Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 117
Filter
1.
Colloids Surf B Biointerfaces ; 241: 114011, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38838445

ABSTRACT

Hyaline cartilage regeneration will bring evangel to millions of people suffered from cartilage diseases. However, uncontrollable cartilage fibrosis and matrix mineralization are the primary causes of cartilage regeneration failure in many tissue engineering scaffolds. This study presents a new attempt to avoid endochondral ossification or fibrosis in cartilage regeneration therapy by establishing biochemical regulatory area. Here, SOX9 expression plasmids are assembled in cellulose gels by chitosan gene vectors to fabricate SOX9+ functionalized scaffolds. RT-qPCR, western blot and biochemical analysis all show that the SOX9 reinforcement strategy can enhance chondrogenic specific proteins expression and promote GAG production. Notably, the interference from SOX9 has resisted osteogenic inducing significantly, showing an inhibition of COL1, OPN and OC production, and the inhibition efficiency was about 58.4 %, 22.8 % and 76.9 % respectively. In vivo study, implantation of these scaffolds with BMSCs can induce chondrogenic differentiation and resist endochondral ossification effectively. Moreover, specific SOX9+ functionalized area of the gel exhibited the resistance to matrix mineralization, indicating the special biochemical functional area for cartilage regeneration. These results indicate that this strategy is effective for promoting the hyaline cartilage regeneration and avoiding cartilage fibrosis, which provides a new insight to the future development of cartilage regeneration scaffolds.

2.
Mater Today Bio ; 26: 101080, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38757056

ABSTRACT

The unique gradient structure and complex composition of osteochondral tissue pose significant challenges in defect regeneration. Restoration of tissue heterogeneity while maintaining hyaline cartilage components has been a difficulty of an osteochondral tissue graft. A novel class of multi-crosslinked polysaccharide-based three-dimensional (3D) printing inks, including decellularized natural cartilage (dNC) and nano-hydroxyapatite, was designed to create a gradient scaffold with a robust interface-binding force. Herein, we report combining a dual-nozzle cross-printing technology and a gradient crosslinking method to create the scaffolds, demonstrating stable mechanical properties and heterogeneous bilayer structures. Biofunctional assessments revealed the remarkable regenerative effects of the scaffold, manifesting three orders of magnitude of mRNA upregulation during chondrogenesis and the formation of pure hyaline cartilage. Transcriptomics of the regeneration site in vivo and scaffold cell interaction tests in vitro showed that printed porous multilayer scaffolds could form the correct tissue structure for cell migration. More importantly, polysaccharides with dNC provided a hydrophilic microenvironment. The microenvironment is crucial in osteochondral regeneration because it could guide the regenerated cartilage to ensure the hyaline phenotype.

3.
Diagnostics (Basel) ; 14(7)2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38611693

ABSTRACT

Developmental dysplasia of the hip (DDH) presents varying degrees of femoral head dislocation, with severe cases leading to the formation of a new articular surface on the external side of the iliac bone-the neoacetabulum. Despite conventional understanding suggesting otherwise, a tissue resembling hyaline cartilage is found in the neoacetabulum and acetabulum of Crowe III and IV patients, indicating a potential for hyaline cartilage development without mechanical pressure. To test this theory, acetabular and femoral head cartilage obtained from patients with DDH was stained with hematoxylin-eosin and toluidine blue. The immunohistochemical analysis for collagen types II and VI and aggrecan was performed, as well as delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) analysis on a 7.0 T micro-MRI machine. The results obtained from DDH patients were compared to those of the control groups. Hyaline cartilage was found in the neoacetabulum and the acetabulum of patients with DDH. The nature of the tissue was confirmed with both the histological and the MRI analyses. The results of this study proved the presence of hyaline cartilage in patients with DDH at anatomical regions genetically predisposed to be bone tissue and at regions that are not subjected to mechanical stress. This is the first time that the neoacetabular cartilage of patients with advanced stages of DDH has been characterized in detail.

4.
Autops Case Rep ; 14: e2024481, 2024.
Article in English | MEDLINE | ID: mdl-38628285

ABSTRACT

Biliary atresia (BA) is a fibro-obliterative cholestatic disease of infancy. The presence of cartilage in the resected tissue is an uncommon finding. We documented the presence of both mature and immature hyaline cartilage in the portal plate and the wall of the gallbladder in a 2-month-old girl infant with BA who had undergone Kasai portoenterostomy. The presence of cartilage could be part of a heterotopia or an uncommon connective tissue metaplasia. The presence of immature cartilage with the merging of the perichondrium with the soft tissue highlights a metaplastic etiology in the index case.

