Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 200
Filter
1.
Molecules ; 29(13)2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38999062

ABSTRACT

Hydrophobic coatings from chitosan-surfactant composites (ca. 400 nm thick by UV-Vis spectroscopy) for possible corrosion protection were developed on glass and zinc substrates. The surfactants (sodium dodecyl sulfate, SDS or sodium dodecylbenzenesulfonate, and SDBS) were added to the chitosan by two methods: mixing the surfactants with the aqueous chitosan solutions before film deposition or impregnating the deposited chitosan films with surfactants from their aqueous solutions. For the mixed coatings, it was found that the lower surface tension of solutions (40-45 mN/m) corresponded to more hydrophobic (80-90°) coatings in every case. The hydrophobicity of the impregnated coatings was especially significant (88° for SDS and 100° for SDBS). Atomic force microscopy studies revealed a slight increase in roughness (max 1.005) for the most hydrophobic coatings. The accumulation of surfactants in the layer was only significant (0.8-1.0 sulfur atomic %) in the impregnated samples according to X-ray photoelectron spectroscopy. Polarization and electron impedance spectroscopy tests confirmed better barrier properties for these samples (40-50% pseudo-porosity instead of 94%). The degree of swelling in a water vapor atmosphere was significantly lower in the case of the impregnated coatings (ca. 25%) than that of the native ones (ca. 75%), measured by spectroscopic ellipsometry. Accordingly, good barrier layer properties require advantageous bulk properties in addition to surface hydrophobicity.

2.
J Agric Food Chem ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38975865

ABSTRACT

Colanic acid (CA) is exopolysaccharide that presents growing potential in the food and healthcare industry as a versatile polymer. Previously, we have constructed the Escherichia coli strain WWM16 which can efficiently produce CA. In this study, WWM16 has been further engineered to produce a higher yield of CA with low molecular mass and viscosity. The gene mcbR encoding a transcriptional factor, and the genes opgD, opgG, and opgH related to the biosynthesis of osmoregulated periplasmic glucans were deleted in E. coli WWM16, and the resulting strain WWM166 produced 18.1 g/L CA. The expression level of wcaD encoding the polymerase in WWM166 was downregulated using CRISPRi. As a result, the strain WWM166/pWpD1 could produce 49.9 g/L CA with lower molecular mass. CA products were purified from both WWM166 and WWM166/pWpD1, and their molecular mass, viscosity, fluidity, hygroscopicity, and antioxidant activity were determined and compared. These findings demonstrate the potential application of CA with different molecular masses to prolong life and protect skin in the food and cosmetic industries.

3.
Sci Total Environ ; 942: 173780, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-38844230

ABSTRACT

Arctic regions are extremely sensitive to global warming. Aerosols are one of the most important short-lived climate-forcing agents affecting the Arctic climate. The present study examines the summertime chemical characteristics and potential sources of various organic and inorganic aerosols at a Norwegian Arctic site, Ny-Ålesund (79°N). The results show that organic matter (OM) accounts for 60 % of the total PM10 mass, followed by sulfate (SO42-). Water-soluble organic carbon (WSOC) contributes 62 % of OC. Photochemical processes involving diverse anthropogenic and biogenic precursor compounds are identified as the major sources of WSOC, while water-insoluble organic carbon (WIOC) aerosols are predominantly linked to primary marine emissions. Despite being a remote pristine site, the aerosols show a sign of chemical aging, evidenced by a significant chloride depletion, which was about 82 % on average during the study period. Nitrogen-containing aerosols are likely stemming from migratory seabird colonies and local dust sources around the sampling site. While biogenic, crustal, and sea salt-derived SO42- account for 37%, 8%, and 5% respectively, the remaining 50% is attributed to anthropogenic SO42-. Through chemical tracers, Pearson correlation coefficient matrix, and Hierarchical Cluster Analysis (HCA), the present study identifies soil biota (terrestrial biogenic) and marine emissions, along with their photochemical oxidation processes, as potential sources of Arctic aerosols during summer, while biomass burning and combustion-related sources have a minor contribution. The chemical closure of hygroscopicity highlights that while organics predominantly control aerosol hygroscopicity in the Arctic summer, specific inorganic components like (NH4)2SO4 can significantly increase it on certain days, affecting aerosol-cloud interactions and climate processes over the Arctic during summer. The present study highlights the high abundance of organics and their vital role in the Arctic climate during summer when natural aerosols are conquered.

