulation of autophagy induced by HMME-PDT, in which AMPK was positive regulation, while AKT and mTOR were negative regulation. Hydroxychloroquine could not inhibit HMME-PDT-induced autophagy, but capable of blocking the fusion of autophagosomes with lysosome. Rapamycin might cooperate with HMME-PDT to enhance autophagy in HUVECs, leading to increased cytotoxicity, reduced VEGF-A secretion, and weakened angiogenesis ability. CONCLUSIONS: Both autophagy and apoptosis contribute to HMME-PDT-induced HUVECs death. Pretreatment of HUVECs with rapamycin to induce autophagy might enhance the photodynamic killing effect of HMME-PDT on HUVECs. The combination of Rapamycin and HMME-PDT is expected to further improve the clinical efficacy.


Subject(s)
Apoptosis , Autophagy , Human Umbilical Vein Endothelial Cells , Photochemotherapy , Photosensitizing Agents , Sirolimus , Humans , Human Umbilical Vein Endothelial Cells/drug effects , Photochemotherapy/methods , Autophagy/drug effects , Photosensitizing Agents/pharmacology , Apoptosis/drug effects , Sirolimus/pharmacology , Hydroxychloroquine/pharmacology , Porphyrins/pharmacology , Vascular Endothelial Growth Factor A/metabolism
9.
Macromol Biosci ; : e2400071, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38569562

ABSTRACT

Engineered nanomaterials are promising in biomedical application. However, insufficient understanding of their biocompatibility at the cellular and organic levels prevents their widely biomedical applications. Metal-organic frameworks (MOFs) have attracted increasing attention in recent years. In this work, zeolitic imidazolate framework-8 (ZIF-8) and polydopamine (PDA)-modified ZIF-8 are chosen as model nanomaterials due to its emergent role in nanomedicine. In vitro, the results demonstrate that the PDA coating greatly alleviates the cytotoxicity of ZIF-8 to RAW264.7, LO2, and HST6, which represent three different cell types in liver organs. Mechanistically, ZIF-8 entering into the cells can greatly induce the reactive oxygen species generation, which subsequently induces cell cycle delay and autophagy, ultimately leads to enhanced cytotoxicity. Further, human umbilical vein endothelial cells model and zebrafish embryos assay also confirm that PDA can compromise the ZIF-8 toxicity significantly. This study reveals that PDA-coated MOFs nanomaterials show great potential in nano-based drug delivery systems .

10.
Genomics ; 116(3): 110838, 2024 05.
Article in English | MEDLINE | ID: mdl-38537807

ABSTRACT

After epiphyseal fracture, the epiphyseal plate is prone to ischemia and hypoxia, leading to the formation of bone bridge and deformity. However, the exact mechanism controlling the bone bridge formation remains unclear. Notch/RBPJ signaling axis has been indicated to regulate angiogenesis and osteogenic differentiation. Our study aims to investigate the mechanism of bone bridge formation after epiphyseal plate injury, and to provide a theoretical basis for new therapeutic approaches to prevent the bone bridge formation. The expression of DLL4 and RBPJ was significantly up-regulated in HUVECs after ischemia and hypoxia treatment. Notch/RBPJ pathway positively regulated the osteogenic differentiation of BMSCs. HUVECs can induce osteogenic differentiation of BMSCs under ischemia and hypoxia. Notch/RBPJ pathway is involved in the regulation of the trans-epiphyseal bridge formation. Notch/RBPJ in HUVECs is associated with osteogenic differentiation of BMSCs and may participate in the regulation of the bone bridge formation across the epiphyseal plate.


