Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 331
Filter
1.
Beilstein J Nanotechnol ; 15: 719-732, 2024.
Article in English | MEDLINE | ID: mdl-38919168

ABSTRACT

A TiO2/graphene quantum dots composite (TiO2/GQDs) obtained by in situ synthesis of GQDs, derived from coffee grounds, and peroxo titanium complexes was used as electrode modifier in the simultaneous electrochemical determination of uric acid and hypoxanthine. The TiO2/GQDs material was characterized by photoluminescence, X-ray diffraction, Raman spectroscopy, high-resolution transmission electron microscopy, and energy-dispersive X-ray mapping. The TiO2/GQDs-GCE exhibits better electrochemical activity for uric acid and hypoxanthine than GQDs/GCE or TiO2/GCE in differential pulse voltammetry (DPV) measurements. Under optimized conditions, the calibration plots were linear in the range from 1.00 to 15.26 µM for both uric acid and hypoxanthine. The limits of detection of this method were 0.58 and 0.68 µM for uric acid and hypoxanthine, respectively. The proposed DPV method was employed to determine uric acid and hypoxanthine in urine samples with acceptable recovery rates.

2.
Chemphyschem ; : e202400107, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38747323

ABSTRACT

The UV-Vis spectrum of the solvated purine derivative Hypoxanthine (HYX) is investigated using the Quantum Mechanics/Fluctuating Charges (QM/FQ) multiscale approach combined with a sampling of configurations through atomistic Molecular Dynamics (MD) simulations. Keto 1H7H and 1H9H tautomeric forms of HYX are the most stable in aqueous solution and form different stable complexes with the surrounding water molecules, ultimately affecting the electronic absorption spectra. The final simulated spectrum resulting from the combination of the individual spectra of tautomers agrees very well with most of the characteristics in the measured spectrum. The importance of considering the effect of the solute tautomers and, in parallel, the contribution of the different solvent arrangements around the solute when modeling spectral properties, is highlighted. In addition, the high quality of the computed spectra leads to suggesting an alternative way for acquiring tautomeric populations from combined computational/experimental spectra.

3.
Talanta ; 276: 126259, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38761664

ABSTRACT

Hypoxanthine is a promising index for evaluating the freshness of various aquatic products. Combined the hydrogels containing upconversion nanoparticles (UCNPs), Co3O4 NPs, and N-ethyl-N-(3-sulfopropyl)-3-methylaniline sodium salt/4-amino-antipyrine (TOPS/4-AAP) with a smartphone, a portable sensor was developed for the convenient, sensitive detection of hypoxanthine. With the H2O2 from xanthine oxidase (XOD)-catalyzed reactions of hypoxanthine, the fluorescence of UCNPs was effectively quenched by the purple product produced from the oxidization of TOPS/4-AAP catalyzed by Co3O4 NPs exhibiting peroxidase activity, among which the color change could be transformed into digital signals for quantification of hypoxanthine. The Green value in the RGB analysis of the fluorescence image was negatively proportional to hypoxanthine concentration in the range of 2.5-20 mg/L with a detection limit of 0.69 mg/L and a quantitation limit of 2.30 mg/L. Finally, this sensor was applied for hypoxanthine detection in real aquatic products, showing potential application for freshness evaluation of aquatic products.


Subject(s)
Cobalt , Hydrogels , Hypoxanthine , Oxides , Smartphone , Hypoxanthine/analysis , Hydrogels/chemistry , Oxides/chemistry , Cobalt/chemistry , Fluorescence , Limit of Detection , Nanoparticles/chemistry , Animals , Spectrometry, Fluorescence/methods , Hydrogen Peroxide/analysis , Hydrogen Peroxide/chemistry
4.
Elife ; 122024 May 03.
Article in English | MEDLINE | ID: mdl-38700995