5.
Adv Healthc Mater ; : e2304194, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38508211

ABSTRACT

Efforts are made to enhance the inherent potential of extracellular vesicles (EVs) by utilizing 3D culture platforms and engineered strategies for functional cargo-loading. Three distinct types of adipose mesenchymal stem cells-derived EVs (ADSCs-EVs) are successfully isolated utilizing 3D culture platforms consisting of porous gelatin methacryloyl (PG), PG combined with sericin methacryloyl (PG/SerMA), or PG combined with chondroitin sulfate methacryloyl (PG/ChSMA). These correspond to PG-EVs, PG/SerMA-EVs, and PG/ChSMA-EVs, respectively. Unique microRNA (miRNA) profiles are observed in each type of ADSCs-EVs. Notably, PG-EVs encapsulate higher levels of hsa-miR-455-3p and deliver more hsa-miR-455-3p to chondrocytes, which results in the activation of the hsa-miR-455-3p/PAK2/Smad2/3 axis and the subsequent hyaline cartilage regeneration. Furthermore, the functionality of PG-EVs is optimized through engineered strategies, including agomir/lentivirus transfection, electroporation, and Exo-Fect transfection. These strategies, referred to as Agomir-EVs, Lentivirus-EVs, Electroporation-EVs, and Exo-Fect-EVs, respectively, are ranked based on their efficacy in encapsulating hsa-miR-455-3p, delivering hsa-miR-455-3p to chondrocytes, and promoting cartilage formation via the hsa-miR-455-3p/PAK2/Smad2/3 axis. Notably, Exo-Fect-EVs exhibit the highest efficiency. Collectively, the 3D culture conditions and engineered strategies have an impact on the miRNA profiles and cartilage regeneration capabilities of ADSCs-EVs. The findings provide valuable insights into the mechanisms underlying the promotion of cartilage regeneration by ADSCs-EVs.

6.
Ann Biomed Eng ; 52(4): 920-933, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38190025

ABSTRACT

This study aimed to compare the histological, biochemical, and mechanical characteristics of hyaline cartilage in different regions and evaluate the potential of chondrocytes extracted from each region as donor sources for articular cartilage repair. The cartilage tissues of the femoral head and knee joint, ribs, nasal septum, thyroid, and xiphoid process of adult Bama pigs were isolated for histological, biochemical, and mechanical evaluation and analysis. The corresponding chondrocytes were isolated and evaluated for proliferation and redifferentiation capacity, using biochemical and histological analysis and RT-PCR experiments. Compared with articular cartilage, non-articular hyaline cartilage matrix stained more intensely in Safranin-O staining. Glycosaminoglycan and total collagen content were similar among all groups, while the highest content was measured in nasal septal cartilage. Regarding biomechanics, non-articular cartilage is similar to articular cartilage, but the elastic modulus and hardness are significantly higher in the middle region of costal cartilage. The chondrocytes extracted from different regions had no significant difference in morphology. Hyaline cartilage-like pellets were formed in each group after redifferentiation. The RT-PCR results revealed similar expressions of cartilage-related genes across the groups, albeit with lower expression of Col2 in the xiphoid chondrocytes. Conversely, higher expression of Col10 was observed in the chondrocytes from the rib, thyroid, and xiphoid cartilage. This study provides valuable preclinical data for evaluating heterotopic hyaline cartilage and chondrocytes for articular cartilage regeneration. The findings contribute to the selection of chondrocyte origins and advance the clinical translation of technology for cartilage regeneration.


Subject(s)
Cartilage, Articular , Swine , Animals , Hyaline Cartilage , Chondrocytes , Knee Joint , Biomechanical Phenomena
7.
Autops. Case Rep ; 14: e2024481, 2024. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1557155

ABSTRACT

ABSTRACT Biliary atresia (BA) is a fibro-obliterative cholestatic disease of infancy. The presence of cartilage in the resected tissue is an uncommon finding. We documented the presence of both mature and immature hyaline cartilage in the portal plate and the wall of the gallbladder in a 2-month-old girl infant with BA who had undergone Kasai portoenterostomy. The presence of cartilage could be part of a heterotopia or an uncommon connective tissue metaplasia. The presence of immature cartilage with the merging of the perichondrium with the soft tissue highlights a metaplastic etiology in the index case.

