Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.995
Filter
1.
Gut Microbes ; 16(1): 2361493, 2024.
Article in English | MEDLINE | ID: mdl-38958039

ABSTRACT

The juxtaposition of well-oxygenated intestinal colonic tissue with an anerobic luminal environment supports a fundamentally important relationship that is altered in the setting of intestinal injury, a process likely to be relevant to diseases such as inflammatory bowel disease. Herein, using two-color phosphorometry to non-invasively quantify both intestinal tissue and luminal oxygenation in real time, we show that intestinal injury induced by DSS colitis reduces intestinal tissue oxygenation in a spatially defined manner and increases the flux of oxygen from the tissue into the gut lumen. By characterizing the composition of the microbiome in both DSS colitis-affected gut and in a bioreactor containing a stable human fecal community exposed to microaerobic conditions, we provide evidence that the increased flux of oxygen into the gut lumen augments glycan degrading bacterial taxa rich in glycoside hydrolases which are known to inhabit gut mucosal surface. Continued disruption of the intestinal mucus barrier through such a mechanism may play a role in the perpetuation of the intestinal inflammatory process.


Subject(s)
Bacteria , Colitis , Gastrointestinal Microbiome , Intestinal Mucosa , Oxygen , Colitis/microbiology , Colitis/chemically induced , Colitis/metabolism , Animals , Humans , Oxygen/metabolism , Bacteria/metabolism , Bacteria/classification , Bacteria/isolation & purification , Bacteria/genetics , Mice , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Feces/microbiology , Mice, Inbred C57BL , Dextran Sulfate , Colon/microbiology , Colon/metabolism , Male
2.
Angew Chem Int Ed Engl ; : e202411171, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39022920

ABSTRACT

The marine Bacteroidota Zobellia galactanivorans has a polysaccharide utilization locus dedicated to the catabolism of the red algal cell wall galactan carrageenan and its unique and industrially important α-3,6-anhydro-D-galactose (ADG) monosaccharide. Here we present the first analysis of the specific molecular interactions the exo-(α-1,3)-3,6-anhydro-D-galactosidase ZgGH129 uses to cope with the strict steric restrictions imposed by its bicyclic ADG substrate - which is ring flipped relative to D-galactose. Crystallographic snapshots of key catalytic states obtained with the natural substrate and novel chemical tools designed to mimic species along the reaction coordinate, together with quantum mechanics/molecular mechanics (QM/MM) metadynamics methods and kinetic studies, demonstrate a retaining mechanism where the second step is rate limiting. The conformational landscape of the constrained 3,6-anhydro-D-galactopyranose ring proceeds through enzyme glycosylation B1,4 → [E4]‡ → E4/1C4 and deglycosylation E4/1C4 → [E4]‡ → B1,4 itineraries limited to the Southern Hemisphere of the Cremer-Pople sphere. These results demonstrate the conformational changes throughout catalysis in a non-standard, sterically restrained, bicyclic monosaccharide and provide a molecular framework for mechanism-based inhibitor design for anhydro-type carbohydrate-processing enzymes and for future applications involving carrageenan degradation. In addition, it provides a rare example of distinct niche-based conformational itineraries within the same carbohydrate-active enzyme family.

3.
Molecules ; 29(13)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38998987

ABSTRACT

The inhibition of soluble epoxide hydrolase (sEH) can reduce the level of dihydroxyeicosatrienoic acids (DHETs) effectively maintaining endogenous epoxyeicosatrienoic acids (EETs) levels, resulting in the amelioration of inflammation and pain. Consequently, the development of sEH inhibitors has been a prominent research area for over two decades. In the present study, we synthesized and evaluated sulfonyl urea derivatives for their potential to inhibit sEH. These compounds underwent extensive in vitro investigation, revealing their potency against human and mouse sEH, with 4f showing the most promising sEH inhibitory potential. When subjected to lipopolysaccharide (LPS)-induced acute lung injury (ALI) in studies in mice, compound 4f manifested promising anti-inflammatory efficacy. We investigated the analgesic efficacy of sEH inhibitor 4f in a murine pain model of tail-flick reflex. These results validate the role of sEH inhibition in inflammatory diseases and pave the way for the rational design and optimization of sEH inhibitors based on a sulfonyl urea template.


