Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 193
Filter
1.
Medicina (Kaunas) ; 60(7)2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39064582

ABSTRACT

Background and Objectives: Favorable short- and mid-term results for hydroxyapatite (HA)-tricalcium phosphate (TCP)-coated total hip arthroplasty (THA) (Trilogy/Zimmer) have been reported in the literature; however, the long-term results beyond 15 years have not been documented. Therefore, this study evaluated the long-term postoperative results, radiological bone changes, and implant fixation of the acetabular component of HA-TCP-coated THA. Materials and Methods: This is a retrospective cohort study of 212 patients who underwent primary HA-TCP-coated THA (Trilogy/Zimmer) at our institution between 1 October 2002, and 31 March 2008; 166 who were available for follow-up at least 15 years postoperatively were included (capture rate: 78.3%). All implants were Trilogy/Zimmer. We investigated the survival rate, with aseptic loosening as the endpoint. Clinical evaluations included the presence of dislocation and a modified Harris Hip Score (mHHS) preoperatively and at the final observation. Results: The mean age at surgery and at the follow-up period were 57.7 ± 9.6 and 17.1 ± 1.5 years, respectively. The survival rate was 99.4% (165/166), with aseptic loosening as the endpoint. Dislocation was observed in 4/166 (2.4%) patients. The mHHS improved significantly from 46.1 points preoperatively to 82.2 points during the last survey (p < 0.05). The results revealed that fixation was favorable in all cases except for one case of aseptic loosening. The Trilogy implant coated with HA-TCP was highly effective in bone induction, and bone ingrowth was considered to have occurred without failure, further indicating its usefulness. The long-term results of cementless THA using an HA-TCP coating (Trilogy/Zimmer), with a mean follow-up period of 17.1 years, revealed a commendable survival rate of 99.4%, considering aseptic loosening as the endpoint. Conclusions: HA-TCP-coated THA (Trilogy/Zimmer) had good long-term results. However, further long-term observation is required in patients who have undergone this surgery, and the stem side should be evaluated and investigated, including comorbidities.


Subject(s)
Arthroplasty, Replacement, Hip , Humans , Arthroplasty, Replacement, Hip/methods , Arthroplasty, Replacement, Hip/instrumentation , Arthroplasty, Replacement, Hip/adverse effects , Middle Aged , Male , Female , Follow-Up Studies , Retrospective Studies , Aged , Treatment Outcome , Durapatite/therapeutic use , Calcium Phosphates/therapeutic use , Hip Prosthesis , Radiography/methods , Hydroxyapatites/therapeutic use , Cohort Studies , Adult , Coated Materials, Biocompatible
2.
Radiol Bras ; 57: e20230126en, 2024.
Article in English | MEDLINE | ID: mdl-38993955

ABSTRACT

Acute calcific periarthritis (ACP) is defined as periarticular inflammation associated with intra-articular deposits of hydroxyapatite and other basic calcium phosphate crystals. Patients with ACP present with a sudden onset of pain, together with localized swelling, as well as erythema, tenderness, and reduced range of motion. Familiarity with the clinical and radiological manifestations of ACP aids in the diagnosis and helps differentiate it from other conditions, particularly infectious or inflammatory pathologies such as septic arthritis and gout, thereby reducing the number of unnecessary diagnostic and therapeutic procedures. The objective of this pictorial essay is to illustrate the imaging findings of ACP in various joints, with an emphasis on the findings obtained by magnetic resonance imaging.


A periartrite cálcica aguda (PCA) é uma inflamação periarticular aguda associada a depósitos justa-articulares de hidroxiapatita e outros cristais básicos de fosfato de cálcio. Os pacientes apresentam início súbito de dor, edema localizado, eritema, sensibilidade e redução da amplitude de movimentos. A familiaridade com as manifestações clínicas e radiológicas da PCA facilita o diagnóstico e permite diferenciá-la de outras entidades, em particular, com doenças infecciosas ou inflamatórias, como artrite séptica e gota, reduzindo procedimentos diagnósticos e terapêuticos desnecessários. O objetivo deste ensaio iconográfico é ilustrar os achados de imagem de PCA em algumas articulações, com ênfase na ressonância magnética.