Subject(s)
Cell Differentiation , Human Umbilical Vein Endothelial Cells , Immunoglobulin J Recombination Signal Sequence-Binding Protein , Neovascularization, Physiologic , Osteogenesis , Receptors, Notch , Signal Transduction , Humans , Human Umbilical Vein Endothelial Cells/metabolism , Receptors, Notch/metabolism , Receptors, Notch/genetics , Immunoglobulin J Recombination Signal Sequence-Binding Protein/metabolism , Immunoglobulin J Recombination Signal Sequence-Binding Protein/genetics , Cell Hypoxia , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Cells, Cultured , Calcium-Binding Proteins/metabolism , Calcium-Binding Proteins/genetics , Angiogenesis
11.
Int J Mol Sci ; 25(5)2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38474055

ABSTRACT

Angiotensin-converting enzyme (ACE) plays a crucial role in the pathogenesis of hypertension. Piper sarmentosum Roxb., an herb known for its antihypertensive effect, lacks a comprehensive understanding of the mechanism underlying its antihypertensive action. This study aimed to elucidate the antihypertensive mechanism of aqueous extract of P. sarmentosum leaves (AEPS) via its modulation of the ACE pathway in phorbol 12-myristate-13-acetate (PMA)-induced human umbilical vein endothelial cells (HUVECs). HUVECs were divided into five groups: control, treatment with 200 µg/mL AEPS, induction 200 nM PMA, concomitant treatment with 200 nM PMA and 200 µg/mL AEPS, and treatment with 200 nM PMA and 0.06 µM captopril. Subsequently, ACE mRNA expression, protein level and activity, angiotensin II (Ang II) levels, and angiotensin II type 1 receptor (AT1R) and angiotensin II type 2 receptor (AT2R) mRNA expression in HUVECs were determined. AEPS successfully inhibited ACE mRNA expression, protein and activity, and angiotensin II levels in PMA-induced HUVECs. Additionally, AT1R expression was downregulated, whereas AT2R expression was upregulated. In conclusion, AEPS reduces the levels of ACE mRNA, protein and activity, Ang II, and AT1R expression in PMA-induced HUVECs. Thus, AEPS has the potential to be developed as an ACE inhibitor in the future.


Subject(s)
Phorbols , Piper , Humans , Antihypertensive Agents/pharmacology , Myristates/metabolism , Myristates/pharmacology , Angiotensin II/metabolism , Endothelial Cells/metabolism , Cells, Cultured , Peptidyl-Dipeptidase A/metabolism , Receptor, Angiotensin, Type 1/metabolism , RNA, Messenger/metabolism , Acetates/pharmacology , Phorbols/metabolism , Phorbols/pharmacology
12.
Chin J Integr Med ; 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38319525

ABSTRACT

OBJECTIVE: To observe the protective effect and mechanism of hydroxyl safflower yellow A (HSYA) from myocardial ischemia-reperfusion injury on human umbilical vein endothelial cells (HUVECs). METHODS: HUVECs were treated with oxygen-glucose deprivation reperfusion (OGD/R) to simulate the ischemia reperfusion model, and cell counting kit-8 was used to detect the protective effect of different concentrations (1.25-160 µ mol/L) of HSYA on HUVECs after OGD/R. HSYA 80 µ mol/L was used for follow-up experiments. The contents of inflammatory cytokines interleukin (IL)-18, IL-1 ß, monocyte chemotactic protein 1 (MCP-1), tumor necrosis factor α (TNF-α) and IL-6 before and after administration were measured by enzyme-linked immunosorbent assay. The protein expressions of toll-like receptor, NOD-like receptor containing pyrin domain 3 (NLRP3), gasdermin D (GSDMD) and GSDMD-N-terminal domain (GSDMD-N) before and after administration were detected by Western blot. NLRP3 inflammasome inhibitor cytokine release inhibitory drug 3 sodium salt (CRID3 sodium salt, also known as MCC950) and agonist were added, and the changes of NLRP3, cysteine-aspartic acid protease 1 (Caspase-1), GSDMD and GSDMD-N protein expressions were detected by Western blot. RESULTS: HSYA inhibited OGD/R-induced inflammation and significantly decreased the contents of inflammatory cytokines IL-18, IL-1 ß, MCP-1, TNF-α and IL-6 (P<0.01 or P<0.05). At the same time, by inhibiting NLRP3/Caspase-1/GSDMD pathway, HSYA can reduce the occurrence of pyroptosis after OGD/R and reduce the expression of NLRP3, Caspase-1, GSDMD and GSDMD-N proteins (P<0.01). CONCLUSIONS: The protective effect of HSYA on HUVECs after OGD/R is related to down-regulating the expression of NLRP3 inflammasome and inhibiting pyroptosis.