ABSTRACT

Adenine phosphoribosyltransferase (APRT) and hypoxanthine-guanine phosphoribosyltransferase (HGPRT) are two structurally related enzymes involved in purine recycling in humans. Inherited mutations that suppress HGPRT activity are associated with Lesch-Nyhan disease (LND), a rare X-linked metabolic and neurological disorder in children, characterized by hyperuricemia, dystonia, and compulsive self-injury. To date, no treatment is available for these neurological defects and no animal model recapitulates all symptoms of LND patients. Here, we studied LND-related mechanisms in the fruit fly. By combining enzymatic assays and phylogenetic analysis, we confirm that no HGPRT activity is expressed in Drosophila melanogaster, making the APRT homolog (Aprt) the only purine-recycling enzyme in this organism. Whereas APRT deficiency does not trigger neurological defects in humans, we observed that Drosophila Aprt mutants show both metabolic and neurobehavioral disturbances, including increased uric acid levels, locomotor impairments, sleep alterations, seizure-like behavior, reduced lifespan, and reduction of adenosine signaling and content. Locomotor defects could be rescued by Aprt re-expression in neurons and reproduced by knocking down Aprt selectively in the protocerebral anterior medial (PAM) dopaminergic neurons, the mushroom bodies, or glia subsets. Ingestion of allopurinol rescued uric acid levels in Aprt-deficient mutants but not neurological defects, as is the case in LND patients, while feeding adenosine or N6-methyladenosine (m6A) during development fully rescued the epileptic behavior. Intriguingly, pan-neuronal expression of an LND-associated mutant form of human HGPRT (I42T), but not the wild-type enzyme, resulted in early locomotor defects and seizure in flies, similar to Aprt deficiency. Overall, our results suggest that Drosophila could be used in different ways to better understand LND and seek a cure for this dramatic disease.


Subject(s)
Drosophila melanogaster , Lesch-Nyhan Syndrome , Animals , Drosophila melanogaster/physiology , Drosophila melanogaster/genetics , Lesch-Nyhan Syndrome/genetics , Lesch-Nyhan Syndrome/metabolism , Purines/metabolism , Disease Models, Animal , Behavior, Animal , Hypoxanthine Phosphoribosyltransferase/genetics , Hypoxanthine Phosphoribosyltransferase/metabolism , Hypoxanthine Phosphoribosyltransferase/deficiency , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Locomotion
5.
Food Chem ; 451: 139453, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38677136

ABSTRACT

Establishing a rapid and accurate method for monitoring the freshness of aquatic products is of great importance. Hypoxanthine has been considered an essential indicator of aquatic products' freshness. Here, a novel smartphone colorimetric / inductively coupled plasma mass spectrometry (ICP-MS) / photothermal three-mode sensing strategy was established for monitoring hypoxanthine. Hypoxanthine can be catalyzed by xanthine oxidase to H2O2 and uric acid, which can simultaneously degrade MnO2 nanosheets (NSs) to Mn2+. After filter-assisted separation, the smartphone and ICP-MS were performed by monitoring the color of the membrane and the Mn2+ in the filtrate. Additionally, MnO2 NSs can facilitate the oxidation of dopamine to form polydopamine nanoparticles, which exhibit strong photothermal efficiency. The approach successfully monitored the deterioration of aquatic products under various storage conditions through portable thermometers and smartphones with low limits of detection (LODs), providing a potential application for in-situ evaluation of the freshness of aquatic products.


Subject(s)
Biosensing Techniques , Hypoxanthine , Oxides , Hypoxanthine/analysis , Biosensing Techniques/instrumentation , Biosensing Techniques/methods , Oxides/chemistry , Animals , Manganese Compounds/chemistry , Food Storage , Food Contamination/analysis , Seafood/analysis , Limit of Detection , Colorimetry/methods , Colorimetry/instrumentation , Mass Spectrometry , Hydrogen Peroxide/chemistry , Hydrogen Peroxide/analysis , Fishes , Xanthine Oxidase/chemistry , Xanthine Oxidase/metabolism , Smartphone , Indoles , Polymers
6.
Talanta ; 274: 126007, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38583331