3.
Article in English | MEDLINE | ID: mdl-38951991

ABSTRACT

Alveolar ridge resorption following tooth extraction poses significant challenges for future dental restorations. This study investigated the efficacy of fish scale-derived hydroxyapatite (FSHA) as a socket preservation graft material to maintain alveolar bone volume and architecture. FSHA was extracted from *Labeo rohita* fish scales and characterized using Fourier transform infrared (FTIR) analysis. In vitro, biocompatibility and osteogenic potential were assessed using Saos-2 human osteosarcoma cells. Cell viability, migration, and proliferation were evaluated using MTT and scratch assays. In vivo performance was assessed in a rat model, and FSHA was compared to a commercial xenograft (Osseograft) and ungrafted controls. Histological analysis was performed at 8-week post-implantation to quantify new bone formation. FTIR confirmed the purity and homogeneity of FSHA. In vitro, FSHA enhanced Saos-2 viability, migration, and proliferation compared to controls. In vivo, FSHA demonstrated superior bone regeneration compared to Osseograft and ungrafted sites, with balanced graft resorption and new bone formation. Histological analysis revealed an active incorporation of FSHA into new bone, with minimal gaps and ongoing remodeling. Approximately 50%-60% of FSHA was resorbed by 8 weeks, closely matching the rate of new bone deposition. FSHA stimulated more bone formation in the apical socket region than in coronal areas. In conclusion, FSHA is a promising biomaterial for alveolar ridge preservation, exhibiting excellent biocompatibility, osteogenic potential, and balanced resorption. Its ability to promote robust bone regeneration highlights its potential as an effective alternative to currently used graft materials in socket preservation procedures.

4.
Contemp Clin Dent ; 15(1): 17-21, 2024.
Article in English | MEDLINE | ID: mdl-38707662

ABSTRACT

Objectives: This study aimed to assess the effect of a nano-hydroxyapatite (nano-HA) toothpaste on erosive enamel lesions of third molars induced by exposure to orange juice. Materials and Methods: In this in vitro, experimental study, the microhardness of 24 sound-extracted third molars was measured by a Vickers tester. The teeth were then randomly assigned to three groups (n = 8) of nano-HA toothpaste (Pharmed), 1.23% sodium fluoride gel, and artificial saliva. The teeth were exposed to orange juice for 5 min daily for 7 days and were then exposed to nano-HA toothpaste, fluoride gel, or artificial saliva (depending on their group allocation) for 10 min a day. The microhardness of the teeth was measured again after 7 days. Data were analyzed using paired t-test, analysis of variance, and Bonferroni test (alpha = 0.05). Results: Within-group comparisons showed a significant reduction in microhardness of the teeth after the intervention in artificial saliva (P = 0.000), and fluoride gel (P = 0.002) groups. However, no significant reduction occurred in the microhardness of the nano-HA group, compared with the baseline (P = 0.132). Between-group comparisons revealed no significant difference in the microhardness of the three groups at baseline (P > 0.05). However, after the intervention, the microhardness of the nano-HA group was significantly higher than that of other groups (P < 0.05). However, the difference in secondary microhardness between fluoride gel and artificial saliva groups was not significant (P = 1.00). Conclusion: Pharmed toothpaste containing nano-HA has optimal efficacy for remineralization of enamel erosive lesions induced by exposure to orange juice.

5.
Materials (Basel) ; 17(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38730845

ABSTRACT

To address tooth enamel demineralization resulting from factors such as acid erosion, abrasion, and chronic illness treatments, it is important to develop effective daily dental care products promoting enamel preservation and surface remineralization. This study focused on formulating four toothpastes, each containing calcined synthetic hydroxyapatite (HAP) in distinct compositions, each at 4%, along with 1.3% birch extract. Substitution elements were introduced within the HAP structure to enhance enamel remineralization. The efficacy of each toothpaste formulation was evaluated for repairing enamel and for establishing the dynamic of the remineralization. This was performed by using an in vitro assessment of artificially demineralized enamel slices. The structural HAP features explored by XRD and enamel surface quality by AFM revealed notable restorative properties of these toothpastes. Topographic images and the self-assembly of HAP nanoparticles into thin films on enamel surfaces showcased the formulations' effectiveness. Surface roughness was evaluated through statistical analysis using one-way ANOVA followed by post-test Bonferroni's multiple comparison test with a p value < 0.05 significance setting. Remarkably, enamel nanostructure normalization was observed within a short 10-day period of toothpaste treatment. Optimal remineralization for all toothpastes was reached after about 30 days of treatment. These toothpastes containing birch extract also have a dual function of mineralizing enamel while simultaneously promoting enamel health and restoration.