Subject(s)
Enzyme Inhibitors , Epoxide Hydrolases , Urea , Epoxide Hydrolases/antagonists & inhibitors , Epoxide Hydrolases/metabolism , Animals , Mice , Humans , Urea/pharmacology , Urea/analogs & derivatives , Urea/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/chemical synthesis , Acute Lung Injury/drug therapy , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/chemical synthesis , Anti-Inflammatory Agents/therapeutic use , Lipopolysaccharides , Structure-Activity Relationship , Solubility , Disease Models, Animal , Pain/drug therapy
4.
Anal Biochem ; 693: 115598, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38964700

ABSTRACT

The widespread use of polyamides such as nylons has led to the accumulation of nylon waste, which is particularly resistant to decomposition due to the intrinsic stability of the amide bond. New methods are required for the true recycling of these waste materials by depolymerization. Enzymes that are capable of hydrolyzing polyamides have been proposed as biocatalysts that may be suitable for this application. NylC is an enzyme that can mediate the hydrolysis of aminohexanoic acid oligomers, and to some extent, bulk polymers. However, current assays to characterize the activity of this enzyme require long reaction times and/or rely on secondary reactions to quantify hydrolysis. Herein, we have designed structurally-optimized small molecule chromogenic esters that serve as substrate analogues for monitoring NylC acyltransferase activity in a continuous manner. This assay can be performed in minutes at room temperature, and the substrate N-acetyl-GABA-pNP ester (kcat = 0.37 s-1, KM = 256 µM) shows selectivity for NylC in complex biological media. We also demonstrate that activity towards this substrate analogue correlates with amide hydrolysis, which is the primary activity of this enzyme. Furthermore, our screening of substrate analogues provides insight into the substrate specificity of NylC, which is relevant to biocatalytic applications.


Subject(s)
Nylons , Nylons/chemistry , Nylons/metabolism , Hydrolysis , Substrate Specificity , Hydrolases/metabolism , Hydrolases/chemistry , Acyltransferases/metabolism , Acyltransferases/chemistry , Acyltransferases/analysis , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry
5.
J Adv Res ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38969095

ABSTRACT

INTRODUCTION: The human gut microbiome plays a pivotal role in health and disease, notably through its interaction with bile acids (BAs). BAs, synthesized in the liver, undergo transformation by the gut microbiota upon excretion into the intestine, thus influencing host metabolism. However, the potential mechanisms of dicaffeoylquinic acids (DiCQAs) from Ilex kudingcha how to modulate lipid metabolism and inflammation via gut microbiota remain unclear. OBJECTIVES AND METHODS: The objectives of the present study were to investigate the regulating effects of DiCQAs on diabetes and the potential mechanisms of action. Two mice models were utilized to investigate the anti-diabetic effects of DiCQAs. Additionally, analysis of gut microbiota structure and functions was conducted concurrently with the examination of DiCQAs' impact on gut microbiota carrying the bile salt hydrolase (BSH) gene, as well as on the enterohepatic circulation of BAs and related signaling pathways. RESULTS: Our findings demonstrated that DiCQAs alleviated diabetic symptoms by modulating gut microbiota carrying the BSH gene. This modulation enhanced intestinal barrier integrity, increased enterohepatic circulation of conjugated BAs, and inhibited the farnesoid X receptor-fibroblast growth factor 15 (FGF15) signaling axis in the ileum. Consequently, the protein expression of hepatic FGFR4 fibroblast growth factor receptor 4 (FGFR4) decreased, accompanied by heightened BA synthesis, reduced hepatic BA stasis, and lowered levels of hepatic and plasma cholesterol. Furthermore, DiCQAs upregulated glucolipid metabolism-related proteins in the liver and muscle, including v-akt murine thymoma viral oncogene homolog (AKT)/glycogen synthase kinase 3-beta (GSK3ß) and AMP-activated protein kinase (AMPK), thereby ameliorating hyperglycemia and mitigating inflammation through the down-regulation of the MAPK signaling pathway in the diabetic group. CONCLUSION: Our study elucidated the anti-diabetic effects and mechanism of DiCQAs from I. kudingcha, highlighting the potential of targeting gut microbiota, particularly Acetatifactor sp011959105 and Acetatifactor muris carrying the BSH gene, as a therapeutic strategy to attenuate FXR-FGF15 signaling and ameliorate diabetes.

