Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.924
Filter
1.
Nitric Oxide ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38971520

ABSTRACT

Hydrogen sulfide (H2S), together with carbon monoxide (CO) and nitric oxide (NO), is recognized as a vital gasotransmitter. H2S is biosynthesized by enzymatic pathways in the skin and exerts significant physiological effects on a variety of biological processes, such as apoptosis, modulation of inflammation, cellular proliferation, and regulation of vasodilation. As a major health problem, dermatological diseases affect a large proportion of the population every day. It is urgent to design and develop effective drugs to deal with dermatological diseases. Dermatological diseases can arise from a multitude of etiologies, including neoplastic growth, infectious agents, and inflammatory processes. The abnormal metabolism of H2S is associated with many dermatological diseases, such as melanoma, fibrotic diseases, and psoriasis, suggesting its therapeutic potential in the treatment of these diseases. In addition, therapies based on H2S donors that release H2S are being developed to treat some of these conditions. In the review, we discuss recent advances in the function of H2S in normal skin, the role of altering H2S metabolism in dermatological diseases, and the therapeutic potential of diverse H2S donors for the treatment of dermatological diseases.

2.
Ann Work Expo Health ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38981129

ABSTRACT

This study evaluates the effectiveness of self-assessed exposure (SAE) data collection for characterization of hydrogen sulfide (H2S) risks in water and wastewater management, challenging the adequacy of traditional random or campaign sampling strategies. We compared 3 datasets derived from distinct strategies: expert data with activity metadata (A), SAE without metadata (B), and SAE with logbook metadata (C). The findings reveal that standard practices of random sampling (dataset A) fail to capture the sporadic nature of H2S exposure. Instead, SAE methods enhanced by logbook metadata and supported by reliable detection and calibration infrastructure (datasets B and C) are more effective. When assessing risk, particularly peak exposure risks, it is crucial to adopt measures that capture exposure variability, such as the range and standard deviations. This finer assessment is vital where high H2S peaks occur in confined spaces. Risk assessment should incorporate indices that account for peak exposure, utilizing variability measures like range and standard or geometric standard deviation to reflect the actual risk more accurately. For large datasets, a histogram is just as useful as statistical measures. This approach has revealed that not only wastewater workers but also water distribution network workers, can face unexpectedly high H2S levels when accessing confined underground spaces. Our research underscores the need for continuous monitoring with personal electrochemical gas detector alarm systems, particularly in environments with variable and potentially hazardous exposure levels.

3.
Plant Physiol Biochem ; 214: 108880, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38954943

ABSTRACT

As the third active gas signal molecule in plants, hydrogen sulfide (H2S) plays important roles in physiological metabolisms and biological process of fruits and vegetables during postharvest storage. In the present study, the effects of H2S on enhancing resistance against soft rot caused by Botryosphaeria dothidea and the involvement of jasmonic acid (JA) signaling pathway in kiwifruit during the storage were investigated. The results showed that 20 µL L-1 H2S fumigation restrained the disease incidence of B. dothidea-inoculated kiwifruit during storage, and delayed the decrease of firmness and the increase of soluble solids (SSC) content. H2S treatment increased the transcription levels of genes related to JA biosynthesis (AcLOX3, AcAOS, AcAOC2, and AcOPR) and signaling pathway (AcCOI1, AcJAZ5, AcMYC2, and AcERF1), as well as the JA accumulation. Meanwhile, H2S promoted the expression of defense-related genes (AcPPO, AcSOD, AcGLU, AcCHI, AcAPX, and AcCAT). Correlation analysis revealed that JA content was positively correlated with the expression levels of JA biosynthesis and defense-related genes. Overall, the results indicated that H2S could promote the increase of endogenous JA content and expression of defense-related genes by regulating the transcription levels of JA pathway-related genes, which contributed to the inhibition on the soft rot occurrence of kiwifruit.