6.
Front Dent ; 21: 11, 2024.
Article in English | MEDLINE | ID: mdl-38742220

ABSTRACT

Objectives: This study assessed the effects of two remineralizing agents namely MI Paste Plus containing casein phosphopeptide amorphous calcium phosphate fluoride (CPP-ACFP) and Remin Pro containing hydroxyapatite, fluoride and xylitol (HFX) with/without erbium-doped yttrium aluminium garnet (Er:YAG) and CO2 laser irradiation on demineralized enamel microhardness. Materials and Methods: In this in vitro study, 70 sound human premolars were mesiodistally sectioned, demineralized at a pH of 4.6 for 8 hours, and randomly divided into 7 remineralization groups (n=10): of (I) MI Paste Plus (CPP-ACFP), (II) Remin Pro (HFX), (III) MI Paste Plus+CO2 laser (0.7 W power, 50 Hz), (IV) Remin Pro+CO2 laser, (V) MI Paste Plus+Er:YAG laser (1 W power, 10 Hz), (VI) Remin Pro+Er:YAG laser, and (VII) negative control. The Vickers hardness number of specimens was then measured. The groups were compared by one-way ANOVA and Tukey's test (α=0.05). Results: The mean microhardness was 319.8±49.9, 325.3±44.6, 359.4±35.7, 296.4±33.7, 319.9±58.1, 358.9±28.4, and 240.0±41.6 kg/mm2 in groups 1 to 7, respectively. The difference in microhardness was significant among the groups (P<0.0001). Pairwise comparisons revealed significant differences in microhardness between all groups (P≤0.03) except between groups 1 and 2, 1 and 5, 2 and 5, and 3 and 6 (P>0.05). Conclusion: Both Remin Pro (containing HFX) and MI Paste Plus (containing CPP-ACFP) can cause enamel remineralization. MI Paste Plus+CO2 laser irradiation and Remin Pro+Er:YAG laser irradiation were significantly more effective than the application of each remineralizing agent alone.

7.
Article in English | MEDLINE | ID: mdl-38653626

ABSTRACT

The aim of this retrospective study was to assess the efficacy of recombinant human bone morphogenetic protein-2 (rhBMP-2) with hydroxyapatite (HA) granules and fibrin sealant (FS) in maxillary sinus floor augmentation (MSFA), with a focus on the volume change. Fifty-two of 137 patients who underwent MSFA with rhBMP-2/HA grafting between June 2016 and December 2022 met the study inclusion criteria; 25 had received rhBMP-2/HA without FS and 27 had received rhBMP-2/HA with FS. Computed tomography (CT) images were obtained preoperatively, immediately following the operation, and at 6 months postoperative. These images were three-dimensionally reconstructed to measure the volumetric and height changes following MSFA. The mean ± standard deviation percentage of volumetric change at 6 months was 48.75 ± 37.44% in the group with FS and 29.77 ± 13.42% in the group without FS (P = 0.019). The vertical height measured at a specific site of the grafted area showed a mean percentage change at 6 months of 4.05 ± 12.08% in the group with FS and 6.07 ± 10.15% in the group without FS (P = 0.518). The additional use of FS as a carrier for rhBMP-2/HA in MSFA was found to improve surgical convenience and bone regeneration ability.