8.
Cell Rep ; 42(12): 113502, 2023 12 26.
Article in English | MEDLINE | ID: mdl-38032796

ABSTRACT

Optogenetics is a rapidly advancing technology combining photochemical, optical, and synthetic biology to control cellular behavior. Together, sensitive light-responsive optogenetic tools and human pluripotent stem cell differentiation models have the potential to fine-tune differentiation and unpick the processes by which cell specification and tissue patterning are controlled by morphogens. We used an optogenetic bone morphogenetic protein (BMP) signaling system (optoBMP) to drive chondrogenic differentiation of human embryonic stem cells (hESCs). We engineered light-sensitive hESCs through CRISPR-Cas9-mediated integration of the optoBMP system into the AAVS1 locus. The activation of optoBMP with blue light, in lieu of BMP growth factors, resulted in the activation of BMP signaling mechanisms and upregulation of a chondrogenic phenotype, with significant transcriptional differences compared to cells in the dark. Furthermore, cells differentiated with light could form chondrogenic pellets consisting of a hyaline-like cartilaginous matrix. Our findings indicate the applicability of optogenetics for understanding human development and tissue engineering.


Subject(s)
Optogenetics , Pluripotent Stem Cells , Humans , Chondrocytes , Cell Differentiation/genetics , Cartilage/metabolism , Chondrogenesis/genetics , Bone Morphogenetic Protein 2/metabolism , Cells, Cultured
9.
Biomaterials ; 302: 122296, 2023 11.
Article in English | MEDLINE | ID: mdl-37696204

ABSTRACT

Mesenchymal stem cells (MSCs) are potential candidates in cell-based therapy for cartilage repair and regeneration. However, during chondrogenic differentiation, MSCs undergo undesirable hypertrophic maturation. This poses a risk of ossification in the neo-tissue formed that eventually impedes the clinical use of MSCs for cartilage repair. TGF-ß is a potent growth factor used for chondrogenic differentiation of MSCs, however, its role in hypertrophy remains ambiguous. In the present work, we decipher that TGF-ß activates Wnt/ß-catenin signaling through SMAD3 and increases the propensity of Infrapatellar fat pad derived MSCs (IFP-MSCs) towards hypertrophy. Notably, inhibiting TGF-ß induced Wnt/ß-catenin signaling suppresses hypertrophic progression and enhances chondrogenic ability of IFP-MSCs in plasma hydrogels. Additionally, we demonstrate that activating Wnt signaling during expansion phase, promotes proliferation and reduces senescence, while improving stemness of IFP-MSCs. Thus, conversely modulating Wnt signaling in vitro during expansion and differentiation phases generates hyaline-like cartilage with minimal hypertrophy. Importantly, pre-treatment of IFP-MSCs encapsulated in plasma hydrogel with Wnt modulators followed by subcutaneous implantation in nude mice resulted in formation of a cartilage tissue with negligible calcification. Overall, this study provides technological advancement on targeting Wnt/ß-catenin pathway in a 3D scaffold, while maintaining the standard chondro-induction protocol to overcome the challenges associated with the clinical use of MSCs to engineer hyaline cartilage.


Subject(s)
Hyaline Cartilage , Mesenchymal Stem Cells , Animals , Mice , Adipose Tissue , beta Catenin/metabolism , Cell Differentiation , Cells, Cultured , Chondrogenesis , Hydrogels , Hypertrophy/metabolism , Mice, Nude , Tissue Engineering/methods , Transforming Growth Factor beta/metabolism , Wnt Signaling Pathway
10.
J Surg Case Rep ; 2023(9): rjad487, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37711846

ABSTRACT

Osteochondral autologous transplantation (OAT) is one of the most common surgical options for osteochondral disorders of the knee. In cases where OAT is performed for steroid-induced osteonecrosis, there are several problems potentially affecting the surgical outcomes such as large chondral damage area and compromised host bone. In addition, steroid administration for a long period of time may lead to extensive lesion, which poses difficulty in obtaining sufficient donor tissue. Those factors affect the prognosis of steroid-induced osteonecrosis resulting in inferior treatment outcomes. We present a young female with a large steroid-induced osteonecrosis lesion repaired only with two osteochondral plugs harvested from the healthy area. The reported case indicates that only partial osteochondral grafting limiting to the weight-bearing area may yield satisfactory outcome when OAT is performed for large steroid-induced osteonecrosis of the knee.