13.
Heliyon ; 10(3): e24586, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38322899

ABSTRACT

Background: Advancing age is one of the independent risk factors for cardiovascular disorders. The Compendium of Materia Medica, a classic book on traditional Chinese medicine, states that ginseng "harmonizes the five internal organs, calming the spirit and prolonging the years of life." Considered one of the primary bioactive compounds derived from Panax ginseng, ginsenoside Rb1 (g-Rb1) has been scientifically suggested to possess anti-senescence efficacy. More research is needed to explore the vascular pharmacological activity and potential clinical application value of g-Rb1. Aims of the study: Our previous study demonstrated that g-Rb1 could mitigate cellular senescence via the SIRT1/eNOS pathway. This study was performed to explore the exact mechanisms by which g-Rb1 modulates the SIRT1/eNOS pathway. Materials and methods: We used human primary umbilical vein endothelial cells (HUVECs) to establish a replicative ageing model. Real-time (RT‒PCR), western blotting, small interfering RNA (siRNA), and immunoprecipitation were conducted to detect the effect of g-Rb1 on the SIRT1/caveolin-1/eNOS axis. Results: G-Rb1 increased NO production and alleviated replicative senescence of HUVECs. The application of g-Rb1 elevated the mRNA and protein abundance of both SIRT1 and eNOS while concomitantly suppressing the expression of caveolin-1. Inhibition of SIRT1 and eNOS by siRNAs suppressed the anti-senescence function of g-Rb1, while caveolin-1 siRNA could enhance it. G-Rb1 decreased the acetylation level of caveolin-1 and increased NO production, which was suppressed by SIRT1 siRNA. Both g-Rb1 and caveolin-1 siRNA could reduce the acetylation level of eNOS and increase NO production. Conclusion: G-Rb1 prevents age-related endothelial senescence by modulating the SIRT1/caveolin-1/eNOS signaling pathway.

14.
Prostaglandins Other Lipid Mediat ; 172: 106821, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38373554

ABSTRACT

Endothelial dysfunction often accompanies sepsis. Sevoflurane (Sev) is a widely used inhaled anesthetic that has a protective effect on sepsis-associated damage. We aimed to elucidate the role of Sev in endothelial dysfunction by using a model of LPS induced HUVECs. Sev increased the viability and decreased the apoptosis of HUVECs exposed to LPS. Inflammation and endothelial cell adhesion were improved after Sev addition. Besides, Sev alleviated LPS-induced endothelial cell permeability damage in HUVECs. RORα served as a potential protein that bound to Sev. Importantly, Sev upregulated RORα expression and inhibited endoplasmic reticulum (ER) stress in LPS-treated HUVECs. RORα silencing reversed the impacts of Sev on ER stress. Moreover, RORα deficiency or tunicamycin (ER stress inducer) treatment restored the effects of Sev on the viability, apoptosis, inflammation and endothelial permeability damage of HUVECs exposed to LPS. Taken together, Sev ameliorated LPS-induced endothelial cell damage by targeting RORα to inhibit ER stress.


Subject(s)
Apoptosis , Endoplasmic Reticulum Stress , Human Umbilical Vein Endothelial Cells , Inflammation , Lipopolysaccharides , Nuclear Receptor Subfamily 1, Group F, Member 1 , Sevoflurane , Up-Regulation , Humans , Human Umbilical Vein Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/drug effects , Lipopolysaccharides/pharmacology , Endoplasmic Reticulum Stress/drug effects , Apoptosis/drug effects , Sevoflurane/pharmacology , Nuclear Receptor Subfamily 1, Group F, Member 1/metabolism , Nuclear Receptor Subfamily 1, Group F, Member 1/genetics , Inflammation/pathology , Inflammation/metabolism , Inflammation/drug therapy , Up-Regulation/drug effects , Permeability/drug effects
15.
Cryobiology ; 115: 104857, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38350589