8.
J Dent ; 145: 104973, 2024 06.
Article in English | MEDLINE | ID: mdl-38556192

ABSTRACT

OBJECTIVE: Assessed the effect of dental products containing nano-hydroxyapatite (nano-HA) + fluoride on the remineralization of white spot lesions (WSL) in vivo or in situ. METHODS: Seven databases were explored using a two-pronged approach (intervention/treatment). After screening, full-text assessment, and further exclusion, the qualitative synthesis of five studies (four clinical and one in situ) was performed. Based on the Cochrane collaboration guidelines relevant data of the studies were collected and summarized. The Cochrane risk of bias tool for randomized trials (RoB 2.0) was used to appraise the studies' methodological quality and the GRADE guidelines to assess their level of evidence. The RoB 2.0 domains were rated on their risk of bias (RoB) as low, high, or with some concerns, and an adaptation of the tool was used to the in situ study. RESULTS: The included studies assessed 151 WSL in anterior permanent teeth, on patients with varying ages. The protocol application, treatment length (7d-12 w), and control groups varied greatly between the studies making the performance of a quantitative analysis unfeasible. The general RoB of the clinical studies was classified as being of low risk (n = 2) or some concerns (n = 2). The in situ study was considered as being of low risk. The level of the evidence was moderate. Most of the studies found moderate evidence regarding the superiority of this association in clinical settings. CONCLUSION: Even with the nano-HA + fluoride promising results for the remineralization treatment of WSL, due to the restricted number of studies and types of products, its extended use cannot be recommended based on the current systematic review, especially when considering the moderate level of the evidence found. CLINICAL SIGNIFICANCE: Due to the biocompatibility and higher surface coverage of nano-HA and the remineralization capacity of fluoride formulations, the association of these elements to remineralize WSL has been positively reported. After the collection and qualitative appraise of the data, the clinical evidence of the use of these dental products is promising but limited.


Subject(s)
Cariostatic Agents , Dental Caries , Dental Enamel , Durapatite , Fluorides , Tooth Remineralization , Humans , Tooth Remineralization/methods , Durapatite/therapeutic use , Fluorides/therapeutic use , Dental Enamel/drug effects , Dental Caries/drug therapy , Cariostatic Agents/therapeutic use
9.
Heliyon ; 10(2): e24217, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38293392

ABSTRACT

The development of remineralizing smart biomaterials is a contemporary approach to caries prevention. The present study aimed at formulation preparation and characterization of a thermoresponsive oral gel based on poloxamer and chitosan loaded with sodium fluoride (NaF) and nanohydroxyapatite (nHA) to treat demineralization. The chemical structure and morphology of the formulation were characterized using FTIR and FESEM-EDS tests. Hydrogel texture, rheology, and stability were also examined. The hydrogel was in a sol state at room temperature and became gel after being placed at 37 °C with no significance different in gelation time with the formulation without nHA and NaF as observed by t-test. The FTIR spectrum of nHA/NaF/chitosan-based hydrogel indicated the formation of physical crosslinking without any chemical interactions between the hydrogel components. The FESEM-EDS results demonstrated the uniform distribution of each element within the hydrogel matrix, confirming the successful incorporation of nHA and NaF in the prepared gel. The hardness, hydrogel's adhesiveness, and cohesiveness were 0.9 mJ, 1.7 mJ, and 0.37, respectively, indicating gel stability and the acceptable retention time of hydrogels. The formulation exhibited a non-Newtonian shear-thinning pseudoplastic and thixotropic behavior with absolute physical stability. Within the limitation of in vitro studies, nHA/NaF/chitosan-based in situ forming gel demonstrated favorable properties, which could be trasnsorm into a gel state in oral cavity due to poloxamer and chitosan and can prevent dental caries due to nHA and NaF. We propose this formulation as a promising dental material in tooth surface remineralization.

10.
Heliyon ; 10(1): e23845, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38192860

ABSTRACT

In this study, we have introduced a method for the synthesis of various metal-doped nano-crystalline hydroxyapatites (HAp) using a standard wet chemical precipitation technique. Both divalent (Ni and Zn) and trivalent (Al and Fe) metals were selected for the doping process. Additional research work was also conducted to assess the antimicrobial efficacy of these doped-HAps against a range of gram-positive and gram-negative microorganisms. All the synthesized metal-doped hydroxyapatite (HAp) exhibited notable antibacterial characteristics against gram-negative bacterial strains, namely Escherichia coli (E. coli) and Salmonella typhi (S. typhi), outperforming the pure HAp. The inhibition zone observed for the metal-doped HAp ranged from 14 to 16 mm. The Fe ion displayed a notable inhibitory zone measuring 16 mm, proving to be the most expansive among all tested ions against both E. coli and S. typhi bacterial strains. The Zn-HAp exhibited a comparable inhibitory zone size of 14 mm against both S. typhi and E. coli. Additional characterization methods, such as X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, and Scanning electron microscopy (SEM), were used to validate the structural properties of the synthesized metal-doped hydroxyapatite (HAp) samples. The biocompatibility assessment of metal-doped hydroxyapatite (HAp) samples was carried out by haemolysis tests, which revealed that all synthesized hydroxyapatite (HAp) samples have the potential to serve as reliable biomaterials.