6.
JIMD Rep ; 65(4): 255-261, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38974614

ABSTRACT

Hereditary tyrosinemia type 1 (HT1) is a rare metabolic disease resulting in acute liver failure in early infancy, hypophosphataemic rickets, neurological crises, liver cirrhosis and risk of hepatocellular carcinoma later on in life. It is caused by the deficiency of the enzyme fumarylacetoacetate hydrolase which is involved in the terminal step of the catabolic pathway of tyrosine. Diagnosis is made through clinical suspicion supported by biochemical abnormalities that result from accumulation of upstream metabolites. Detection of succinylacetone (SA) in dried blood spot or urine remains pathognomonic, however it is not always detectable. Here we describe three cases of HT1 presenting with atypical biochemistry, where SA was not always detectable, highlighting the importance of an additional disease biomarker, 4-oxo-6-hydroxyheptanoate.

7.
MAbs ; 16(1): 2375798, 2024.
Article in English | MEDLINE | ID: mdl-38984665

ABSTRACT

Monoclonal antibodies (mAb) and other biological drugs are affected by enzymatic polysorbate (PS) degradation that reduces product stability and jeopardizes the supply of innovative medicines. PS represents a critical surfactant stabilizing the active pharmaceutical ingredients, which are produced by recombinant Chinese hamster ovary (CHO) cell lines. While the list of potential PS-degrading CHO host cell proteins (HCPs) has grown over the years, tangible data on industrially relevant HCPs are still scarce. By means of a highly sensitive liquid chromatography-tandem mass spectrometry method, we investigated seven different mAb products, resulting in the identification of 12 potentially PS-degrading hydrolases, including the strongly PS-degrading lipoprotein lipase (LPL). Using an LPL knockout CHO host cell line, we were able to stably overexpress and purify the remaining candidate hydrolases through orthogonal affinity chromatography methods, enabling their detailed functional characterization. Applying a PS degradation assay, we found nine mostly secreted, PS-active hydrolases with varying hydrolytic activity. All active hydrolases showed a serine-histidine-aspartate/glutamate catalytical triad. Further, we subjected the active hydrolases to pH-screenings and revealed a diverse range of activity optima, which can facilitate the identification of residual hydrolases during bioprocess development. Ultimately, we compiled our dataset in a risk matrix identifying PAF-AH, LIPA, PPT1, and LPLA2 as highly critical hydrolases based on their cellular expression, detection in purified antibodies, active secretion, and PS degradation activity. With this work, we pave the way toward a comprehensive functional characterization of PS-degrading hydrolases and provide a basis for a future reduction of PS degradation in biopharmaceutical drug products.


Subject(s)
Antibodies, Monoclonal , Cricetulus , Hydrolases , CHO Cells , Animals , Antibodies, Monoclonal/chemistry , Hydrolases/metabolism , Polysorbates/chemistry , Biological Products/metabolism , Humans
8.
Article in English | MEDLINE | ID: mdl-39030281