ABSTRACT

The cryopreservation of endothelial cell monolayers is an important step that bridges the cryopreservation of cells in suspension to that of tissues. Previous studies have identified clear distinctions in freezing mechanisms between cells in suspension and in monolayers, as well as developed novel protocols for monolayer cryopreservation. Recently, our group has shown that human umbilical vein endothelial cell (HUVEC) and porcine corneal endothelial cell (PCEC) monolayers grown on Rinzl plastic substrate can be cryopreserved in 5% dimethyl sulfoxide, 6% hydroxyethyl starch, and 2% chondroitin sulfate, following a slow-cooling protocol (-1 °C/min) with rapid plunge into liquid nitrogen from -40 °C. However, membrane integrity assessments were done immediately post thaw, which may result in an overestimation of cell viability due to possible delayed injury responses. Here, we show that for the optimal protocol condition of plunge at the -40 °C interrupt temperature, HUVEC and PCEC monolayers exhibited no significant immediate post-thaw injuries nor delayed injury responses during the 24-h post-thaw overnight culture period. HUVEC monolayers experienced no significant impact to their natural growth rate during the post-thaw culture, while PCEC monolayers experienced significantly higher growth than the unfrozen controls. The difference in the low-temperature responses between HUVEC and PCEC monolayers was further shown under high temperature plunge conditions. At these suboptimal plunge temperatures, HUVEC monolayers exhibited moderate immediate membrane injury but a pronounced delayed injury response during the 24-h post-thaw culture, while PCEC monolayers showed significant immediate membrane injury but no additional delayed injury response during the same period. Therefore, we provide further validation of our group's previously designed endothelial monolayer cryopreservation protocol for HUVEC and PCEC monolayers, and we identify several cell-type-specific responses to the freezing process.


Subject(s)
Cell Survival , Cryopreservation , Cryoprotective Agents , Dimethyl Sulfoxide , Human Umbilical Vein Endothelial Cells , Cryopreservation/methods , Humans , Animals , Cell Survival/drug effects , Cryoprotective Agents/pharmacology , Swine , Dimethyl Sulfoxide/pharmacology , Chondroitin Sulfates/pharmacology , Endothelial Cells/cytology , Hydroxyethyl Starch Derivatives/pharmacology , Cells, Cultured , Endothelium, Corneal/cytology , Endothelium, Corneal/injuries
16.
Gene ; 908: 148253, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38341004

ABSTRACT

OBJECTIVE: This study endeavored to explore the relationship between exosome-derived lncRNA Double Homeobox A Pseudogene 8 (DUXAP8) and Chondroitin Polymerizing Factor 2 (CHPF2), and their roles in the pathogenesis of intracranial aneurysm (IA). METHODS: The shared targeted molecules (DUXAP8 and CHPF2) were detected via GSE122897 and GSE75436 datasets. A total of 312 patients with IAs were incorporated into this study. Exosomes were isolated from serum samples, and their identity was confirmed using Western blotting for exosomal markers (CD9, CD63 and ALIX). Inflammatory responses in IA tissues were evaluated using Hematoxylin-Eosin staining. CHPF2 protein concentration and the expression levels of DUXAP8 and CHPF2 mRNA in exosomal samples were assessed using Immunochemistry (IHC), Western Blotting, and qRT-PCR, respectively. Cell-based assays involving Human Umbilical Vein Endothelial Cells (HuvECs), including transfection with exosomal DUXAP8, Western Blotting, qRT-PCR, and Cell Counting Kit-8, were conducted. Receiver Operating Characteristic (ROC) curves were derived using SPSS. RESULTS: DUXAP8 level affects the level of CHPF2. DUXAP8 expression within exosomes was associated with increased CD9, CD63, ALIX and CHPF2 levels during IA development and inflammatory stress. In HuvECs, transfection with exosomes carrying DUXAP8 siRNA resulted in reduced CHPF2 expression, whereas DUXAP8 mimic increased CHPF2 concentrations. The Area Under the ROC Curve (AUC) for exosomal DUXAP8 expression and CHPF2 levels, and aneurysm size was 0.768 (95% CI, 0.613 to 0.924), 0.937 (95% CI, 0.853 to 1.000), and 0.943 (95% CI, 0.860, 1.000), respectively. CONCLUSION: Exosome-derived DUXAP8 promotes IA progression by affecting CHPF2 expression.