4.
Apoptosis ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38980600

ABSTRACT

Ferroptosis is a programmed cell death that relies on iron and lipid peroxidation. It differs from other forms of programmed cell death such as necrosis, apoptosis and autophagy. More and more evidence indicates that ferroptosis participates in many types of diseases, such as neurodegenerative diseases, ischemia-reperfusion injury, cardiovascular diseases and so on. Hence, clarifying the role and mechanism of ferroptosis in diseases is of great significance for further understanding the pathogenesis and treatment of some diseases. Hydrogen sulfide (H2S) is a colorless and flammable gas with the smell of rotten eggs. Many years ago, H2S was considered as a toxic gas. however, in recent years, increasing evidence indicates that it is the third important gas signaling molecule after nitric oxide and carbon monoxide. H2S has various physiological and pathological functions such as antioxidant stress, anti-inflammatory, anti-apoptotic and anti-tumor, and can participate in various diseases. It has been reported that H2S regulation of ferroptosis plays an important role in many types of diseases, however, the related mechanisms are not fully clear. In this review, we reviewed the recent literature about the role of H2S regulation of ferroptosis in diseases, and analyzed the relevant mechanisms, hoping to provide references for future in-depth researches.

5.
Antonie Van Leeuwenhoek ; 117(1): 94, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38954064

ABSTRACT

The Aeolian archipelago is known worldwide for its volcanic activity and hydrothermal emissions, of mainly carbon dioxide and hydrogen sulfide. Hydrogen, methane, and carbon monoxide are minor components of these emissions which together can feed large quantities of bacteria and archaea that do contribute to the removal of these notorious greenhouse gases. Here we analyzed the metagenome of samples taken from the Levante bay on Vulcano Island, Italy. Using a gene-centric approach, the hydrothermal vent community appeared to be dominated by Proteobacteria, and Sulfurimonas was the most abundant genus. Metabolic reconstructions highlight a prominent role of formaldehyde oxidation and the reverse TCA cycle in carbon fixation. [NiFe]-hydrogenases seemed to constitute the preferred strategy to oxidize H2, indicating that besides H2S, H2 could be an essential electron donor in this system. Moreover, the sulfur cycle analysis showed a high abundance and diversity of sulfate reduction genes underpinning the H2S production. This study covers the diversity and metabolic potential of the microbial soil community in Levante bay and adds to our understanding of the biogeochemistry of volcanic ecosystems.


Subject(s)
Hydrogen , Metagenome , Methane , Soil Microbiology , Sulfur , Methane/metabolism , Hydrogen/metabolism , Italy , Sulfur/metabolism , Archaea/genetics , Archaea/classification , Archaea/metabolism , Bacteria/genetics , Bacteria/classification , Bacteria/metabolism , Bacteria/isolation & purification , Hydrothermal Vents/microbiology , Islands , Phylogeny
6.
J Clin Transl Hepatol ; 12(7): 625-633, 2024 Jul 28.
Article in English | MEDLINE | ID: mdl-38993511

ABSTRACT

Background and Aims: The role of platelet autophagy in cirrhotic thrombocytopenia (CTP) remains unclear. This study aimed to investigate the impact of platelet autophagy in CTP and elucidate the regulatory mechanism of hydrogen sulfide (H2S) on platelet autophagy. Methods: Platelets from 56 cirrhotic patients and 56 healthy individuals were isolated for in vitro analyses. Autophagy markers (ATG7, BECN1, LC3, and SQSTM1) were quantified using enzyme-linked immunosorbent assay, while autophagosomes were visualized through electron microscopy. Western blotting was used to assess the autophagy-related proteins and the PDGFR/PI3K/Akt/mTOR pathway following treatment with NaHS (an H2S donor), hydroxocobalamin (an H2S scavenger), or AG 1295 (a selective PDGFR-α inhibitor). A carbon tetrachloride-induced cirrhotic BALB/c mouse model was established. Cirrhotic mice with thrombocytopenia were randomly treated with normal saline, NaHS, or hydroxocobalamin for 15 days. Changes in platelet count and aggregation rate were observed every three days. Results: Cirrhotic patients with thrombocytopenia exhibited significantly decreased platelet autophagy markers and endogenous H2S levels, alongside increased platelet aggregation, compared to healthy controls. In vitro, NaHS treatment of platelets from severe CTP patients elevated LC3-II levels, reduced SQSTM1 levels, and decreased platelet aggregation in a dose-dependent manner. H2S treatment inhibited PDGFR, PI3K, Akt, and mTOR phosphorylation. In vivo, NaHS significantly increased LC3-II and decreased SQSTM1 expressions in platelets of cirrhotic mice, reducing platelet aggregation without affecting the platelet count. Conclusions: Diminished platelet autophagy potentially contributes to thrombocytopenia in cirrhotic patients. H2S modulates platelet autophagy and functions possibly via the PDGFR-α/PI3K/Akt/mTOR signaling pathway.