4.
Sci Total Environ ; 944: 173956, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-38879029

ABSTRACT

The characteristics of radon exhalation in the hygroscopic properties of powder solid wastes are immensely significant for environmental safety and their transportation, storage, and landfill. This study detected the radon concentration of superfine cement and five kinds of powder solid waste: fly ash, silica fume, coal gangue, S95 mineral powder, and molybdenum tailing powder, at different hygroscopic times for 1-5 d under 95 % relative humidity. Additionally, the influence of particle size and porosity of solid waste on radon exhalation characteristics was analyzed using a laser particle size analyzer and nitrogen adsorption technology. The results show that the radon exhalation rate of the solid waste was at a low level in dry conditions. Although the presence of water due to the increased moisture absorption rate inhibited the radon exhalation to a certain extent, it was higher than that in dry conditions. The reciprocal of the moisture absorption rate had a strong linear relationship with the ratio between the radon exhalation rate after hygroscopy and radon exhalation rate from dry materials. The pore structure has a significant effect on the exhalation rate of radon, and the macropores inhibits the exhalation rate of radon. The results of this study have guiding significance for the reuse of solid waste and the prevention of radiation risk of radon exhalation during transportation.

5.
Molecules ; 29(10)2024 May 08.
Article in English | MEDLINE | ID: mdl-38792070

ABSTRACT

Ligustrazine (TMP) is the main active ingredient extracted from Rhizoma Chuanxiong, which is used in the treatment of cardiovascular and cerebrovascular diseases, with the drawback of being unstable and readily sublimated. Cocrystal technology is an effective method to improve the stability of TMP. Three benzoic acid compounds including P-aminobenzoic acid (PABA), 3-Aminobenzoic acid (MABA), and 3,5-Dinitrobenzoic acid (DNBA) were chosen for co-crystallization with TMP. Three novel cocrystals were obtained, including TMP-PABA (1:2), TMP-MABA (1.5:1), and TMP-DNBA (0.5:1). Hygroscopicity was characterized by the dynamic vapor sorption (DVS) method. Three cocrystals significantly improved the hygroscopicity stability, and the mass change in TMP decreased from 25% to 1.64% (TMP-PABA), 0.12% (TMP-MABA), and 0.03% (TMP-DNBA) at 90% relative humidity. The melting points of the three cocrystals were all higher than TMP, among which the TMP-DNBA cocrystal had the highest melting point and showed the best stability in reducing hygroscopicity. Crystal structure analysis shows that the mesh-like structure formed by the O-H⋯N hydrogen bond in the TMP-DNBA cocrystal was the reason for improving the stability of TMP.


Subject(s)
Crystallization , Pyrazines , Wettability , Pyrazines/chemistry , Drug Stability , Hydrogen Bonding , Crystallography, X-Ray , Molecular Structure , X-Ray Diffraction
6.
Int J Mol Sci ; 25(8)2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38673814

ABSTRACT

Over the past three decades, the synthesis of new ionic liquids (ILs) and the expansion of their use in newer applications have grown exponentially. From the beginning of this vertiginous period, it was known that many of them were hygroscopic, which in some cases limited their use or altered the value of their measured physical properties with all the problems that this entails. In an earlier article, we addressed the hygroscopic grade achieved by the ILs 1-ethyl-3-methylimidazolium chloride, 1-ethyl-3-methylimidazolium bromide, 1-ethyl-3-methylimidazolium methyl sulfate, 1-ethyl-3-methylimidazolium ethyl sulfate, 1-ethyl-3-methylpyridinium ethyl sulfate, 1-ethyl-3-methylimidazolium tosylate, 1-ethyl-3-methylimidazolium tetrafluoroborate, 1-butyl-3-methylimidazolium tetrafluoroborate, 1-dodecyl-3-methylimidazolium tetrafluoroborate, 1-butyl-3-methylpyridinium tetrafluoroborate, 1-butyl-1-methylpiperidinium bis(trifluoromethyl sulfonyl)imide, 1-methyl-1-propylpyrrolidinium bis(trifluoromethyl sulfonyl)imide, 1-butyl-1-methylpyrrolidinium bis(trifluoromethyl sulfonyl)imide, and methyl trioctyl ammonium bis(trifluoromethyl sulfonyl)imide. The objective was to determine the influence of the chemical nature of the compounds, exposed surface area, sample volume, agitation, and temperature. For this purpose, we exposed the samples to abrupt increases in relative humidity from 15 to 100% for days in an atmosphere chamber and then proceeded with the reverse process in a gentle manner. The results show that the sorption of water from the atmosphere depends on the nature of the IL, especially the anion, with the chloride anion being of particular importance (chloride ≫ alkyl sulfates~bromide > tosylate ≫ tetrafluoroborate). It has also been proven for the EMIM-ES and EMIM-BF4 samples that the mechanism of moisture capture is both absorption and adsorption, and that the smaller the exposed surface area, the higher the ratio of the mass of water per unit area.