ABSTRACT

Hypoxanthine (Hx), produced by adenosine triphosphate (ATP) metabolism, is a valuable indicator that determines the quality and degradation status of meat products and is also an important biochemical marker to certain diseases such as gout. The rapid emergence of paper-based enzyme biosensors has already revolutionized its on-site determination. But it is still limited by the complex patterning and fabrication, unstable enzyme and uneven coloration. This work aims to develop an eco-friendly method to construct engineered paper microfluidic, which seeks to produce reaction and non-reaction zones without any patterning procedure. Chito-oligosaccharide (COS), derived from shrimp shells, was used to modify nitrocellulose membranes and immobilize xanthine oxidase (XOD) and chromogenic agent of nitro blue tetrazolium chloride (NBT). After modification, micro fluids could converge into the modification area and Hx could be detected by XOD-catalyzed conversion. Due to the positively charged cationic basic properties of COS, the enzyme storage stability and the color homogeneity could be greatly strengthened through the electrostatic attraction between COS and XOD and formazan product. The detection limit (LOD) is 2.30 µM; the linear range is 0.05-0.35 mM; the complete test time can be as short as 5 min. The COS-based biosensor shows high specificity and can be used directly for Hx in complex samples such as fish and shrimp samples, and different broths. This biosensor is eco-friendly, nontechnical, economical and therefore a compelling platform for on-site or home-based detection of food freshness.


Subject(s)
Biosensing Techniques , Collodion , Hypoxanthine , Oligosaccharides , Xanthine Oxidase , Animals , Oligosaccharides/chemistry , Oligosaccharides/analysis , Biosensing Techniques/methods , Hypoxanthine/analysis , Hypoxanthine/chemistry , Collodion/chemistry , Xanthine Oxidase/chemistry , Xanthine Oxidase/metabolism , Fishes , Chitin/chemistry , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Green Chemistry Technology/methods , Surface Properties , Limit of Detection
7.
Food Chem ; 450: 139242, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38631208

ABSTRACT

The development of facile, low-cost reliable, and precise onsite assays for the bioactive component hypoxanthine (Hx) in meat products is significant for safeguarding food safety and public health. Herein, we proposed a smartphone-assissted aggregation-induced emission (AIE) fluorogen tetraphenylethene (TPE)-incorporated amorphous Fe-doped phosphotungstates (Fe-Phos@TPE) nanozyme-based ratiometric fluorescence-colorimetric dual-mode biosensor for achieving the onsite visual detection of Hx. When the Hx existed, xanthine oxidase (XOD) catalyzed Hx into H2O2 to be further catalyzed into •OH by the prominent peroxidase activity of Fe-Phos@TPE at pH = 6.5, resulting in the oxidization of nonfluorescent o-phenylenediamine (OPD, naked-eye colorless) to be yellow fluorescent emissive 2,3-diaminophenazine (DAP, naked-eye dark yellow) at 550 nm as well as the intrinsic blue fluorescence of Fe-Phos@TPE at 440 nm to be decreased via inner-filter effect (IFE) action, thereby realizing a multi-enzyme cascade catalytic reaction at near-neutral pH to overcome the traditional acidity dependence-induced time-consuming and low sensitivity troublesome.


Subject(s)
Biosensing Techniques , Hypoxanthine , Meat Products , Biosensing Techniques/instrumentation , Hypoxanthine/analysis , Hypoxanthine/chemistry , Meat Products/analysis , Xanthine Oxidase/chemistry , Xanthine Oxidase/metabolism , Food Contamination/analysis , Animals , Fluorescent Dyes/chemistry , Fluorescence , Smartphone , Colorimetry/methods
8.
Pharmaceuticals (Basel) ; 17(3)2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38543131