ABSTRACT

Bifenthrin (BF) is a broad-spectrum type I pyrethroid insecticide that acts on insects by impairing the nervous system and inhibiting ATPase activity, and it has toxic effects on non-target organisms and high persistence in the environment. This study aimed to determine the potential of six different fungi, including Pseudozyma hubeiensis PA, Trichoderma reesei PF, Trichoderma koningiopsis PD, Purpureocillium lilacinum ACE3, Talaromyces pinophilus ACE4, and Aspergillus niger AJ-F3, to degrade BF. Three different concentrations of BF, including 0.1%, 0.2%, and 0.3% w/v, were used in the sensitivity testing that revealed a significant (p ≤ 0.01) impact of BF on fungal growth. Enzymatic assays demonstrated that both intracellular and extracellular carboxylesterases hydrolyzed BF with the enzymatic activity of up to 175 ± 3 U (µmol/min) and 45 ± 1 U, respectively. All tested fungi were capable of utilizing BF as a sole carbon source producing 0.06 ± 0.01 to 0.45 ± 0.01 mg dry biomass per mg BF. Moreover, the presence of PytH was determined in the fungi using bioinformatics tools and was found in A. niger, T. pinophilus, T. reesei, and P. lilacinum. 3D structures of the PytH homologs were predicted using AlphaFold2, and their intermolecular interactions with pyrethroids were determined using MOE. All the homologs interacted with different pyrethroids with a binding energy of lesser than - 10 kcal/mol. Based on the study, it was concluded that the investigated fungi have a greater potential for the biodegradation of BF.

9.
J Biol Chem ; : 107593, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39032651

ABSTRACT

KAI2 receptors, classified as plant α/ß hydrolase enzymes, are capable of perceiving smoke-derived butenolide signals and endogenous, yet unidentified KAI2-ligands (KLs). While the number of functional KAI2 receptors varies among land plant species, rice has only one KAI2 gene. Rice, a significant crop and representative of grasses, relies on KAI2-mediated Arbuscular mycorrhiza (AM) symbioses to flourish in traditionally arid and nutrient-poor environments. This study presents the first crystal structure of an active rice (Oryza sativa, Os) KAI2 hydrolase receptor. Our structural and biochemical analyses uncover grass-unique pocket residues influencing ligand sensitivity and hydrolytic activity. Through structure-guided analysis, we identify a specific residue whose mutation enables the increase or decrease of ligand perception, catalytic activity, and signal transduction. Furthermore, we investigate OsKAI2-mediated signaling by examining its ability to form a complex with its binding partner, the F-box protein DWARF3 (D3) ubiquitin ligase and subsequent degradation of the target substrate OsSMAX1, demonstrating the significant role of hydrophobic interactions in the OsKAI2-D3 interface. This study provides new insights into the diverse and pivotal roles of the OsKAI2 signaling pathway in the plant kingdom, particularly in grasses.

10.
Bioorg Chem ; 151: 107658, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39033546

ABSTRACT

A peptidase S9 prolyl oligopeptidase domain from Thermotoga petrophila RKU-1T (TpS9) was over-expressed as an active, soluble and hyperstable lipolytic enzyme in the mesophilic host system. The sequence analysis demonstrated, TpS9 is an esterase/lipase-like protein belongs to alpha/beta (α/ß)-hydrolase superfamily with a well-conserved penta-peptide (GLSAG) motif and α/ß-hydrolase fold. Various approaches (induction and cultivation) were employed to enrich TpS9 production, 6.04- and 7.26-fold increment was observed with IPTG (0.4 mM) and lactose (200 mM) in the modified 4ZB medium (pH 7.0), but with IPTG-independent auto-induction strategy 9.02-fold augmentation was achieved after 16 h incubation at 24 °C (150 rev min-1). Purified TpS9 showed optimal activity in McIlvaine buffer (pH 6.5) at 80-85 °C, and revealed great thermal (30-85 °C) and pH (6.0-9.0) for 8 h. No obvious constraint was perceived with various metal ions, surfactants, commercial laundry detergents, and chemical modulators. Whereas, TpS9 activity was improved with Ca2+, Mn2+, and Mg2+ by 210 %, 142.5 %, and 134.3 %, respectively. With 2.5 M NaCl (215 %), 50 % (v/v) methanol (140 %), 50 % (v/v) ethanol (126.6 %), 50 % (v/v) n-butanol (122.3 %), 50 % (v/v) isopropanol (120.4 %), 50 % (v/v) acetone (118.6 %) and 50 % (v/v) glycerol (113.2 %) TpS9 activity was also enriched. TpS9 demonstrated great affinity toward natural oils and p-nitrophenyl ester substrates, but showed peak activity with p-nitrophenyl palmitate (3160 U mg-1). Km, Vmax, kcat, Vmax Km-1 and kcat Km-1 of TpS9 with pNPP were 0.421 mM, 4015 µmol mg-1 min-1, 906.4 s-1, 9536.8 min-1, and 2152.96 mM-1 s-1, respectively. Moreover, TPS9 has notable ability to clean stains (5 min) and degrade the animals' fat (3 h). Hence, TpS9 is a favorable candidate as cleaning bio-additive in detergent formulation, fat degradation and various other applications.