7.
Article in English | MEDLINE | ID: mdl-38993681

ABSTRACT

The biological chemistry of hydrogen sulfide (H2S) with physiologically important heme proteins is in the focus of redox biology research. In this study, we investigated the interactions of lactoperoxidase (LPO) with H2S in the presence and absence of molecular dioxygen (O2) or hydrogen peroxide (H2O2). Under anaerobic conditions, native LPO forms no heme-H2S complex upon sulfide exposure. However, under aerobic conditions or in the presence of H2O2 the formation of both ferrous and ferric sulfheme (sulfLPO) derivatives was observed based on the appearances of their characteristic optical absorptions at 638 nm and 727 nm, respectively. Interestingly, we demonstrate that LPO can catalytically oxidize H2S by H2O2 via intermediate formation of relatively short-lived ferrous and ferric sulfLPO derivatives. Pilot product analyses suggested that the turnover process generates oxidized sulfide species, which include sulfate S O 4 2 - and inorganic polysulfides ( H S x - ; x = 2-5). These results indicated that H2S can serve as a non-classical LPO substrate by inducing a reversible sulfheme-like modification of the heme porphyrin ring during turnover. Furthermore, electron paramagnetic resonance data suggest that H2S can act as a scavenger of H2O2 in the presence of LPO without detectable formation of any carbon-centered protein radical species, suggesting that H2S might be capable of protecting the enzyme from radical-mediated damage. We propose possible mechanisms, which explain our results as well as contrasting observations with other heme proteins, where either no sulfheme formation was observed or the generation of sulfheme derivatives provided a dead end for enzyme functions.

8.
J Pharmacol Sci ; 155(4): 131-139, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38880547

ABSTRACT

Elevation of the homocysteine concentration in the plasma called hyperhomocysteinemia (hHCY) during pregnancy causes a number of pre- and postnatal developmental disorders. The aim of our study was to analyze the effects of H2S donors -NaHS and N-acetylcysteine (NAC) on blood-brain barrier (BBB) permeability in rats with prenatal hHCY. In rats with mild hHCY BBB permeability assessed by Evans Blue extravasation in brain increased markedly throughout life. Administration of NaHS or NAC during pregnancy attenuated hHCY-associated damage and increased endogenous concentrations of sulfides in brain tissues. Acute application of dl-homocysteine thiolactone induced BBB leakage, which was prevented by the NMDA receptor antagonist MK-801 or H2S donors. Rats with hHCY demonstrated high levels of NO metabolite - nitrites and proinflammatory cytokines (IL-1ß, TNF-α, IL-6) in brain. Lactate dehydrogenase (LDH) activity in the serum was higher in rats with hHCY. Mitochondrial complex-I activity was lower in brain of hHCY rats. NaHS treatment during pregnancy restored levels of proinflammatory cytokines, nitrites and activity of the respiratory chain complex in brain as well as the LDH activity in serum. Our data suggest that H2S has neuroprotective effects against prenatal hHCY-associated BBB disturbance providing a potential strategy for the prevention of developmental impairments in newborns.


Subject(s)
Acetylcysteine , Blood-Brain Barrier , Cytokines , Hydrogen Sulfide , Hyperhomocysteinemia , Neuroprotective Agents , Animals , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/drug effects , Pregnancy , Hyperhomocysteinemia/metabolism , Female , Hydrogen Sulfide/metabolism , Neuroprotective Agents/pharmacology , Acetylcysteine/pharmacology , Cytokines/metabolism , Homocysteine/blood , Homocysteine/metabolism , Homocysteine/analogs & derivatives , Rats, Wistar , Sulfides/pharmacology , Sulfides/administration & dosage , Rats , Male , Pregnancy Complications , Brain/metabolism , L-Lactate Dehydrogenase/metabolism , L-Lactate Dehydrogenase/blood , Permeability , Nitrites/metabolism , Nitrites/blood
9.
Article in English | MEDLINE | ID: mdl-38884920