11.
Sci Bull (Beijing) ; 68(17): 1904-1917, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37558534

ABSTRACT

Osteochondral defects pose a great challenge and a satisfactory strategy for their repair has yet to be identified. In particular, poor repair could result in the generation of fibrous cartilage and subchondral bone, causing the degeneration of osteochondral tissue and eventually leading to repair failure. Herein, taking inspiration from the chemical elements inherent in the natural extracellular matrix (ECM), we proposed a novel ECM-mimicking scaffold composed of natural polysaccharides and polypeptides for osteochondral repair. By meticulously modifying natural biopolymers to form reversible guest-host and rigid covalent networks, the scaffold not only exhibited outstanding biocompatibility, cell adaptability, and biodegradability, but also had excellent mechanical properties that can cater to the environment of osteochondral tissue. Additionally, benefiting from the drug-loading group, chondrogenic and osteogenic drugs could be precisely integrated into the specific zone of the scaffold, providing a tissue-specific microenvironment to facilitate bone and cartilage differentiation. In rabbit osteochondral defects, the ECM-inspired scaffold not only showed a strong capacity to promote hyaline cartilage formation with typical lacuna structure, sufficient mechanical strength, good elasticity, and cartilage-specific ECM deposition, but also accelerated the regeneration of quality subchondral bone with high bone mineralization density. Furthermore, the new cartilage and subchondral bone were heterogeneous, a trait that is typical of the natural landscape, reflecting the gradual progression from cartilage to subchondral bone. These results suggest the potential value of this bioinspired osteochondral scaffold for clinical applications.


Subject(s)
Extracellular Matrix , Hyaline Cartilage , Animals , Rabbits , Bone and Bones , Osteogenesis
12.
Orthop J Sports Med ; 11(7): 23259671231185570, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37457043

ABSTRACT

Background: Microfracture is the first-line treatment for cartilage defects; however, the suboptimal quality of the repaired cartilage remains an issue. Purpose/Hypothesis: The aim of this first in-human study was to compare the clinical efficacy and safety of a combination of particulated costal allocartilage and microfracture versus microfracture alone in treating knee cartilage defects. We hypothesized that the particulated costal allocartilage with microfracture would result in superior cartilage repair quality and better clinical outcomes at 48 weeks postoperatively. Study Design: Randomized controlled trial; Level of evidence, 1. Methods: Patients with cartilage defects were allocated randomly to the treatment group (particulated costal allocartilage with microfracture) and control group (microfracture alone). Magnetic resonance imaging (MRI) outcomes of cartilage repair (the primary outcome measure) were evaluated at the 48-week follow-up using the Magnetic Resonance Observation of Cartilage Repair Tissue (MOCART) score. Patient-reported clinical outcomes (visual analog scale [VAS] pain score, Knee injury and Osteoarthritis Outcome Score [KOOS], and International Knee Documentation Committee score) and adverse events were evaluated at 12, 24, and 48 weeks postoperatively. Results: Overall, 88 patients were included (44 patients each in the treatment and control groups). The total MOCART score at 48 weeks postoperatively was significantly higher in the treatment group than in the control group (P < .001). Among the 9 MOCART variables, 6 were significantly superior in the treatment versus the control group: degree of repair and defect filling (P < .001), integration to the border zone (P < .001), surface (P = .006), structure (P = .011), signal intensity of the repair tissue (P < .001), and subchondral lamina (P = .005). There were significant between-group differences in KOOS-Pain (P = .014), KOOS-Activities of Daily Living (P = .010), KOOS-Sports (P = .029), and KOOS-Symptoms (P = .039) at 12 weeks postoperatively and in VAS pain (P = .012) and KOOS-Pain (P = .005) at 24 weeks postoperatively. At 48 weeks postoperatively, clinical outcomes were comparable between the groups. Conclusion: Microfracture augmented with particulated costal allocartilage resulted in superior cartilage repair quality compared with microfracture alone in terms of MRI evaluation of the knee joint cartilage defect at the 48-week follow-up. Functional outcomes were favorable for both treatments at final follow-up. Registration: KCT0004936 (Clinical Research Information Service [CRiS] of the Republic of Korea).