Subject(s)
Anions , Cations , Ionic Liquids , Ionic Liquids/chemistry , Anions/chemistry , Cations/chemistry , Imidazoles/chemistry , Wettability , Water/chemistry
7.
Food Chem ; 449: 139244, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38583397

ABSTRACT

This study aimed to investigate the effects of edible gum addition on moisture changes in freeze-dried restructured strawberry blocks (FRSB), which involved five groups: the control, 1.2% guar gum, 1.2% gelatin, 1.2% pectin, and the composite group with 0.5% guar gum, 0.5% gelatin, and 0.45% pectin. The results indicated that the drying rates of the five groups of FRSB presented similar early acceleration and later deceleration trends. Moisture content in FRSB was linearly predicted by peak area of low field nuclear magnetic resonance with R2 higher than 0.90 for all the five groups. The FRSB samples in the gelatin and composition groups formed a denser porous structure and had a lower hygroscopicity after four days of storage. This study provides a theoretical basis for controlling the processing of FRSB.


Subject(s)
Fragaria , Freeze Drying , Galactans , Gelatin , Mannans , Pectins , Plant Gums , Water , Galactans/chemistry , Plant Gums/chemistry , Mannans/chemistry , Gelatin/chemistry , Pectins/chemistry , Fragaria/chemistry , Water/chemistry , Fruit/chemistry
8.
Heliyon ; 10(6): e28313, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38560674

ABSTRACT

The objective of this study was to develop functional date-pits by mold digestion for the potential use in food products. Whole date-pits (WDP) and defatted date-pits (DDP) were digested by mold Trichoderma reesei at 20 °C. T. reesei consumed date-pits as nutrients for their growth, and DDP showed higher growth of molds as compared to the WDP. The mold digested WDP and DDP samples showed an increased water solubility and hygroscopicity as compared to the samples prepared by autoclaved. This indicated that the mold digestion transformed date-pits to hydrophilic characteristics. Thermal analysis indicated a structural change at -3.2 °C for the untreated WDP and it was followed by a glass transition shift (i.e. onset: 138 °C and a specific heat change: 295 J/kg oC), and an endothermic peak at 196 °C with enthalpy of 68 J/g for the solids melting-decomposition. Similar characteristics were also observed for treated samples with the two glass transitions. The total specific heat changes for WDP, autoclaved-WDP, and digested-WDP were observed as 295, 367, and 328 J/kg oC, respectively. The total specific heat changes for DDP, autoclaved-DDP, and digested-DDP were observed as 778, 1329, and 1877 J/kg oC, respectively. This indicated that mold digestion transformed more amorphous fraction in the DDP. The energy absorption intensities of the Fourier Transform Infrared (FTIR) spectra for the selected functional groups decreased by the mold digestion.