11.
Radiol. bras ; 57: e20230126en, 2024. graf
Article in English | LILACS-Express | LILACS | ID: biblio-1558817

ABSTRACT

Abstract Acute calcific periarthritis (ACP) is defined as periarticular inflammation associated with intra-articular deposits of hydroxyapatite and other basic calcium phosphate crystals. Patients with ACP present with a sudden onset of pain, together with localized swelling, as well as erythema, tenderness, and reduced range of motion. Familiarity with the clinical and radiological manifestations of ACP aids in the diagnosis and helps differentiate it from other conditions, particularly infectious or inflammatory pathologies such as septic arthritis and gout, thereby reducing the number of unnecessary diagnostic and therapeutic procedures. The objective of this pictorial essay is to illustrate the imaging findings of ACP in various joints, with an emphasis on the findings obtained by magnetic resonance imaging.


Resumo A periartrite cálcica aguda (PCA) é uma inflamação periarticular aguda associada a depósitos justa-articulares de hidroxiapatita e outros cristais básicos de fosfato de cálcio. Os pacientes apresentam início súbito de dor, edema localizado, eritema, sensibilidade e redução da amplitude de movimentos. A familiaridade com as manifestações clínicas e radiológicas da PCA facilita o diagnóstico e permite diferenciá-la de outras entidades, em particular, com doenças infecciosas ou inflamatórias, como artrite séptica e gota, reduzindo procedimentos diagnósticos e terapêuticos desnecessários. O objetivo deste ensaio iconográfico é ilustrar os achados de imagem de PCA em algumas articulações, com ênfase na ressonância magnética.

12.
J Dent (Shiraz) ; 24(4): 417-421, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38149233

ABSTRACT

Statement of the Problem: The prevalence of non-carious dentin lesions is on the rise mainly due to improved life expectancy. Successful management of these lesions is often challenging, and given that dentin can be remineralized, adverse consequences due to progression of these lesions can be prevented or minimized as such. Purpose: This study aimed to assess the effect of casein phosphopeptide amorphous calcium phosphate (CPP-ACP) and Remin-Pro remineralizing agents on dentin microhardness of non-carious dentin lesions. Materials and Method: This in vitro, experimental study evaluated 36 extracted sound human premolars. The teeth were decoronated at the cementoenamel junction. Enamel was removed, and dentin was exposed at the cervical third of the buccal surface. The primary microhardness of dentin was then measured. The teeth, standardized in terms of dentin microhardness, then underwent demineralization by acid etching and were subjected to microhardness test again. They were then randomized into three groups for treatment with CPP-ACP, Remin-Pro, and artificial saliva (control), and dentin microhardness was measured for the third time after treatment. Data were analyzed using ANOVA. Results: Within group comparisons showed a significant difference in microhardness at the three time points in all three groups (p< 0.005). Between-group comparisons revealed that the microhardness of the three groups was not significantly different at baseline or after demineralization. However, the microhardness of the three groups was significantly different after the intervention (p= 0.000). Pairwise comparisons revealed significantly higher microhardness in the CPP-ACP group than the other two groups (p= 0.003). Remin-Pro and the control groups were not significantly different in this respect (p= 0.340). Conclusion: CPP-ACP can be used for remineralization of non-caries dentin lesions; however, Remin-Pro does not appear to be effective for this purpose.