13.
Cytotechnology ; 75(4): 269-292, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37389132

ABSTRACT

This review aims to describe the most recent achievements and provide an insight into cartilage engineering and strategies to restore the cartilage defects. Here, we discuss cell types, biomaterials, and biochemical factors applied to form cartilage tissue equivalents and update the status of fabrication techniques, which are used at all stages of engineering the cartilage. The actualized concept to improve the cartilage tissue restoration is based on applying personalized products fabricated using a full cycle platform: a bioprinter, a bioink consisted of ECM-embedded autologous cell aggregates, and a bioreactor. Moreover, in situ platforms can help to skip some steps and enable adjusting the newly formed tissue in the place during the operation. Only some achievements described have passed first stages of clinical translation; nevertheless, the number of their preclinical and clinical trials is expected to grow in the nearest future.

14.
Biomedicines ; 11(6)2023 May 31.
Article in English | MEDLINE | ID: mdl-37371697

ABSTRACT

Cartilage injury defects in animals and humans result in the development of osteoarthritis and the progression of joint deterioration. Cell isolation from equine hyaline cartilage and evaluation of their ability to repair equine joint cartilage injuries establish a new experimental protocol for an alternative approach to osteochondral lesions treatment. Chondrocytes (CCs), isolated from the autologous cartilage of the trachea, grown in the laboratory, and subsequently arthroscopically implanted into the lesion site, were used to regenerate a chondral lesion of the carpal joint of a horse. Biopsies of the treated cartilage taken after 8 and 13 months of implantation for histological and immunohistochemical evaluation of the tissue demonstrate that the tissue was still immature 8 months after implantation, while at 13 months it was organized almost similarly to the original hyaline cartilage. Finally, a tissue perfectly comparable to native articular cartilage was detected 24 months after implantation. Histological investigations demonstrate the progressive maturation of the hyaline cartilage at the site of the lesion. The hyaline type of tracheal cartilage, used as a source of CCs, allows for the repair of joint cartilage injuries through the neosynthesis of hyaline cartilage that presents characteristics identical to the articular cartilage of the original tissue.

15.
J Funct Biomater ; 14(6)2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37367278

ABSTRACT

Hydrogels show promise in cartilage tissue engineering (CTE) by supporting chondrocytes and maintaining their phenotype and extracellular matrix (ECM) production. Under prolonged mechanical forces, however, hydrogels can be structurally unstable, leading to cell and ECM loss. Furthermore, long periods of mechanical loading might alter the production of cartilage ECM molecules, including glycosaminoglycans (GAGs) and collagen type 2 (Col2), specifically with the negative effect of stimulating fibrocartilage, typified by collagen type 1 (Col1) secretion. Reinforcing hydrogels with 3D-printed Polycaprolactone (PCL) structures offer a solution to enhance the structural integrity and mechanical response of impregnated chondrocytes. This study aimed to assess the impact of compression duration and PCL reinforcement on the performance of chondrocytes impregnated with hydrogel. Results showed that shorter loading periods did not significantly affect cell numbers and ECM production in 3D-bioprinted hydrogels, but longer periods tended to reduce cell numbers and ECM compared to unloaded conditions. PCL reinforcement enhanced cell numbers under mechanical compression compared to unreinforced hydrogels. However, the reinforced constructs seemed to produce more fibrocartilage-like, Col1-positive ECM. These findings suggest that reinforced hydrogel constructs hold potential for in vivo cartilage regeneration and defect treatment by retaining higher cell numbers and ECM content. To further enhance hyaline cartilage ECM formation, future studies should focus on adjusting the mechanical properties of reinforced constructs and exploring mechanotransduction pathways.