9.
Sci Total Environ ; 924: 171516, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38458451

ABSTRACT

The hygroscopicity of PM2.5 particles plays an important role in PM2.5 haze in Northeast Asian countries by influencing particle growth and chemical composition. New particle formation (NPF) and atmospheric volatile organic compounds (VOCs) are factors that influence particle hygroscopicity. However, the lack of real-time hygroscopicity measurements has deterred the understanding of their effects on particle hygroscopicity. In this study, two intensive monitoring campaigns were conducted during the summer of 2021 and spring of 2022 using real-time aerosol instruments, including a humidified tandem differential mobility analyzer (HTDMA), in Seosan, Republic of Korea. The hygroscopicity parameter κ was calculated from the real-time HTDMA measurement data (κGf). The diurnal variations in κGf exhibited strong inverse linear correlations with the total concentration of VOCs (CTVOC) during the two campaigns. The higher atmospheric CTVOC in summer increased the growth rate of the particle diameter from 10 to 40 nm (6 nm/h) compared with that in spring (2.7 nm/h), resulting in a faster change in κGf for 40-nm particles in summer than in spring because of the increase in organic matter in the chemical compositions of particles. In addition, NPF events introduced additional tiny fresh particles into the atmosphere, which reduced the κGf of 40-nm particles and increased the intensity of the less hygroscopic peaks (κGf < 0.1) of κ-probability density functions (κ-PDF) in NPF days. However, 100-nm particles exhibited fewer changes in κGf than 40-nm particles, resulting in additional dominant hygroscopic peaks (κ âˆ¼ 0.2) of κ-PDFs in both NPF and non-NPF days. When κGf values measured in Seosan were compared with those in other Northeast Asian countries in the literature, the κ values for 40-nm particles were lower than those (κ > 0.2) measured in Beijing and Guangzhou, but those for 100-nm particles were close to those measured in the two cities.

10.
J Environ Sci (China) ; 139: 206-216, 2024 May.
Article in English | MEDLINE | ID: mdl-38105048

ABSTRACT

The aging process of atmospheric aerosols usually leads to a mixture of inorganic salts and organic compounds of anthropogenic origin. In organic compounds, polyhydroxy organic acids are important components, however, the study on composition and hygroscopic properties of the mixture containing inorganics and polyhydroxy organic acids is scanty. In this study, gluconic acid, the proxy of polyhydroxy organic acids, is mixed with the representative nitrate (Mg(NO3)2, Ca(NO3)2) to form aerosols. ATR-FTIR and optical microscopy are employed to study the component changes and hygroscopicity as a function of relative humidity. As relative humidity fluctuates, the FTIR-ATR spectra display that the internal mixed gluconic acid (CH2(CH)4(OH)5COOH) and nitrate can react to release acidic gases, forming relevant gluconate and further affecting the hygroscopicity. The specific presentation is particles cannot be recovered to their original size after the dehydration-hydration process and there will be some disparities in GF for mixed particles. For the gluconic acid-Ca(NO3)2/Mg(NO3)2 mixtures with molar ratios of 1:1, higher degree of reaction resulting in the production of large amounts of gluconate should be responsible to the lower hygroscopicity compared to ZSR model. For 1:2 gluconic acid-nitrate mixed systems (with higher nitrate content), the hygroscopicity of mixtures are higher than the ZSR prediction. A possible reason could be 'salt-promoting effect' on the organic fractions of the surplus inorganic salt in the mixture. These data can improve the chemical composition list evaluation, in turn hygroscopic properties and phase state of atmospheric aerosol, and then the climate effect.


Subject(s)
Gluconates , Nitrates , Wettability , Organic Chemicals , Aerosols/chemistry
11.
Plant Physiol Biochem ; 205: 108170, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38008008

ABSTRACT

Foliar fertilisation is an alternative form of nutrient application, which is of particular interest for phosphorus (P), where the efficiency of soil fertilisation is low. However, the uptake of foliar-applied nutrients is insufficiently characterised. The aim of this study was to investigate the individual and combined significance of wettability, foliar fertiliser properties and surfactant on foliar P uptake in P-deficient maize (Zea mays L.). Sorption and desorption properties of two P salts used as foliar fertilisers (KH2PO4, K2HPO4) were determined with dynamic vapor sorption isotherms. Leaf surfaces and foliar spray depositions of two differently wettable maize cultivars were investigated by scanning electron microscopy and contact angle measurement. Phosphorus uptake was then linked to leaf and fertiliser solution properties and its effect on cell ultrastructure was characterised by transmission electron microscopy. Wettability was the key factor for P absorption, as all foliar fertilisers were taken up reaching a tissue-P level of adequately nourished plants. For unwettable leaves, only solutions with surfactant, especially the combination of surfactant and hygroscopic P salt (K2HPO4) were taken up. This study provides novel insights into the significance of leaf surface and fertiliser properties, which can thus contribute to an improvement of P fertilisation strategies.