11.
Biochem Biophys Res Commun ; 732: 150405, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39033552

ABSTRACT

ß-Glucosidase is a crucial cellulase, as its activity determines the efficiency of cellulose hydrolysis into glucose. This study addresses the functional and structural characteristics of Thermotoga profunda ß-glucosidase (Tp-BGL). Tp-BGL exhibited a Km of 0.3798 mM for p-nitrophenyl-ß-d-glucopyranoside (pNPGlc) and 4.44 mM for cellobiose, with kcat/Km of 1211.16 and 4.18 s-1 mM-1, respectively. In addition, Tp-BGL showed significant pH adaptability and thermal stability, with a Tm of 85.7 °C and retaining >90 % of its activity after incubation at 80 °C for 90 min. The crystal structure of Tp-BGL was resolved at 1.95 Å resolution, and reveals a typical TIM barrel structure. Comparative structural analysis highlighted that the major distinction between Tp-BGL and the other glucosidases lies in their loop regions.

12.
FEBS Lett ; 2024 Jul 21.
Article in English | MEDLINE | ID: mdl-39034140

ABSTRACT

Soluble epoxide hydrolase (sEH) is a bifunctional enzyme that has epoxide hydrolase activity and phosphatase activity. Our earlier study revealed that lysophosphatidic acids are a substrate of the phosphatase activity of sEH in vitro, but its physiological function remained unknown. Herein, we used the CRISPR/Cas9 system and i-GONAD method to generate mice that are deficient in sEH phosphatase activity. In the mouse brain, sEH was highly expressed in the olfactory bulb. Deletion of the sEH phosphatase activity resulted in decreased levels of the endocannabinoid 2-arachidonoyl glycerol (2-AG), which is a dephosphorylated form of 2-arachidonoyl-lysophosphatidic acid in the olfactory bulb. The sEH-deficient mice showed depressive-like behavior. These results indicate that sEH can regulate the production of 2-AG and brain function in vivo.

13.
Mol Biomed ; 5(1): 28, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39034372

ABSTRACT

A macroscopic perspective is indispensable for understanding the intricate relationship between deubiquitinases and tumorigenesis. Proteomics has been proposed as a viable approach for elucidating the complex role of deubiquitylation in cellular progression. Instead of studying the function of a single ubiquitinase, research on a deubiquitinase family with similar catalytic core(s) may provide a new perspective for the pathological understanding of cancer. The Ubiquitin C-terminal hydrolase L (UCHL) family consists of four members: UCHL1, UCHL3, UCHL5, and BRAC1 associated protein-1 (BAP1), and they have been implicated in tumorigenesis and metastasis. Some members are considered hallmarks of intracranial lesions, colon cancer, chromatin remodeling, and histone stability. The present study uncovered an unknown correlation between the UCHL family and renal cancer. We discovered that UCHLs exhibit diverse regulatory effects in renal cancer, establishing connections between the renal cancer and truncated gene mutations, mitochondrial energetic metastasis, immune cell infiltration, and chromosomal stability of UCHLs family. Notably, we found that the increase of UCHL5 expression in renal cancer cells decreases the antigen processing and presentation of RCC tumor-infiltrating B cells. Further research identified that the expression of UCHL5 in RCC tumors is correlated with transport proteins, which led us to find that the abundance of UCHL5 in the blood of late-stage renal cell cancer patients is upregulated from 18 ng/L to 500 ng/L. Therefore, we propose that the abundance of UCHL5 in patients' blood can be a possible indicator of poor prognosis for renal cell cancer.