ABSTRACT

PURPOSE: Aging contributes significantly to cardiovascular diseases and cardiac dysfunction, leading to the upregulation of matrix metalloproteinase-9 (MMP-9) in the heart and a significant decrease in hydrogen sulfide (H2S) content, coupled with impaired cardiac diastolic function. This study explores whether supplementing exogenous hydrogen sulfide during aging ameliorates the decline in H2S concentration in the heart, suppresses MMP-9 expression, and improves the age-associated impairment in cardiac morphology and function. METHODS: We collected plasma from healthy individuals of different ages to determine the relationship between aging and H2S and MMP-9 levels through Elisa detection and liquid chromatography-tandem mass spectrometry (LC/MC) detection of plasma H2S content. Three-month-old mice were selected as the young group, while 18-month-old mice were selected as the old group, and sodium hydrosulfide (NaHS) was injected intraperitoneally from 15 months old until 18 months old as the old + NaHS group. Plasma MMP-9 content was detected using Elisa, plasma H2S content, cardiac H2S content, and cystathionine gamma-lyase (CSE) activity were detected using LC/MC, and cardiac function was detected using echocardiography. Heart structure was assessed using hematoxylin and eosin staining, Masone staining was used to detect the degree of cardiac fibrosis, while western blot was used to detect the expression of MMP-9, CSE, and aging marker proteins. Knockdown of MMP-9 and CSE in H9c2 cells using small interfering RNA was carried out to determine the upstream-downstream relationship between MMP-9 and CSE. RESULTS: H2S content in the plasma of healthy individuals decreases with escalating age, whereas MMP-9 level rises with age progression. Aging leads to a decrease in H2S levels in the heart and plasma of mice, severe impairment of cardiac diastolic function, interstitial relaxation, and fibrosis of the heart. Supplementing with exogenous H2S can improve these phenomena. CONCLUSION: H2S maintains the structure and function of the heart by inhibiting the expression of MMP-9 during the aging process.

10.
Front Vet Sci ; 11: 1378435, 2024.
Article in English | MEDLINE | ID: mdl-38933705

ABSTRACT

Hydrogen sulfide (H2S) is a gaseous signaling molecule produced in the body by three enzymes: cystathionine-ß-synthase (CBS), cystathionine-γ-lyase (CSE) and 3-mercaptopyruvate sulfurtransferase (3-MST). H2S is crucial in various physiological processes associated with female mammalian reproduction. These include estrus cycle, oocyte maturation, oocyte aging, ovulation, embryo transport and early embryo development, the development of the placenta and fetal membranes, pregnancy, and the initiation of labor. Despite the confirmed presence of H2S-producing enzymes in all female reproductive tissues, as described in this review, the exact mechanisms of H2S action in these tissues remain in most cases unclear. Therefore, this review aims to summarize the knowledge about the presence and effects of H2S in these tissues and outline possible signaling pathways that mediate these effects. Understanding these pathways may lead to the development of new therapeutic strategies in the field of women's health and perinatal medicine.

11.
Biol Reprod ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38938086

ABSTRACT

BACKGROUND: Gestational hypertension, often associated with elevated soluble Fms-related receptor tyrosine kinase 1 (sFlt-1), poses significant risks to both maternal and fetal health. Hydrogen sulfide (H2S), a gasotransmitter, has demonstrated blood pressure-lowering effects in hypertensive animals and humans. However, its role in pregnancy-induced hypertension remains unclear. OBJECTIVE: This study aimed to investigate the impact of GYY4137, a slow-release H2S donor, on sFlt-1-induced hypertension in pregnant rats and examine the underlying mechanisms. METHODS: Pregnant rats were administered sFlt-1 (6 µg/kg/day, intravenously) or vehicle from gestation day (GD) 12 to 20. A subset of these groups received GYY4137 (an H2S donor, 50 mg/kg/day, subcutaneously) from GD 16 to 20. Serum H2S levels, mean arterial blood pressure (CODA tail-cuff), uterine artery blood flow (ultrasonography), vascular reactivity to vasopressors and endothelial-dependent relaxation (myography), endothelial nitric oxide synthase (eNOS) protein expression in uterine arteries (Western blotting) were assessed. In addition, maternal weight gain, as well as fetal and placental weights, were measured. RESULTS: Elevated sFlt-1 reduced both maternal weight gain and serum H2S levels. GYY4137 treatment restored both weight gain and H2S levels in sFlt-1 dams. sFlt-1 increased mean arterial pressure and decreased uterine artery blood flow in pregnant rats. However, treatment with GYY4137 normalized blood pressure and restored uterine blood flow in sFlt-1 dams. sFlt-1 dams exhibited heightened vasoconstriction to phenylephrine and GYY4137 significantly mitigated the exaggerated vascular contraction. Notably, sFlt-1 impaired endothelium-dependent relaxation, while GYY4137 attenuated this impairment by upregulating eNOS protein levels and enhancing vasorelaxation in uterine arteries. GYY4137 mitigated sFlt-1-induced fetal growth restriction. CONCLUSION: sFlt-1 mediated hypertension is associated with decreased H2S levels. Replenishing H2S with the donor GYY4137 mitigates hypertension and improves vascular function and fetal growth outcomes. This suggests modulation of H2S could offer a novel therapeutic strategy for managing gestational hypertension and adverse fetal effects.