Subject(s)
Fertilizers , Zea mays , Fertilizers/analysis , Wettability , Plant Leaves/metabolism , Phosphorus/metabolism , Surface-Active Agents
12.
Int J Pharm ; 646: 123470, 2023 Nov 05.
Article in English | MEDLINE | ID: mdl-37793465

ABSTRACT

Hydroxytyrosol (HT) is a natural phenolic compound with potent antioxidant activity extracted from olive trees. It is generally a slightly hydrated viscous liquid at ambient conditions, and it is highly susceptible to oxygen due to the presence of catechol moiety. Although encapsulation technique provides HT in powder form, it does not improve its chemical stability. Herein, we propose an efficient solution to the high hygroscopicity and poor stability of HT. Four cocrystals were first reported, and their intermolecular interactions were analyzed in detail. After cocrystallization, the melting point is increased and the hygroscopicity is significantly decreased. HT cocrystals are thus solid at room temperature. Moreover, hydroxytyrosol cocrystals with betaine (HT-BET) and nicotinamide (HT-NIC) demonstrate superior chemical stability than pure HT, olive extract, and HT encapsulation material. Therefore, cocrystallization can be considered as a promising approach to overcome the application obstacles of HT.


Subject(s)
Niacinamide , Phenylethyl Alcohol , Wettability , Niacinamide/chemistry , Antioxidants
13.
Zhongguo Zhong Yao Za Zhi ; 48(15): 3997-4006, 2023 Aug.
Article in Chinese | MEDLINE | ID: mdl-37802767

ABSTRACT

Hard capsules of traditional Chinese medicine(TCM) have different degrees of hygroscopicity, which affects the stability and efficacy of drugs. In this paper, 30 kinds of commercially available TCM capsules were used as the research object. The hygroscopicity curves of capsule contents, capsule shells, and capsules were tested respectively, and the first-order kinetic equation was used for fitting. The results show that during the 24 h hygroscopicity process, the capsule shell can reduce the weight gain caused by the hygroscopicity of the contents by 0.80%-53.0% and the hygroscopicity rate of the capsule contents by 1.74%-91.3%, indicating that the capsule shell has a strong delay effect on the hygroscopicity of the contents of the TCM capsules. Seven physical parameters of the contents of 30 kinds of TCM capsules were determined, and 14 prescription process-related parameters were sorted out. A partial least squares model for predicting the hygroscopicity rate of the contents of TCM capsules(with shell) for 24 h was established. It is found that the hygroscopicity rate of the capsule shell is positively correlated with the hygroscopicity of the contents of TCM capsules(with shell), suggesting that the capsule shell with a low hygroscopicity rate is helpful for moisture prevention. In addition, the pre-treatment process route of the preparation and the type of molding raw materials affect the hygroscopicity. A larger proportion of the extract in the capsule content and a smaller proportion of the fine powder of the decoction pieces indicate stronger hygroscopicity of the capsule content. The 24 h hygroscopicity rate of 15% was used as the classification node of hygroscopicity strength, and the hygroscopicity rate constant of 0.58 was used as the classification node of hygroscopicity speed. The classification system of hygroscopicity behaviors of TCM capsules was established: the varieties with strong and fast hygroscopicity accounted for about 6.67%, while those with strong and slow hygroscopicity accounted for about 33.3%; the varieties with weak and fast hygroscopicity accounted for about 26.7%, while those with weak and slow hygroscopicity accounted for about 33.3%. The classification system is helpful to quantify and compare the hygroscopicity behavior of different TCM capsules and provides a reference for the quality improvement, moisture prevention technologies, and material research of TCM capsules.


Subject(s)
Drugs, Chinese Herbal , Medicine, Chinese Traditional , Wettability , Capsules , Powders , Technology
14.
Mol Pharm ; 20(10): 5226-5239, 2023 10 02.
Article in English | MEDLINE | ID: mdl-37677085

ABSTRACT

Multidrug salts represent more than one drug in a crystal lattice and thus could be used to deliver multiple drugs in a single dose. It showcases unique physicochemical properties in comparison to individual components, which could lead to improved efficacy and therapeutic synergism. This study presents the preparation and scale-up of sulfamethoxazole-piperazine salt, which has been thoroughly characterized by X-ray diffraction and thermal and spectroscopic analyses. A detailed mechanistic study investigates the impact of piperazine on the microenvironmental pH of the salt and its effect on the speciation profile, solubility, dissolution, and diffusion profile. Also, the improvement in the physicochemical properties of sulfamethoxazole due to the formation of salt was explored with lattice energy contributions. A greater ionization of sulfamethoxazole (due to pH changes contributed by piperazine) and lesser lattice energy of sulfamethoxazole-piperazine contributed to improved solubility, dissolution, and permeability. Moreover, the prepared salt addresses the stability issues of piperazine and exhibits good stability behavior under accelerated stability conditions. Due to the improvement of physicochemical properties, the sulfamethoxazole-piperazine salt demonstrates better pharmacokinetic parameters in comparison to sulfamethoxazole and provides a strong suggestion for the reduction of dose. The following study suggests that multidrug salts can concurrently enhance the physicochemical properties of drugs and present themselves as improved fixed-dose combinations.