Subject(s)
Biomarkers, Tumor , Carcinoma, Renal Cell , Kidney Neoplasms , Ubiquitin Thiolesterase , Humans , Ubiquitin Thiolesterase/genetics , Ubiquitin Thiolesterase/metabolism , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Prognosis , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Gene Expression Regulation, Neoplastic , Cell Line, Tumor
14.
Methods Mol Biol ; 2814: 55-79, 2024.
Article in English | MEDLINE | ID: mdl-38954197

ABSTRACT

Lysosomes are membrane-enclosed organelles that digest intracellular material. They contain more than 50 different enzymes that can degrade a variety of macromolecules including nucleic acids, proteins, polysaccharides, and lipids. In addition to functioning within lysosomes, lysosomal enzymes are also secreted. Alterations in the levels and activities of lysosomal enzymes dysregulates lysosomes, which can lead to the intralysosomal accumulation of biological material and the development of lysosomal storage diseases (LSDs) in humans. Dictyostelium discoideum has a long history of being used to study the trafficking and functions of lysosomal enzymes. More recently, it has been used as a model system to study several LSDs. In this chapter, we outline the methods for assessing the activity of several lysosomal enzymes in D. discoideum (α-galactosidase, ß-galactosidase, α-glucosidase, ß-glucosidase, ß-N-acetylglucosaminidase, α-mannosidase, cathepsin B, cathepsin D, cathepsin F, palmitoyl protein thioesterase 1, and tripeptidyl peptidase 1).


Subject(s)
Dictyostelium , Lysosomes , Dictyostelium/enzymology , Lysosomes/enzymology , Lysosomes/metabolism , Tripeptidyl-Peptidase 1 , Enzyme Assays/methods , Humans , beta-Galactosidase/metabolism , Lysosomal Storage Diseases/enzymology , Lysosomal Storage Diseases/metabolism , Thiolester Hydrolases/metabolism
15.
Microbiome ; 12(1): 120, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956705

ABSTRACT

BACKGROUND: Functional redundancy (FR) is widely present, but there is no consensus on its formation process and influencing factors. Taxonomically distinct microorganisms possessing genes for the same function in a community lead to within-community FR, and distinct assemblies of microorganisms in different communities playing the same functional roles are termed between-community FR. We proposed two formulas to respectively quantify the degree of functional redundancy within and between communities and analyzed the FR degrees of carbohydrate degradation functions in global environment samples using the genetic information of glycoside hydrolases (GHs) encoded by prokaryotes. RESULTS: Our results revealed that GHs are each encoded by multiple taxonomically distinct prokaryotes within a community, and the enzyme-encoding prokaryotes are further distinct between almost any community pairs. The within- and between-FR degrees are primarily affected by the alpha and beta community diversities, respectively, and are also affected by environmental factors (e.g., pH, temperature, and salinity). The FR degree of the prokaryotic community is determined by deterministic factors. CONCLUSIONS: We conclude that the functional redundancy of GHs is a stabilized community characteristic. This study helps to determine the FR formation process and influencing factors and provides new insights into the relationships between prokaryotic community biodiversity and ecosystem functions. Video Abstract.


Subject(s)
Bacteria , Biodiversity , Glycoside Hydrolases , Polysaccharides , Glycoside Hydrolases/metabolism , Glycoside Hydrolases/genetics , Polysaccharides/metabolism , Bacteria/genetics , Bacteria/classification , Bacteria/metabolism , Ecosystem , Microbiota , Prokaryotic Cells/metabolism , Prokaryotic Cells/classification , Phylogeny , Hydrogen-Ion Concentration
16.
J Mol Model ; 30(8): 242, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38955857