12.
J Clin Med ; 13(12)2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38930055

ABSTRACT

Background: The sulfide-hydrogen sulfide brine balneotherapy (HSBB), including a combination of dissolved hydrogen sulfide (H2S) gas, inorganic sulfur ions (S2-), and hydrosulfide ions (HS-), is one of the most important and most effective forms of spa treatment in patients with osteoarticular disorders (OADs). Some cardiovascular diseases (CVDs) are often considered to be contraindications to HSBB since the presence of thiol groups may lead to an increased quantity of reactive oxygen species (ROS), which damage the vascular endothelium, and endothelial dysfunction is considered to be the main cause of atherosclerosis. However, there are a number of literature reports suggesting this theory to be false. H2S is a member of the endogenous gaseous transmitter family and, since it is a relatively recent addition, it has the least well-known biological properties. H2S-NO interactions play an important role in oxidative stress in CVDs. The general objective of this study was to assess the cardiovascular safety of HSBB and analyze the effect of HSBB on selected cardiovascular risk markers. Methods: A total of 100 patients at the age of 76.3 (±7.5) years from the Wlókniarz Sanatorium in Busko-Zdrój were initially included in the study. The following parameters were assessed: age, sex, height, body weight, body surface area (BSA), body mass index (BMI), systolic (SBP) and diastolic blood pressure (DBP), heart rate, the diagnosis of OAD that was the indication for balneotherapy, creatinine (CREAT), glomerular filtration rate (GFR), lipid panel, C-reactive protein (CRP), uric acid (UA), and fibrinogen (FIBR) and cardiovascular markers: (cardiac troponin T (cTnT), N-terminal pro-B-type natriuretic peptide (NT-proBNP). Results: A significant decrease in DBP and a trend towards SBP reduction were observed over the course of the study. A significant decrease was observed in CRP levels decreasing from 2.7 (±3.6) mg/L to 2.06 (±1.91) mg/L, whereas FIBR rose significantly from 2.95 (±0.59) g/L to 3.23 (±1.23) g/L. LDL-C levels decreased slightly, statistically significant, from 129.36 (±40.67) mg/dL to 123.74 (±36.14) mg/dL. HSBB did not affect the levels of evaluated cardiovascular biomarkers, namely NT-proBNP (137.41 (±176.52) pg/mL vs. 142.89 (±182.82) pg/mL; p = 0.477) and cTnT (9.64 (±4.13) vs. 9.65 (±3.91) ng/L; p = 0.948). A multiple regression analysis of pre-balneotherapy and post-balneotherapy values showed cTnT levels to be independently correlated only with CREAT levels and GFR values. None of the assessed parameters independently correlated with the NT-proBNP level. Conclusions: HSBB resulted in a statistically significant improvement in a subclinical pro-inflammatory state. HSBB has a beneficial effect in modifying key cardiovascular risk factors by reducing LDL-C levels and DBP values. HSBB has a neutral effect on cardiovascular ischemia/injury. Despite slightly elevated baseline levels of the biochemical marker of HF (NT-proBNP), HSBB causes no further increase in this marker. The use of HSBB in patients with OAD has either a neutral effect or a potentially beneficial effect on the cardiovascular system, which may constitute grounds for further studies to verify the current cardiovascular contraindications for this form of therapy.

13.
Sensors (Basel) ; 24(12)2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38931528

ABSTRACT

To monitor the biological function of H2S in real time, this investigation demonstrated the design and synthesis of a novel fluorescent probe integrated with cyanine and 2,4-dinitrophenol for the qualitative and quantitative detection of H2S. An NIR sensitive sensor (FS-HS-1) was provided with a straightforward process. Spectroscopy experiments elucidated that FS-HS-1 could selectively detect H2S in a PBS solution (containing 40% acetonitrile) with a 111-fold fluorescence enhancement at 715 nm (ex. 605 nm). The response towards NaHS occurred in less than 2 min, and the detection limit was confirmed to be as low as 4.47 ± 0.11 nmol/L. Furthermore, the probe is capable of monitoring changes in exogenous H2S concentrations within living cells with confocal and 2P imaging.