13.
Materials (Basel) ; 16(22)2023 Nov 13.
Article in English | MEDLINE | ID: mdl-38005073

ABSTRACT

This research work aims to develop functional toothpastes with combined enamel remineralization and antibacterial effects using nano-hydroxyapatites (nHAPs) and birch extract. Eleven toothpastes (notated as P1-P11) were designed featuring different concentrations of birch extract and a constant concentration of pure nHAPs or substituted nHAPs (HAP-5%Zn, HAP-0.23%Mg-3.9%Zn-2%Si-10%Sr, and HAP-2.5%Mg-2.9%Si-1.34%Zn). In vitro assessments involved treating artificially demineralized enamel slices and analyzing surface repair and remineralization using Atomic Force Microscopy (AFM). The Agar Disk Diffusion method was used to measure antibacterial activity against Enterococcus faecalis, Escherichia coli, Porphyromonas gingivalis, Streptococcus mutans, and Staphylococcus aureus. Topographic images of enamel structure and surface roughness, as well as the ability of nHAP nanoparticles to form self-assembled layers, revealed excellent restorative properties of the tested toothpastes, with enamel nanostructure normalization occurring as soon as 10 days after treatment. The outcomes highlighted enamel morphology improvements due to the toothpaste treatment also having various efficacious antibacterial effects. Promising results were obtained using P5 toothpaste, containing HAP-5%Zn (3.4%) and birch extract (1.3%), indicating notable remineralization and good antibacterial properties. This study represents a significant advancement in oral care by introducing toothpaste formulations that simultaneously promote enamel health through effective remineralization and bacterial inhibition.

14.
Bioeng Transl Med ; 8(6): e10472, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38023714

ABSTRACT

Recent studies on osteosarcoma regimens have mainly focused on modifying the combination of antineoplastic agents rather than enhancing the therapeutic efficacy of each component. Here, an albumin nanocluster (NC)-assisted methotrexate (MTX), doxorubicin (DOX), and cisplatin (MAP) regimen with improved antitumor efficacy is presented. Human serum albumin (HSA) is decorated with thiamine pyrophosphate (TPP) to increase the affinity to the bone tumor microenvironment (TME). MTX or DOX (hydrophobic MAP components) is adsorbed to HSA-TPP via hydrophobic interactions. MTX- or DOX-adsorbed HSA-TPP NCs exhibit 20.8- and 1.64-fold higher binding affinity to hydroxyapatite, respectively, than corresponding HSA NCs, suggesting improved targeting ability to the bone TME via TPP decoration. A modified MAP regimen consisting of MTX- or DOX-adsorbed HSA-TPP NCs and free cisplatin displays a higher synergistic anticancer effect in HOS/MNNG human osteosarcoma cells than conventional MAP. TPP-decorated NCs show 1.53-fold higher tumor accumulation than unmodified NCs in an orthotopic osteosarcoma mouse model, indicating increased bone tumor distribution. As a result, the modified regimen more significantly suppresses tumor growth in vivo than solution-based conventional MAP, suggesting that HSA-TPP NC-assisted MAP may be a promising strategy for osteosarcoma treatment.

15.
Dent Res J (Isfahan) ; 20: 85, 2023.
Article in English | MEDLINE | ID: mdl-37674573

ABSTRACT

Background: Patient demand for esthetic dental treatments is increasing, and among different techniques, tooth bleaching is a popular procedure for smile improvement. There is a controversy over the demineralizing effect of hydrogen peroxide (HP) containing bleaching agents on tooth enamel. The aim of this study was to evaluate the effect of HP and its combinations with hydroxyapatite (HA) and bioactive glass (BG) on enamel demineralization and tooth color changes. Materials and Methods: Three groups of 20 teeth were used. Bleaching regimens included HP alone, HP + HA, and HP + BG. Bleaching was repeated at six periods of 15 min. Energy dispersive spectrometry was performed to evaluate calcium, phosphorus, sodium, magnesium, and fluoride content of superficial enamel before and after bleaching. Tooth color was evaluated by spectrophotometer before and after bleaching and ΔE values were calculated. Data were statistically analyzed using SPSS version 17. Results: Ca and P content was increased significantly in group HP + BG (P < 0.05). There was no significant difference in ΔE values between the three groups (P > 0.05).(p value = 0.34). Conclusion: Addition of BG to HP can increase superficial enamel mineral content after bleaching and has no effect on tooth color changes in comparison to HP alone.