ABSTRACT

CONTEXT: Xylanases derived from Bacillus species hold significant importance in various large-scale production sectors, with increasing demand driven by biofuel production. However, despite their potential, the extreme environmental conditions often encountered in production settings have led to their underutilisation. To address this issue and enhance their efficacy under adverse conditions, we conducted a theoretical investigation on a group of five Bacillus species xylanases belonging to the glycoside hydrolase GH11 family. Bacillus sp. NCL 87-6-10 (sp_NCL 87-6-10) emerged as a potent candidate among the selected biocatalysts; this Bacillus strain exhibited high thermal stability and achieved a transition state with minimal energy requirements, thereby accelerating the biocatalytic reaction process. Our approach aims to provide support for experimentalists in the industrial sector, encouraging them to employ structural-based reaction modelling scrutinisation to predict the ability of targeted xylanases. METHODS: Utilising crystal structure data available in the Carbohydrate-Active enzymes database, we aimed to analyse their structural capabilities in terms of thermal-stability and activity. Our investigation into identifying the most prominent Bacillus species xylanases unfolds with the help of the semi-empirical quantum mechanics MOPAC method integrated with the DRIVER program is used in calculations of reaction pathways to understand the activation energy. Additionally, we scrutinised the selected xylanases using various analyses, including constrained network analyses, intermolecular interactions of the enzyme-substrate complex and molecular orbital assessments calculated using the AM1 method with the MO-G model (MO-G AM1) to validate their reactivity.


Subject(s)
Bacillus , Endo-1,4-beta Xylanases , Enzyme Stability , Bacillus/enzymology , Endo-1,4-beta Xylanases/chemistry , Endo-1,4-beta Xylanases/metabolism , Models, Molecular , Biocatalysis , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Temperature
17.
Appl Microbiol Biotechnol ; 108(1): 404, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953996

ABSTRACT

Polyethylene terephthalate (PET) is a major component of plastic waste. Enzymatic PET hydrolysis is the most ecofriendly recycling technology. The biorecycling of PET waste requires the complete depolymerization of PET to terephthalate and ethylene glycol. The history of enzymatic PET depolymerization has revealed two critical issues for the industrial depolymerization of PET: industrially available PET hydrolases and pretreatment of PET waste to make it susceptible to full enzymatic hydrolysis. As none of the wild-type enzymes can satisfy the requirements for industrialization, various mutational improvements have been performed, through classical technology to state-of-the-art computational/machine-learning technology. Recent engineering studies on PET hydrolases have brought a new insight that flexibility of the substrate-binding groove may improve the efficiency of PET hydrolysis while maintaining sufficient thermostability, although the previous studies focused only on enzymatic thermostability above the glass transition temperature of PET. Industrial biorecycling of PET waste is scheduled to be implemented, using micronized amorphous PET. Next stage must be the development of PET hydrolases that can efficiently degrade crystalline parts of PET and expansion of target PET materials, not only bottles but also textiles, packages, and microplastics. This review discusses the current status of PET hydrolases, their potential applications, and their profespectal goals. KEY POINTS: • PET hydrolases must be thermophilic, but their operation must be below 70 °C • Classical and state-of-the-art engineering approaches are useful for PET hydrolases • Enzyme activity on crystalline PET is most expected for future PET biorecycling.


Subject(s)
Hydrolases , Polyethylene Terephthalates , Polyethylene Terephthalates/metabolism , Polyethylene Terephthalates/chemistry , Hydrolases/metabolism , Hydrolases/chemistry , Hydrolases/genetics , Hydrolysis , Protein Engineering/methods , Biodegradation, Environmental , Recycling
18.
Environ Sci Technol ; 58(29): 13000-13009, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38980166