ABSTRACT

Adenosine is a multifunctional nucleoside with several roles across various levels in organisms. Beyond its intracellular involvement in cellular metabolism, extracellular adenosine potently influences both physiological and pathological processes. In relation to its blood level, adenosine impacts the cardiovascular system, such as heart beat rate and vasodilation. To exploit the adenosine levels in the blood, we employed the liquid chromatography method coupled with mass spectrometry (LC-MS). Immediately after collection, a blood sample mixed with acetonitrile solution that is either enriched with 13C-labeled adenosine or a newly generated mixture is transferred into the tubes containing the defined amount of 13C-labeled adenosine. The 13C-enriched isotopic adenosine is used as an internal standard, allowing for more accurate quantification of adenosine. This novel protocol for LC-MS-based estimation of adenosine delivers a rapid, highly sensitive, and reproducible means for quantitative estimation of total adenosine in blood. The method also allows for quantification of a few catabolites of adenosine, i.e., inosine, hypoxanthine, and xanthine. Our current setup did not allow for the detection or quantifying of uric acid, which is the final product of adenosine catabolism. This advancement provides an analytical tool that has the potential to enhance our understanding of adenosine's systemic impact and pave the way for further investigations into its intricate regulatory mechanisms.

9.
Cells ; 13(5)2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38474337

ABSTRACT

Inflammatory bowel disease (IBD) is marked by a state of chronic energy deficiency that limits gut tissue wound healing. This energy shortfall is partially due to microbiota dysbiosis, resulting in the loss of microbiota-derived metabolites, which the epithelium relies on for energy procurement. The role of microbiota-sourced purines, such as hypoxanthine, as substrates salvaged by the colonic epithelium for nucleotide biogenesis and energy balance, has recently been appreciated for homeostasis and wound healing. Allopurinol, a synthetic hypoxanthine isomer commonly prescribed to treat excess uric acid in the blood, inhibits the degradation of hypoxanthine by xanthine oxidase, but also inhibits purine salvage. Although the use of allopurinol is common, studies regarding how allopurinol influences the gastrointestinal tract during colitis are largely nonexistent. In this work, a series of in vitro and in vivo experiments were performed to dissect the relationship between allopurinol, allopurinol metabolites, and colonic epithelial metabolism and function in health and during disease. Of particular significance, the in vivo investigation identified that a therapeutically relevant allopurinol dose shifts adenylate and creatine metabolism, leading to AMPK dysregulation and disrupted proliferation to attenuate wound healing and increased tissue damage in murine experimental colitis. Collectively, these findings underscore the importance of purine salvage on cellular metabolism and gut health in the context of IBD and provide insight regarding the use of allopurinol in patients with IBD.


Subject(s)
Colitis , Inflammatory Bowel Diseases , Humans , Mice , Animals , Allopurinol , Purines/metabolism , Hypoxanthine/metabolism , Colitis/drug therapy , Inflammatory Bowel Diseases/drug therapy
10.
Food Chem ; 447: 138902, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38458132

ABSTRACT

The timely detection of freshness changes of aquatic products is crucial. In this study, we have developed a reliable, cost-effective, and user-friendly method for rapidly detecting hypoxanthine using a xanthine oxidase (XOD)/nanozyme enzymatic cascade system. The nanozyme, derived from the Fe7/Ni3 metal-organic framework (Fe7Ni3MOF), exhibited good peroxidase-mimetic activity and stability. Our proposed XOD/Fe7Ni3MOF enzymatic cascade system demonstrated a linear response to hypoxanthine in the range of 3-70 µM, with a low detection limit of 1.39 µM. We also analyzed hypoxanthine in actual aquatic products, achieving spiked recoveries ranging from 90.04 % to 107.37 %. The correlation coefficient between our developed colorimetric method and the HPLC method was 0.98. Importantly, our proposed method holds several advantages over alternative techniques, particularly in terms of cost-effectiveness, precision, and speed. Consequently, this methodology shows great promise for the early detection of freshness changes in aquatic samples.