16.
J Pers Med ; 13(5)2023 Apr 27.
Article in English | MEDLINE | ID: mdl-37240918

ABSTRACT

Full thickness cartilage defects in cases of knee osteoarthritis are challenging in nature and are difficult to treat. The implantation of three-dimensional (3D) biofabricated grafts into the defect site can be a promising biological one-stage solution for such lesions that can avoid different disadvantages of the alternative surgical treatment options. In this study, the short-term clinical outcome of a novel surgical technique that uses a 3D bioprinted micronized adipose tissue (MAT) graft for knee cartilage defects is assessed and the degree of incorporation of such graft types is evaluated via arthroscopic and radiological analyses. Ten patients received 3D bioprinted grafts consisting of MAT with an allogenic hyaline cartilage matrix on a mold of polycaprolactone, with or without adjunct high tibial osteotomy, and they were monitored until 12 months postoperatively. Clinical outcomes were examined with patient-reported scoring instruments that consisted of the Western Ontario and McMaster Universities Arthritis Index (WOMAC) score and the Knee Injury and Osteoarthritis Outcome Score (KOOS). The graft incorporation was assessed using the Magnetic Resonance Observation of Cartilage Repair Tissue (MOCART) score. At 12 months follow-up, cartilage tissue biopsy samples were taken from patients and underwent histopathological examination. In the results, at final follow-up, the WOMAC and KOOS scores were 22.39 ± 7.7 and 79.16 ± 5.49, respectively. All scores were significantly increased at final follow-up (p < 0.0001). MOCART scores were also improved to a mean of 82.85 ± 11.49, 12 months after operation, and we observed a complete incorporation of the grafts with the surrounding cartilage. Together, this study suggests a novel regeneration technique for the treatment of knee osteoarthritis patients, with less rejection response and better efficacy.

17.
Polymers (Basel) ; 15(10)2023 May 16.
Article in English | MEDLINE | ID: mdl-37242899

ABSTRACT

Articular cartilage is a specialized tissue that provides a smooth surface for joint movement and load transmission. Unfortunately, it has limited regenerative capacity. Tissue engineering, combining different cell types, scaffolds, growth factors, and physical stimulation has become an alternative for repairing and regenerating articular cartilage. Dental Follicle Mesenchymal Stem Cells (DFMSCs) are attractive candidates for cartilage tissue engineering because of their ability to differentiate into chondrocytes, on the other hand, the polymers blend like Polycaprolactone (PCL) and Poly Lactic-co-Glycolic Acid (PLGA) have shown promise given their mechanical properties and biocompatibility. In this work, the physicochemical properties of polymer blends were evaluated by Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscope (SEM) and were positive for both techniques. The DFMSCs demonstrated stemness by flow cytometry. The scaffold showed to be a non-toxic effect when we evaluated it with Alamar blue, and the samples were analyzed using SEM and phalloidin staining to evaluate cell adhesion to the scaffold. The synthesis of glycosaminoglycans was positive on the construct in vitro. Finally, the PCL/PLGA scaffold showed a better repair capacity than two commercial compounds, when tested in a chondral defect rat model. These results suggest that the PCL/PLGA (80:20) scaffold may be suitable for applications in the tissue engineering of articular hyaline cartilage.

18.
Adv Exp Med Biol ; 1420: 59-80, 2023.
Article in English | MEDLINE | ID: mdl-37258784

ABSTRACT

Articular cartilage covers the ends of bones in synovial joints acting as a shock absorber that helps movement of bones. Damage of the articular cartilage needs treatment as it does not repair itself and the damage can progress to osteoarthritis. In osteoarthritis all the joint tissues are involved with characteristic progressive cartilage degradation and inflammation. Autologous chondrocyte implantation is a well-proven cell-based treatment for cartilage defects, but a main downside it that it requires two surgeries. Multipotent, aka mesenchymal stromal cell (MSC)-based cartilage repair has gained attention as it can be used as a one-step treatment. It is proposed that a combination of immunomodulatory and regenerative capacities make MSC attractive for the treatment of osteoarthritis. Furthermore, since part of the paracrine effects of MSCs are attributed to extracellular vesicles (EVs), small membrane enclosed particles secreted by cells, EVs are currently being widely investigated for their potential therapeutic effects. Although MSCs have entered clinical cartilage treatments and EVs are used in in vivo efficacy studies, not much attention has been given to determine their potency and to the development of potency assays. This chapter provides considerations and suggestions for the development of potency assays for the use of MSCs and MSC-EVs for the treatment of cartilage defects and osteoarthritis.