ABSTRACT

Natural and chemically modified polysaccharides are extensively employed across a wide array of industries, leading to their prevalence in the waste streams of industrialized societies. With projected increasing demand, a pressing challenge is to swiftly assess and predict their biodegradability to inform the development of new sustainable materials. In this study, we developed a scalable method to evaluate polysaccharide breakdown by measuring microbial growth and analyzing microbial genomes. Our approach, applied to polysaccharides with various structures, correlates strongly with well-established regulatory methods based on oxygen demand. We show that modifications to the polysaccharide structure decreased degradability and favored the growth of microbes adapted to break down chemically modified sugars. More broadly, we discovered two main types of microbial communities associated with different polysaccharide structures─one dominated by fast-growing microbes and another by specialized degraders. Surprisingly, we were able to predict biodegradation rates based only on two genomic features that define these communities: the abundance of genes related to rRNA (indicating fast growth) and the abundance of glycoside hydrolases (enzymes that break down polysaccharides), which together predict nearly 70% of the variation in polysaccharide breakdown. This suggests a trade-off, whereby microbes are either adapted for fast growth or for degrading complex polysaccharide chains, but not both. Finally, we observe that viral elements (prophages) encoded in the genomes of degrading microbes are induced in easily degradable polysaccharides, leading to complex dynamics in biomass accumulation during degradation. In summary, our work provides a practical approach for efficiently assessing polymer degradability and offers genomic insights into how microbes break down polysaccharides.


Subject(s)
Biodegradation, Environmental , Polysaccharides , Polysaccharides/metabolism , Genomics
19.
Int J Mol Sci ; 25(13)2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38999960

ABSTRACT

The initial adoption of penicillin as an antibiotic marked the start of exploring other compounds essential for pharmaceuticals, yet resistance to penicillins and their side effects has compromised their efficacy. The N-terminal nucleophile (Ntn) amide-hydrolases S45 family plays a key role in catalyzing amide bond hydrolysis in various compounds, including antibiotics like penicillin and cephalosporin. This study comprehensively analyzes the structural and functional traits of the bacterial N-terminal nucleophile (Ntn) amide-hydrolases S45 family, covering penicillin G acylases, cephalosporin acylases, and D-succinylase. Utilizing structural bioinformatics tools and sequence analysis, the investigation delineates structurally conserved regions (SCRs) and substrate binding site variations among these enzymes. Notably, sixteen SCRs crucial for substrate interaction are identified solely through sequence analysis, emphasizing the significance of sequence data in characterizing functionally relevant regions. These findings introduce a novel approach for identifying targets to enhance the biocatalytic properties of N-terminal nucleophile (Ntn) amide-hydrolases, while facilitating the development of more accurate three-dimensional models, particularly for enzymes lacking structural data. Overall, this research advances our understanding of structure-function relationships in bacterial N-terminal nucleophile (Ntn) amide-hydrolases, providing insights into strategies for optimizing their enzymatic capabilities.


Subject(s)
Amidohydrolases , Amidohydrolases/chemistry , Amidohydrolases/metabolism , Amidohydrolases/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Binding Sites , Structure-Activity Relationship , Conserved Sequence , Bacteria/enzymology , Amino Acid Sequence , Models, Molecular , Substrate Specificity
20.
J Hazard Mater ; 476: 135191, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39013318

ABSTRACT

Phthalate esters (PAEs) are emerging hazardous and toxic chemicals that are extensively used as plasticizers or additives. Diethyl phthalate (DEP) and dimethyl phthalate (DMP), two kinds of PAEs, have been listed as the priority pollutants by many countries. PAE hydrolases are the most effective enzymes in PAE degradation, among which family IV esterases are predominate. However, only a few PAE hydrolases have been characterized, and as far as we know, no crystal structure of any PAE hydrolases of the family IV esterases is available to date. HylD1 is a PAE hydrolase of the family IV esterases, which can degrade DMP and DEP. Here, the recombinant HylD1 was characterized. HylD1 maintained a dimer in solution, and functioned under a relatively wide pH range. The crystal structures of HylD1 and its complex with monoethyl phthalate were solved. Residues involved in substrate binding were identified. The catalytic mechanism of HylD1 mediated by the catalytic triad Ser140-Asp231-His261 was further proposed. The hylD1 gene is widely distributed in different environments, suggesting its important role in PAEs degradation. This study provides a better understanding of PAEs hydrolysis, and lays out favorable bases for the rational design of highly-efficient PAEs degradation enzymes for industrial applications in future.

SELECTION OF CITATIONS
SEARCH DETAIL
...