Subject(s)
Biosensing Techniques , Metal-Organic Frameworks , Hypoxanthine , Biosensing Techniques/methods , Colorimetry/methods , Hydrogen Peroxide
11.
Saudi J Biol Sci ; 31(4): 103960, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38404541

ABSTRACT

Helicobacter pylori infects the stomach mucosa of over half of the global population and can lead to gastric cancer. This pathogen has demonstrated resistance to many frequently prescribed antibiotics, thereby underscoring the pressing need to identify novel therapeutic targets. The inhibition or disruption of nucleic acid biosynthesis constitutes a promising avenue for either restraining or eradicating bacterial proliferation. The synthesis of RNA and DNA precursors (6-oxopurine nucleoside monophosphates) is catalyzed by the XGHPRT enzyme. In this study, using machine learning, artificial intelligence and biophysics-based software, CHEMBRIDGE-10000196, CHEMBRIDGE-10000295, and CHEMBRIDGE-10000955 were predicted as promising binders to the XGHPRT with a binding score of -14.20, -13.64, and -12.08 kcal/mol, respectively, compared to a control guanosine-5'-monophosphate exhibiting a docking score of -10.52 kcal/mol. These agents formed strong interactions with Met33, Arg34, Ala57, Asp92, Ser93, and Gly94 at short distance. The docked complexes of the lead compounds exhibited stable dynamics during the simulation time with no global changes noticed. The docked complexes demonstrate a significantly stable MM-GBSA and MM-PBSA net binding energy of -60.1 and -61.18 kcal/mol for the CHEMBRIDGE-10000196 complex. The MM-GBSA net energy value of the CHEMBRIDGE-10000295 complex and the CHEMBRIDGE-10000955 complex is -71.17 and -65.29 kcal/mol, respectively. The CHEMBRIDGE-10000295 and CHEMBRIDGE-10000955 complexes displayed a net value of -71.91 and -63.49 kcal/mol, respectively, as per the MM-PBSA. The major driving intermolecular interactions for the docked complexes were found to be the electrostatic and van der Waals. The three filtered molecules hold potential for experimental evaluation of their potency against the XGHPRT enzyme.

12.
Int J Mol Sci ; 25(4)2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38396967

ABSTRACT

Obtaining accurate and reliable gene expression results in real-time RT-PCR (qRT-PCR) data analysis requires appropriate normalization by carefully selected reference genes, either a single or a combination of multiple housekeeping genes (HKGs). The optimal reference gene/s for normalization should demonstrate stable expression across varying conditions to diminish potential influences on the results. Despite the extensive database available, research data are lacking regarding the most appropriate HKGs for qRT-PCR data analysis in rabbit and horse adipose-derived stem cells (ASCs). Therefore, in our study, we comprehensively assessed and compared the suitability of some widely used HKGs, employing RefFinder and NormFinder, two extensively acknowledged algorithms for robust data interpretation. The rabbit and horse ASCs were obtained from subcutaneous stromal vascular fraction. ASCs were induced into tri-lineage differentiation, followed by the eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) treatment of the adipose-differentiated rabbit ASCs, while horse experimental groups were formed based on adipogenic, osteogenic, and chondrogenic differentiation. At the end of the experiment, the total mRNA was obtained and used for the gene expression evaluation of the observed factors. According to our findings, glyceraldehyde 3-phosphate dehydrogenase was identified as the most appropriate endogenous control gene for rabbit ASCs, while hypoxanthine phosphoribosyltransferase was deemed most suitable for horse ASCs. The obtained results underscore that these housekeeping genes exhibit robust stability across diverse experimental conditions, remaining unaltered by the treatments. In conclusion, the current research can serve as a valuable baseline reference for experiments evaluating gene expression in rabbit and horse ASCs. It highlights the critical consideration of housekeeping gene abundance and stability in qPCR experiments, emphasizing the need for an individualized approach tailored to the specific requirements of the study.