Subject(s)
Carbocyanines , Fluorescent Dyes , Hydrogen Sulfide , Hydrogen Sulfide/analysis , Humans , Fluorescent Dyes/chemistry , Carbocyanines/chemistry , Spectroscopy, Near-Infrared/methods , HeLa Cells , Limit of Detection , 2,4-Dinitrophenol/chemistry , 2,4-Dinitrophenol/pharmacology
14.
Environ Sci Technol ; 58(25): 11128-11139, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38857430

ABSTRACT

Hydrogen sulfide (H2S), an environmentally harmful pollutant, is a byproduct of geothermal energy production. To reduce the H2S emissions, H2S-charged water is injected into the basaltic subsurface, where it mineralizes to iron sulfides. Here, we couple geophysical induced polarization (IP) measurements in H2S injection wells and geochemical reactive transport models (RTM) to monitor the H2S storage efforts in the subsurface of Nesjavellir, one of Iceland's most productive geothermal fields. An increase in the IP response after 40 days of injection indicates iron-sulfide formation near the injection well. Likewise, the RTM shows that iron sulfides readily form at circumneutral to alkaline pH conditions, and the iron supply from basalt dissolution limits its formation. Agreement in the trends of the magnitude and distribution of iron-sulfide formation between IP and RTM suggests that coupling the methods can improve the monitoring of H2S mineralization by providing insight into the parameters influencing iron-sulfide formation. In particular, accurate fluid flow parameters in RTMs are critical to validate the predictions of the spatial distribution of subsurface iron-sulfide formation over time obtained through IP observations. This work establishes a foundation for expanding H2S sequestration monitoring efforts and a framework for coupling geophysical and geochemical site evaluations in environmental studies.


Subject(s)
Hydrogen Sulfide , Hydrogen Sulfide/chemistry , Environmental Monitoring/methods , Iceland , Iron/chemistry
15.
Int J Mol Sci ; 25(12)2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38928304

ABSTRACT

Hydrogen sulfide (H2S) is a novel gasotransmitter. Sucrose (SUC) is a source of cellular energy and a signaling molecule. Maize is the third most common food crop worldwide. However, the interaction of H2S and SUC in maize thermotolerance is not widely known. In this study, using maize seedlings as materials, the metabolic and functional interactions of H2S and SUC in maize thermotolerance were investigated. The data show that under heat stress, the survival rate and tissue viability were increased by exogenous SUC, while the malondialdehyde content and electrolyte leakage were reduced by SUC, indicating SUC could increase maize thermotolerance. Also, SUC-promoted thermotolerance was enhanced by H2S, while separately weakened by an inhibitor (propargylglycine) and a scavenger (hypotaurine) of H2S and a SUC-transport inhibitor (N-ethylmaleimide), suggesting the interaction of H2S and SUC in the development of maize thermotolerance. To establish the underlying mechanism of H2S-SUC interaction-promoted thermotolerance, redox parameters in mesocotyls of maize seedlings were measured before and after heat stress. The data indicate that the activity and gene expression of H2S-metabolizing enzymes were up-regulated by SUC, whereas H2S had no significant effect on the activity and gene expression of SUC-metabolizing enzymes. In addition, the activity and gene expression of catalase, glutathione reductase, ascorbate peroxidase, peroxidase, dehydroascorbate reductase, monodehydroascorbate reductase, and superoxide dismutase were reinforced by H2S, SUC, and their combination under non-heat and heat conditions to varying degrees. Similarly, the content of ascorbic acid, flavone, carotenoid, and polyphenol was increased by H2S, SUC, and their combination, whereas the production of superoxide radicals and the hydrogen peroxide level were impaired by these treatments to different extents. These results imply that the metabolic and functional interactions of H2S and sucrose signaling exist in the formation of maize thermotolerance through redox homeodynamics. This finding lays the theoretical basis for developing climate-resistant maize crops and improving food security.