Subject(s)
Cartilage Diseases , Cartilage, Articular , Extracellular Vesicles , Mesenchymal Stem Cells , Osteoarthritis , Humans , Osteoarthritis/therapy , Osteoarthritis/metabolism , Cartilage, Articular/metabolism , Mesenchymal Stem Cells/metabolism , Chondrocytes/metabolism
19.
Int J Mol Sci ; 24(8)2023 Apr 18.
Article in English | MEDLINE | ID: mdl-37108575

ABSTRACT

The goal of cartilage tissue engineering (CTE) is to regenerate new hyaline cartilage in joints and treat osteoarthritis (OA) using cell-impregnated hydrogel constructs. However, the production of an extracellular matrix (ECM) made of fibrocartilage is a potential outcome within hydrogel constructs when in vivo. Unfortunately, this fibrocartilage ECM has inferior biological and mechanical properties when compared to native hyaline cartilage. It was hypothesized that compressive forces stimulate fibrocartilage development by increasing production of collagen type 1 (Col1), an ECM protein found in fibrocartilage. To test the hypothesis, 3-dimensional (3D)-bioprinted hydrogel constructs were fabricated from alginate hydrogel impregnated with ATDC5 cells (a chondrogenic cell line). A bioreactor was used to simulate different in vivo joint movements by varying the magnitude of compressive strains and compare them with a control group that was not loaded. Chondrogenic differentiation of the cells in loaded and unloaded conditions was confirmed by deposition of cartilage specific molecules including glycosaminoglycans (GAGs) and collagen type 2 (Col2). By performing biochemical assays, the production of GAGs and total collagen was also confirmed, and their contents were quantitated in unloaded and loaded conditions. Furthermore, Col1 vs. Col2 depositions were assessed at different compressive strains, and hyaline-like cartilage vs. fibrocartilage-like ECM production was analyzed to investigate how applied compressive strain affects the type of cartilage formed. These assessments showed that fibrocartilage-like ECM production tended to reduce with increasing compressive strain, though its production peaked at a higher compressive strain. According to these results, the magnitude of applied compressive strain governs the production of hyaline-like cartilage vs. fibrocartilage-like ECM and a high compressive strain stimulates fibrocartilage-like ECM formation rather than hyaline cartilage, which needs to be addressed by CTE approaches.


Subject(s)
Hyaline Cartilage , Hydrogels , Hyaline Cartilage/metabolism , Hydrogels/chemistry , Hyalin/metabolism , Fibrocartilage/metabolism , Extracellular Matrix/metabolism , Collagen/metabolism , Tissue Engineering/methods , Glycosaminoglycans/metabolism , Chondrocytes/metabolism
20.
Radiologie (Heidelb) ; 63(4): 241-248, 2023 Apr.
Article in German | MEDLINE | ID: mdl-36877296

ABSTRACT

BACKGROUND: Acute and chronic cartilage injuries are often encountered in professional and recreational athletes. They can compromise the athlete's performance and career and are considered a potential risk factor for early joint degeneration. OBJECTIVES: Incidence of cartilage injury in athletes, understanding of cartilage composition, injury mechanism and suitable diagnostic imaging are summarized and established therapeutic procedures, postoperative imaging including detection of relevant complications and assessment of reasonable indications for follow-up examinations are described. METHODS: Original research and review articles were analyzed. RESULTS: Cartilage injury can mimic meniscal or ligamentous injury and cannot be ruled out by clinical examination alone. Magnetic resonance imaging (MRI) is the method of choice to (1) detect (sensitivity 87-93%, specificity 94-99%) and grade cartilage lesions to facilitate choice of therapy and (2) to exclude concomitant injuries that require treatment to improve the prognosis of the chosen cartilage therapy. Postoperatively MRI allows noninvasive assessment of the repaired cartilage tissue and is an appropriate method to detect therapeutically relevant complications. CONCLUSIONS: Knowledge of mechanisms and appearance of cartilage injuries, current cartilage repair techniques and their imaging is crucial for the medical care of athletes.


Subject(s)
Cartilage Diseases , Cartilage, Articular , Knee Injuries , Humans , Cartilage, Articular/diagnostic imaging , Cartilage, Articular/surgery , Cartilage, Articular/injuries , Knee Joint/pathology , Knee Joint/surgery , Knee Injuries/diagnostic imaging , Knee Injuries/surgery , Cartilage Diseases/diagnostic imaging , Cartilage Diseases/surgery , Athletes
SELECTION OF CITATIONS
SEARCH DETAIL
...