Subject(s)
Exosomes , Intracranial Aneurysm , N-Acetylgalactosaminyltransferases , RNA, Long Noncoding , Humans , Exosomes/genetics , Exosomes/metabolism , Genes, Homeobox , Human Umbilical Vein Endothelial Cells/metabolism , Intracranial Aneurysm/genetics , Intracranial Aneurysm/metabolism , MicroRNAs/metabolism , Pseudogenes , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , N-Acetylgalactosaminyltransferases/metabolism
17.
Clin Exp Pharmacol Physiol ; 51(4): e13846, 2024 04.
Article in English | MEDLINE | ID: mdl-38382536

ABSTRACT

Hyperglycaemia is a key factor in the progression of diabetes complications. Dapagliflozin (DAPA), a new type of hypoglycaemic agent, has been shown to play an important role in anti-apoptotic, anti-inflammatory and antioxidant activities. Previous studies have demonstrated an endothelial protective effect of DAPA, but the underlying mechanism was still unclear. Autophagy is a homeostatic cellular mechanism that circulates unfolded proteins and damaged organelles through lysosomal dependent degradation. In this study, we aimed to investigate whether DAPA plays a protective role against high glucose (HG)-induced endothelial injury through regulating autophagy. The results showed that DAPA treatment resulted in increased cell viability. Additionally, DAPA treatment decreased interleukin (IL)-1ß, IL-6, and tumour necrosis factor-α levels in endothelial cells subjected to HG conditions. We observed that HG inhibited autophagy, and DAPA increased the autophagy level by inhibiting the protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signalling pathway. Chloroquine reversed all of these beneficial effects as an autophagy inhibitor. In summary, the endothelial protective effect of DAPA in HG can be attributed in part to its role in activating of autophagy via the AKT/mTOR signalling pathway. Therefore, suggesting that the activation of autophagy by DAPA may be a novel target for the treatment of HG-induced endothelial cell injury.


Subject(s)
Autophagy , Benzhydryl Compounds , Glucosides , Proto-Oncogene Proteins c-akt , Humans , Proto-Oncogene Proteins c-akt/metabolism , Human Umbilical Vein Endothelial Cells , TOR Serine-Threonine Kinases/metabolism , Glucose/metabolism
18.
Diabetol Metab Syndr ; 16(1): 18, 2024 Jan 13.
Article in English | MEDLINE | ID: mdl-38216955

ABSTRACT

BACKGROUND: Diabetes mellitus (DM) and its associated vascular complications have become a worldwide health concern. The effects and mechanism of vitamin D supplementation on endothelial function under high glucose condition remain elusive. METHODS: Human umbilical vein endothelial cells (HUVECs) were treated with 35 mM glucose, then 100 nM vitamin D were added. Transwell migration assay, CCK-8, immunofluorescence, flow cytometry, autophagy flux and transmission electric microscope were performed. RESULTS: Vitamin D reduced apoptosis, promoted migration and enhanced viability of HUVECs, decreased TIPE1 (Tumor necrosis factor-α-induced protein 8-like 1) under high glucose conditions. Overexpression of TIPE1 reverses the effects of vitamin D by increasing ROS production, inflammation, cell apoptosis, and suppressing autophagy, cell migration and viability. And vitamin D negatively correlated with TIPE1 mRNA level in DM patients. CONCLUSIONS: Vitamin D reverses the harmful effects of high glucose on HUVECs by reducing TIPE1 expression. And vitamin D supplementation could help to alleviate high glucose-induced injury in type 2 diabetes mellitus patients with microvascular complications.