16.
Int J Mol Sci ; 24(18)2023 Sep 18.
Article in English | MEDLINE | ID: mdl-37762534

ABSTRACT

Male patients often experience increased bone and muscle loss after traumatic fractures. This study aims to compare the treatment outcomes of male and female patients with large bone defects. A total of 345 trauma patients underwent surgery, with participants divided into two groups: one receiving bone substitute material (BSM) for augmented defects (n = 192) and the other without augmentation (empty defects = ED, n = 153). Outcome parameters were assessed among female (n = 184) and male (n = 161) patients. Descriptive statistics revealed no significant differences between male and female patients. Approximately one-half of the fractures resulted from high-energy trauma (n = 187). The BSM group experienced fewer complications (p = 0.004), including pseudarthrosis (BSM: n = 1, ED: n = 7; p = 0.02). Among female patients over 65, the incidence of pseudarthrosis was lower in the BSM group (p = 0.01), while younger females showed no significant differences (p = 0.4). Radiologically, we observed premature bone healing with subsequent harmonization. Post hoc power analysis demonstrated a power of 0.99. Augmenting bone defects, especially with bone substitute material, may reduce complications, including pseudarthrosis, in female patients. Additionally, this material accelerates bone healing. Further prospective studies are necessary for confirmation.


Subject(s)
Bone Substitutes , Fractures, Bone , Pseudarthrosis , Humans , Female , Male , Pseudarthrosis/epidemiology , Pseudarthrosis/etiology , Bone Substitutes/therapeutic use , Prospective Studies , Retrospective Studies , Fractures, Bone/surgery
17.
BMC Microbiol ; 23(1): 193, 2023 07 18.
Article in English | MEDLINE | ID: mdl-37464289

ABSTRACT

BACKGROUND: Hydroxyapatites (HAp) are widely used as medical preparations for e.g., bone replacement or teeth implants. Incorporation of various substrates into HAp structures could enhance its biological properties, like biocompatibility or antimicrobial effects. Silver ions possess high antibacterial and antifungal activity and its application as HAp dopant might increase its clinical value. RESULTS: New silicate-substituted hydroxyapatites (HAp) doped with silver ions were synthesized via hydrothermal methods. The crystal structure of HAp was investigated by using the X-ray powder diffraction. Antifungal activity of silver ion-doped HAp (with 0.7 mol%, 1 mol% and 2 mol% of dopants) was tested against the yeast-like reference and clinical strains of Candida albicans, C. glabrata, C. tropicalis, Rhodotorula rubra, R. mucilaginosa, Cryptococcus neoformans and C. gattii. Spectrophotometric method was used to evaluate antifungal effect of HAp in SD medium. It was shown that already the lowest dopant (0.7 mol% of Ag+ ions) significantly reduced fungal growth at the concentration of 100 µg/mL. Increase in the dopant content and the concentration of HAp did not cause further growth inhibition. Moreover, there were some differences at the tolerance level to Ag+ ion-doped HAp among tested strains, suggesting strain-specific activity. CONCLUSIONS: Preformed studies confirm antimicrobial potential of hydroxyapatite doped with silver. New Ag+ ion-HAp material could be, after further studies, considered as medical agent with antifungal properties which lower the risk of a surgical-related infections.


Subject(s)
Anti-Infective Agents , Durapatite , Durapatite/chemistry , Durapatite/pharmacology , Antifungal Agents/pharmacology , Silver/pharmacology , Silver/chemistry , Hydroxyapatites/chemistry , Anti-Infective Agents/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Ions
18.
ACS Appl Mater Interfaces ; 15(28): 34290-34302, 2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37409773