Subject(s)
Hydrogen Sulfide , Oxidation-Reduction , Sucrose , Thermotolerance , Zea mays , Zea mays/metabolism , Zea mays/physiology , Zea mays/genetics , Zea mays/drug effects , Hydrogen Sulfide/metabolism , Sucrose/metabolism , Gene Expression Regulation, Plant , Heat-Shock Response , Seedlings/metabolism , Seedlings/drug effects , Plant Proteins/metabolism , Plant Proteins/genetics
16.
ACS Sens ; 9(6): 3233-3243, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38832488

ABSTRACT

Amorphous metal oxide semiconductor (MOS) materials are endowed with great promise to modulate electronic structures for gas-sensing performance improvement. However, the elevated-temperature requirement of gas sensors severely impedes the application of amorphous materials due to their low thermal stability. Here, a cationic-assisted strategy to tailor the Ni-O microenvironment in an amorphous-dominated Zn/NiO heterogeneous structure with high thermal stability was developed. It was found that 6 mol % Zn incorporation into amorphous NiO can effectively preserve the amorphous-dominated NiO phase even at high temperature. After calcination, the amorphous oxide can only be converted to crystals partly thus leading to the formation of amorphous/crystalline compounds, and the content of the amorphous phase can be adjusted by changing the calcination temperature. This amorphous/crystalline configuration can induce more electron transfer from Ni to Zn species, leading to the formation of active Niδ+ (δ>2) centers. Ex situ XPS and in situ Raman spectroscopy studies proved that the generated Niδ+ species pronouncedly promote the electron transfer during the H2S adsorption process. The amorphous/crystalline-6 mol % Zn/NiO sensor exhibits exceptional hydrogen sulfide response (2 ppm, 3.23), outstanding repeatability (as long as 5 weeks), and low limit of detection (as low as 50 ppb), surpassing most reported nickel-based gas sensors such as the crystal nickel oxide prepared in this work. The response and detection limit of the latter is only (2 ppm, 1.89) and (0.05 ppm) respectively. Our work thus opens up more opportunities for fundamental understanding and modulating of highly active amorphous sensing materials.


Subject(s)
Hydrogen Sulfide , Nickel , Zinc , Nickel/chemistry , Hydrogen Sulfide/analysis , Hydrogen Sulfide/chemistry , Zinc/chemistry , Zinc/analysis , Limit of Detection , Semiconductors
17.
AAPS PharmSciTech ; 25(5): 132, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849590

ABSTRACT

Hydrogen sulfide (H2S) is a multifaceted gasotransmitter molecule which has potential applications in many pathological conditions including in lowering intraocular pressure and providing retinal neuroprotection. However, its unique physicochemical properties pose several challenges for developing its efficient and safe delivery method system. This study aims to overcome challenges related to H2S toxicity, gaseous nature, and narrow therapeutic concentrations range by developing polymeric microparticles to sustain the release of H2S for an extended period. Various formulation parameters and their interactions are quantitatively identified using Quality-by-Design (QbD) approach to optimize the microparticle-based H2S donor (HSD) delivery system. Microparticles were prepared using a solvent-evaporation coacervation process by using polycaprolactone (PCL), soy lecithin, dichloromethane, Na2S.9H2O, and silicone oil as polymer, surfactant, solvent, HSD, and dispersion medium, respectively. The microparticles were characterized for size, size distribution, entrapment efficiency, and H2S release profile. A Main Effects Screening (MES) and a Response Surface Design (RSD) model-based Box-Behnken Design (BBD) was developed to establish the relationship between critical process parameters (CPPs) and critical quality attributes (CQAs) qualitatively and quantitatively. The MES model identified polymer to drug ratio and dispersion medium quantity as significant CPPs among others, while the RSD model established their quantitative relationship. Finally, the target product performance was validated by comparing predicted and experimental outcomes. The QbD approach helped in achieving overall desired microparticle characteristics with fewer trials and provided a mathematical relationship between the CPPs and the CQAs useful for further manipulation and optimization of release profile up to at least 30 days.


Subject(s)
Hydrogen Sulfide , Particle Size , Polymers , Hydrogen Sulfide/chemistry , Polymers/chemistry , Chemistry, Pharmaceutical/methods , Solvents/chemistry , Polyesters/chemistry , Microspheres , Drug Delivery Systems/methods , Drug Liberation , Drug Carriers/chemistry , Surface-Active Agents/chemistry , Drug Compounding/methods
18.
Nitric Oxide ; 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38830571