19.
Acta Pharmacol Sin ; 45(5): 1002-1018, 2024 May.
Article in English | MEDLINE | ID: mdl-38225395

ABSTRACT

Diabetes mellitus results in numerous complications. Diabetic pulmonary fibrosis (DPF), a late pulmonary complication of diabetes, has not attracted as much attention as diabetic nephropathy and cardiomyopathy. Mangiferin (MF) is a natural small molecular compound that exhibits a variety of pharmacological effects including anti-inflammatory, anti-cancer, anti-diabetes, and anti-fibrosis effects. In this study, we investigated whether long-term diabetes shock induces DPF, and explored whether MF had a protective effect against DPF. We first examined the lung tissues and sections of 20 diabetic patients obtained from discarded lung surgical resection specimens and found that pulmonary fibrosis mainly accumulated around the pulmonary vessels, accompanied by significantly enhanced endothelial-mesenchymal transition (EndMT). We established a mouse model of DPF by STZ injections. Ten days after the final STZ injection, the mice were administered MF (20, 60 mg/kg, i.g.) every 3 days for 4 weeks, and kept feeding until 16 weeks and euthanized. We showed that pulmonary fibrotic lesions were developed in the diabetic mice, which began around the pulmonary vessels, while MF administration did not affect long-term blood glucose levels, but dose-dependently alleviated diabetes-induced pulmonary fibrosis. In human umbilical vein endothelial cells (HUVECs), exposure to high glucose (33.3 mM) induced EndMT, which was dose-dependently inhibited by treatment with MF (10, 50 µM). Furthermore, MF treatment promoted SIRT3 expression in high glucose-exposed HUVECs by directly binding to AMPK to enhance the activity of FoxO3, which finally reversed diabetes-induced EndMT. We conclude that MF attenuates DPF by inhibiting EndMT through the AMPK/FoxO3/SIRT3 axis. MF could be a potential candidate for the early prevention and treatment of DPF.


Subject(s)
AMP-Activated Protein Kinases , Diabetes Mellitus, Experimental , Forkhead Box Protein O3 , Mice, Inbred C57BL , Pulmonary Fibrosis , Sirtuin 3 , Xanthones , Animals , Xanthones/pharmacology , Xanthones/therapeutic use , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/metabolism , Sirtuin 3/metabolism , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/metabolism , Forkhead Box Protein O3/metabolism , Male , Humans , Mice , AMP-Activated Protein Kinases/metabolism , Epithelial-Mesenchymal Transition/drug effects , Human Umbilical Vein Endothelial Cells/drug effects , Streptozocin , Signal Transduction/drug effects , Endothelial-Mesenchymal Transition
20.
Int J Nanomedicine ; 19: 415-428, 2024.
Article in English | MEDLINE | ID: mdl-38250193

ABSTRACT

Purpose: The promotion of angiogenesis is an effective strategy for skin wound repair. While the transplantation of endothelial cells has shown promise in vascularization, the underlying mechanism remains unclear. Recent studies have suggested that transplanted cells undergo apoptosis in a short period and release apoptotic extracellular vesicles (ApoEVs) that may have therapeutic potential. Methods: In this study, we isolated ApoEVs from human umbilical vein endothelial cells (HUVECs) and characterized their properties. In vitro, we assessed the effects of ApoEVs on the proliferation, migration, and differentiation of endothelial cells and fibroblasts. In vivo, we investigated the therapeutic role of ApoEVs-AT in full-thickness skin wounds, evaluating wound closure rate, re-epithelialization, granulation tissue formation, vascularization, scar area, and collagen 3(Col3)/collagen 1(Col 1) ratio. Results: ApoEVs derived from HUVECs displayed typical characteristics. In vitro, ApoEVs significantly enhanced the proliferation, migration, tube formation, and expression of angiogenic-related genes in endothelial cells and slightly promoted the proliferation and migration of fibroblasts. In vivo, ApoEVs improved the wound closure rate, re-epithelialization, the formation of granulation tissue, and vascularization. Besides, ApoEVs reduced scar formation, accompanied by an increase in the Col 3/ Col 1 ratio. Conclusion: Given their abundant source and effectiveness, this study provided a novel approach for angiogenesis in tissue regeneration and deepened the understanding of from death to regeneration.


Subject(s)
Cicatrix , Extracellular Vesicles , Humans , Human Umbilical Vein Endothelial Cells , Angiogenesis , Antibodies, Monoclonal , Collagen Type I
SELECTION OF CITATIONS
SEARCH DETAIL
...