ABSTRACT

Gold nanoparticles (Au NPs) deposited on various cation- and anion-substituted hydroxyapatites (Au/sHAPs) show oxidative strong metal-support interaction (SMSI), wherein a thin layer of the sHAP covered the surface of the Au NPs by heat treatment in an oxidative atmosphere. Calcination of Au/sHAPs at 300 °C caused a partial SMSI and that at 500 °C gave fully encapsulated Au NPs. We investigated the influence of the substituted ions in sHAP and the degree of the oxidative SMSI on the catalytic performance of Au/sHAPs for oxidative esterification of octanal or 1-octanol with ethanol to obtain ethyl octanoate. The catalytic activity depends on the size of the Au NPs but not on the support used, owing to the similarity of the acid and base properties of sHAPs except for Au/CaFAP. The presence of a large number of acidic sites on CaFAP lowered the product selectivity, but all other sHAPs exhibited similar activity when the Au particle size was almost the same, owing to the similarity of the acid and base properties. Au/sHAPs_O2 with SMSI exhibited higher catalytic activity than Au/sHAPs_H2 without SMSI despite the fact that the number of exposed surface Au atoms was decreased by the SMSI. In addition, the oxidative esterification reaction proceeded even though the Au NPs were fully covered by the sHAP layer when the thickness of the layer was controlled to be less than 1 nm. The substrate can access the surfaces of the Au NPs covered by the thin sHAP layer (<1 nm), and the presence of the sHAP structure in close contact with the Au NPs resulted in significantly higher catalytic activity compared with that for fully exposed Au NPs deposited on the sHAPs. This result suggests that maximizing the contact area between the Au NPs and the sHAP support based on the SMSI enhances the catalytic activity of Au.

19.
Biomed Mater Eng ; 34(6): 537-544, 2023.
Article in English | MEDLINE | ID: mdl-37334576

ABSTRACT

BACKGROUND: A combination of synthetic porous materials and BMP-2 has been used to promote fracture healing. For bone healing to be successful, it is important to use growth factor delivery systems that enable continuous release of BMP-2 at the fracture site. We previously reported that in situ-formed gels (IFGs) consisting of hyaluronan (HyA)-tyramine (TA), horseradish peroxidase and hydrogen peroxide enhance the bone formation ability of hydroxyapatite (Hap)/BMP-2 composites in a posterior lumbar fusion model. OBJECTIVE: We examined the effectiveness of IFGs-HyA/Hap/BMP-2 composites for facilitating osteogenesis in refractory fracture model mice. METHODS: After establishing the refractory fracture model, animals were either treated at the site of fracture with Hap harboring BMP-2 (Hap/BMP-2) or IFGs-HyA with Hap harboring BMP-2 (IFGs-HyA/Hap/BMP-2) (n = 10 each). Animals that underwent the fracture surgery but did not receive any treatment were considered the control group (n = 10). We determined the extent of bone formation at the fracture site according to findings on micro-computed tomography and histological studies four weeks following treatment. RESULTS: Animals treated with IFGs-HyA/Hap/BMP-2 demonstrated significantly greater bone volume, bone mineral content and bone union than those treated with vehicle or IFG-HyA/Hap alone. CONCLUSIONS: IFGs-HyA/Hap/BMP-2 could be an effective treatment option for refractory fractures.


Subject(s)
Durapatite , Hyaluronic Acid , Mice , Animals , X-Ray Microtomography , Bone Morphogenetic Protein 2 , Osteogenesis , Fracture Healing
20.
Mater Today Bio ; 19: 100591, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36873733

ABSTRACT

Bone malignancy features a mineralized extracellular matrix primarily composed of hydroxyapatite, which interferes with the distribution and activity of antineoplastic agents. Herein, we report bone tumor-homing polymeric nanotherapeutics consisting of alendronate-decorated chondroitin sulfate A-graft-poly(lactide-co-glycolide) and doxorubicin (DOX), named PLCSA-AD, which displayed a prolonged retention profile in the tumor microenvironment and augmented therapeutic efficacy via inhibition of the mevalonate pathway. PLCSA-AD exhibited a 1.72-fold lower IC50 value than free DOX and a higher affinity for hydroxyapatite than PLCSA in HOS/MNNG cell-based 2D bone tumor-mimicking models. The inhibition of the mevalonate pathway by PLCSA-AD in tumor cells was verified by investigating the cytosolic fraction of unprenylated proteins, where blank PLCSA-AD significantly increased the expression of cytosolic Ras and RhoA without changing their total cellular amounts. In a bone tumor-mimicking xenografted mouse model, AD-decorated nanotherapeutics significantly increased tumor accumulation (1.73-fold) compared with PLCSA, and higher adsorption to hydroxyapatites was observed in the histological analysis of the tumor. As a result, inhibition of the mevalonate pathway and improvement in tumor accumulation led to markedly enhanced therapeutic efficacy in vivo, suggesting that PLCSA-AD could be promising nanotherapeutics for bone tumor treatment.

SELECTION OF CITATIONS
SEARCH DETAIL
...