ABSTRACT

Endogenous hydrogen sulfide (H2S) plays an important role in bone metabolism. However, the exact role of H2S in intestinal calcium and phosphorus absorption and its potential in preventing and treating primary osteoporosis remains unknown. Therefore, this study aimed to investigate the potential of H2S in promoting intestinal calcium and phosphorus absorption and alleviating primary osteoporosis. We measured the apparent absorptivity of calcium, femoral bone density, expression and sulfhydration of the duodenal endoplasmic reticulum protein of 57 kDa (ERp57), duodenal cystathionine γ-lyase (CSE) expression, and serum H2S content in adult and old CSE-knockout and wild-type mice. We also assessed intracellular reactive oxygen species (ROS) and Ca2+ content in CSE-overexpressing or knockout intestinal epithelial cell (IEC)-6 cells. In senile mice, CSE knockout decreased endogenous H2S, ERp57 sulfhydration, and intestinal calcium absorption and worsened osteoporosis, which were partially reversed by GYY4137, an H2S donor. CSE overexpression in IEC-6 cells increased ERp57 sulfhydration, protein kinase A and C activity, and intracellular Ca2+, whereas CSE knockout exerted the opposite effects. Furthermore, hydrogen peroxide (H2O2) stimulation had similar effects as in CSE knockout, which were reversed by pretreatment with sodium hydrosulfide before H2O2 stimulation and restored by DL-dithiothreitol. These findings suggest that H2S attenuates primary osteoporosis by preventing ROS-induced ERp57 damage in intestinal epithelial cells by enhancing ERp57 activity and promoting intestinal calcium absorption, thereby aiding in developing therapeutic interventions to prevent osteoporosis.

19.
Article in English | MEDLINE | ID: mdl-38918297

ABSTRACT

Offensive odors from wastewater treatment plants (WWTP) are caused by volatile inorganic compounds such as hydrogen sulfide and ammonia and volatile organic compounds (VOCs), such as toluene. To treat these pollutants, biofiltration is an effective and economical technology used worldwide due to its low investment and environmental impact. In this work, a laboratory-scale prototype biofilter unit for the simultaneous biofiltration of hydrogen sulfide, ammonia, and toluene was evaluated by simulating the emission concentrations of the El Salitre WWTP Bogotá, Colombia, using a compost of chicken manure and sugarcane bagasse as packing material for the biofilter. The prototype biofilter unit was set to an operation flow rate of 0.089 m3/h, an empty bed residence time (EBRT) of 60 s, and a volume of 0.007 m3 (6.6 L). The maximum removal efficiency were 96.9 ± 1.2% for H2S, at a loading rate of 4.7 g/m3 h and a concentration of 79.1 mg/m3, 68 ± 2% for NH3, at a loading rate of 1.2 g/m3 h and a concentration of 2.0 mg/m3, and 71.5 ± 4.0% for toluene, at a loading rate of 1.32 g/m3 h and a concentration of 2.3 mg/m3. The removal efficiency of the three compounds decreased when the toluene concentration was increased above 40 mg/m3. However, a recovery of the system was observed after reducing the toluene concentration and after 7 days of inactivity, indicating an inhibitory effect of toluene. These results demonstrate the potential use of the prototype biofilter unit for odor treatment in a WWTP.

20.
Acta Pharmacol Sin ; 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38914678

ABSTRACT

Thymic egress is a crucial process for thymocyte maturation, strictly regulated by sphingosine-1-phosphate lyase (S1PL). Recently, cystathionine γ-lyase (CSE), one of the enzymes producing hydrogen sulfide (H2S), has emerged as a vital immune process regulator. However, the molecular connection between CSE, H2S and thymic egress remains largely unexplored. In this study, we investigated the regulatory function of CSE in the thymic egress of immune cells. We showed that genetic knockout of CSE or pharmacological inhibition by CSE enzyme inhibitor NSC4056 or D,L-propargylglycine (PAG) significantly enhanced the migration of mature lymphocytes and monocytes from the thymus to the peripheral blood, and this redistribution effect could be reversed by treatment with NaHS, an exogenous donor of H2S. In addition, the CSE-generated H2S significantly increased the levels of S1P in the peripheral blood, thymus and spleen of mice, suppressed the production of proinflammatory cytokines and rescued pathogen-induced sepsis in cells and in vivo. Notably, H2S or polysulfide inhibited S1PL activity in cells and an in vitro purified enzyme assay. We found that this inhibition relied on a newly identified C203XC205 redox motif adjacent to the enzyme's active site, shedding light on the biochemical mechanism of S1PL regulation. In conclusion, this study uncovers a new function and mechanism for CSE-derived H2S in thymic egress and provides a potential drug target for treating S1P-related immune diseases.

SELECTION OF CITATIONS
SEARCH DETAIL
...