Subject(s)
Salts , Piperazine , Salts/chemistry , X-Ray Diffraction , Solubility
15.
Environ Sci Technol ; 57(35): 13092-13103, 2023 09 05.
Article in English | MEDLINE | ID: mdl-37607019

ABSTRACT

Interactions between water and organic molecules in sub-4 nm clusters play a significant role in the formation and growth of secondary organic aerosol (SOA) particles. However, a complete understanding of the relevant water microphysics has not yet been achieved due to challenges in the experimental characterization of soft nuclei. Here, we use molecular dynamics simulations to study the phase-mixing states, surface tension, water activity, and water accommodation coefficient of organic-water clusters representative of freshly nucleated SOA particles. Our results reveal large deviations from the behavior expected based on continuum theories. In particular, the phase-mixing state has a strong dependence on cluster size; surface tension displays a minimum at a specific organic-water mass ratio (morg/mw ∼ 4.5 in this study) corresponding to a minimum inhibition of droplet nucleation associated with the Kelvin effect; and the water accommodation coefficient increases by a factor of 2 with nanocluster hygroscopic growth, in agreement with recent experimental studies. Overall, our results yield parametric relations for water microphysical properties in sub-4 nm clusters and provide insight into the role of water in the initial stages of SOA nucleation and growth.


Subject(s)
Water , Surface Tension , Wettability
16.
Sci Total Environ ; 895: 164967, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37343879

ABSTRACT

We examine the relationship between soil and plant inorganic chemical composition as a precursor to biomass smoke aerosol particle (PM2.5) properties in desert landscapes of the Southwestern United States. Past work underscored the importance of plant species and in particular the dependence of smoke PM2.5 water uptake on the water-soluble inorganics important in select plant species (e.g., halophytes) versus absent in other species (e.g., conifers). This study extends this work by looking at a range of soil types and salinity in examining native and invasive species in the Desert Southwest US region. Eighteen plant samples and surrounding soils were taken from four ecosystems in New Mexico, USA. Results here support the conclusion that plant species are the primary controller over the inorganic plant composition that is relevant to biomass smoke and controls its hygroscopicity. The role of soil type is secondary to plant inorganic composition but is found to be important on the ecosystem level in determining what plant species are viable in a given ecosystem. This ultimately affects the smoke properties, including PM2.5 hygroscopicity (water uptake), produced in landscape fires. Knowledge of ecosystem features including plant species distribution and soil salinity may be combined as a first-order predictor of PM2.5 hygroscopicity of the primary smoke emissions. This can be particularly useful when combined with knowledge of burn characteristics such as flame temperature, which also plays a key role in determining PM2.5 water uptake response.


Subject(s)
Ecosystem , Smoke , Biomass , Soil , Salt-Tolerant Plants , Water , Ions
17.
J Mol Graph Model ; 123: 108527, 2023 09.
Article in English | MEDLINE | ID: mdl-37270896

ABSTRACT

To meet the needs of dehydrated skin, molecules with a high hygroscopic potential are necessary to hydrate it effectively and durably. In this context, we were interested in pectins, and more precisely in apiogalacturonans (AGA), a singular one that is currently only found in a few species of aquatic plants. As key structures in water regulation of these aquatic plants and thanks to their molecular composition and conformations, we hypothesized that they could have beneficial role for skin hydration. Spirodela polyrhiza is a duckweed known to be naturally rich in AGA. The aim of this study was to investigate the hygroscopic potential of AGA. Firstly, AGA models were built based on structural information obtained from previous experimental studies. Molecular dynamics (MD) simulations were performed, and the hygroscopic potential was predicted in silico by analyzing the frequency of interaction of water molecules with each AGA residue. Quantification of interactions identified the presence of 23 water molecules on average in contact with each residue of AGA. Secondly, the hygroscopic properties were investigated directly in vivo. Indeed, the water capture in the skin was measured in vivo by Raman microspectroscopy thanks to the deuterated water (D20) tracking. Investigations revealed that AGA significantly capture and retain more water in the epidermis and deeper than a placebo control. Not only do these original natural molecules interact with water molecules, but they capture and retain them efficiently in the skin.


Subject(s)
Molecular Dynamics Simulation , Water , Water/chemistry , Molecular Conformation , Wettability
18.
Talanta ; 262: 124698, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37244243

ABSTRACT

Obtaining an accurate measurement of 18O/16O at natural abundance level for land plants-derived α-cellulose with the currently popular EA/Py/IRMS (elemental analysis/pyrolysis/isotope ratio mass spectrometry) method is a challenge due to the hygroscopic nature of the exposed hydroxyl groups, as the 18O/16O of adsorbed moisture is usually different from that of the α-cellulose and the relative amount of adsorbed moisture is sample- and relative humidity-dependent. To minimize the hygroscopicity-related measurement error, we capped the hydroxyl groups of α-cellulose by benzylation to various degrees and found that the 18O/16O ratio of α-cellulose increased with the degree of benzyl substitution (DS), consistent with the theoretical prediction that a reduced presence of exposed hydroxyl groups should lead to a more accurate (and therefore more reliable) α-cellulose 18O/16O measurement. We propose the establishment of a moisture adsorption-degree of substitution or percentage of oxygen-18O/16O ratio equation, based on the measurement of C%, O% and δ18O of variably capped α-cellulose, so that a robust correction can be made in a plant species- and laboratory conditions-specific manner. Failure to do so will lead to an average underestimate of α-cellulose δ18O by 3.5 mUr under "average" laboratory conditions.

19.
Food Chem X ; 18: 100702, 2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37206321

ABSTRACT

Freeze-dried restructured strawberry blocks (FRSB) have become an increasingly popular product. In this study, the effects of six edible gums (guar gum, gelatin, xanthan gum, pectin, konjac gum, and carrageenan) on the FRSB quality were investigated. For FRSBs, compared with those in untreated samples, the 0.6 % guar gum addition increased texture profile analysis (TPA) hardness, chewiness, and puncture hardness by 29.59%, 174.86%, and 25.34%, respectively; after the 0.6% gelatin addition, the sensory evaluation sourness was reduced by 8.58%, whereas yield, TPA chewiness, and puncture hardness were increased by 3.40%, 28.62%, and 92.12%, respectively; with the 0.9% gelatin addition, the sensory evaluation sourness was reduced by 8.58%; with the 0.9% pectin addition, the yield, TPA hardness, chewiness, and puncture hardness were increased by 4.55%, 5.94%, 77.49%, and 103.62%, respectively. In summary, 0.6-0.9% pectin, gelatin, and guar gum addition are recommended to improve the main qualities of FRSBs.

20.
J Environ Sci (China) ; 130: 65-74, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37032043

ABSTRACT

Heterogeneous reaction of NO2 with mineral dust aerosol may play important roles in troposphere chemistry, and has been investigated by a number of laboratory studies. However, the influence of mineralogy on this reaction has not been well understood, and its impact on aerosol hygroscopicity is not yet clear. This work investigated heterogeneous reactions of NO2 (∼10 ppmv) with K-feldspar, illite, kaolinite, montmorillonite and Arizona Test Dust (ATD) at room temperature as a function of relative humidity (<1% to 80%) and reaction time (up to 24 hr). Heterogeneous reactivity towards NO2 was low for illite, kaolinite, montmorillonite and ATD, and uptake coefficients of NO2, γ(NO2), were determined to be around or smaller than 1×10-8; K-feldspar exhibited higher reactivity towards NO2, and CaCO3 is most reactive among the nine mineral dust samples considered in this and previous work. After heterogeneous reaction with NO2 for 24 hr, increase in hygroscopicity was nearly insignificant for illite, kaolinite and montmorillonite, and small but significant for K-feldspar; in addition, large increase in hygroscopicity was observed for ATD, although the increase in hygroscopicity was still smaller than CaCO3.


Subject(s)
Dust , Nitrogen Dioxide , Dust/analysis , Clay , Kaolin , Bentonite , Arizona , Minerals , Aerosols
SELECTION OF CITATIONS
SEARCH DETAIL
...