Subject(s)
Genes, Essential , Glyceraldehyde-3-Phosphate Dehydrogenases , Horses , Rabbits , Animals , Real-Time Polymerase Chain Reaction , Cell Differentiation , Adipogenesis , Reference Standards , Gene Expression Profiling/methods
13.
Mol Biochem Parasitol ; 258: 111616, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38401850

ABSTRACT

Trypanosoma cruzi is a protozoan parasite and the etiological agent of Chagas disease, a debilitating and sometimes fatal disease that continues to spread to new areas. Yet, Chagas disease is still only treated with two related nitro compounds that are insufficiently effective and cause severe side effects. Nucleotide metabolism is one of the known vulnerabilities of T. cruzi, as they are auxotrophic for purines, and nucleoside analogues have been shown to have genuine promise against this parasite in vitro and in vivo. Since purine antimetabolites require efficient uptake through transporters, we here report a detailed characterisation of the T. cruzi NB1 nucleobase transporter with the aim of elucidating the interactions between TcrNB1 and its substrates and finding the positions that can be altered in the design of novel antimetabolites without losing transportability. Systematically determining the inhibition constants (Ki) of purine analogues for TcrNB1 yielded their Gibbs free energy of interaction, ΔG0. Pairwise comparisons of substrate (hypoxanthine, guanine, adenine) and analogues allowed us to determine that optimal binding affinity by TcrNB1 requires interactions with all four nitrogen residues of the purine ring, with N1 and N9, in protonation state, functioning as presumed hydrogen bond donors and unprotonated N3 and N7 as hydrogen bond acceptors. This is the same interaction pattern as we previously described for the main nucleobase transporters of Trypanosoma brucei spp. and Leishmania major and makes it the first of the ENT-family genes that is functionally as well as genetically conserved between the three main kinetoplast pathogens.


Subject(s)
Guanine , Hypoxanthine , Trypanosoma cruzi , Trypanosoma cruzi/metabolism , Trypanosoma cruzi/genetics , Trypanosoma cruzi/chemistry , Guanine/metabolism , Hypoxanthine/metabolism , Protozoan Proteins/metabolism , Protozoan Proteins/genetics , Protozoan Proteins/chemistry , Nucleobase Transport Proteins/metabolism , Nucleobase Transport Proteins/genetics , Nucleobase Transport Proteins/chemistry , Biological Transport , Substrate Specificity , Protein Binding , Nucleosides/metabolism
14.
Eur Geriatr Med ; 15(2): 571-577, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38214867

ABSTRACT

PURPOSE: This pilot study compared serum metabolites in participants with and without sarcopenia. METHODS: Metabolomic techniques were applied to identify serum metabolites and novel biomarkers specific to patients with sarcopenia. In accordance with AWGS2019 criteria, sarcopenia was defined as low muscle mass plus either low muscle strength/low physical function, and severe sarcopenia was defined as low muscle mass, low muscle strength, and low physical function all together. RESULTS: The sarcopenia group had higher hypoxanthine, galactose, and mannose levels but lower triethanolamine and homogentisic acid levels than the non-sarcopenia group. The severe sarcopenia group had lower levels of alpha-tocopherol than the mild and moderate sarcopenia groups. CONCLUSION: This study is the first to identify hypoxanthine as a potential biomarker for sarcopenia in humans and provides new insights into the pathophysiology of sarcopenia. Furthermore, the identified metabolites may be useful for the early detection of sarcopenia.


Subject(s)
Sarcopenia , Humans , Sarcopenia/diagnosis , Pilot Projects , Muscle Strength/physiology , Biomarkers , Hypoxanthine
15.
Mol Ther ; 32(2): 384-394, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38087779

ABSTRACT

Hematopoietic stem/progenitor cell (HSPC)-based anti-HIV-1 gene therapy holds great promise to eradicate HIV-1 or to provide long-term remission through a continuous supply of anti-HIV-1 gene-modified cells without ongoing antiretroviral therapy. However, achieving sufficient engraftment levels of anti-HIV gene-modified HSPC to provide therapeutic efficacy has been a major limitation. Here, we report an in vivo selection strategy for anti-HIV-1 gene-modified HSPC by introducing 6-thioguanine (6TG) chemoresistance through knocking down hypoxanthine-guanine phosphoribosyl transferase (HPRT) expression using RNA interference (RNAi). We developed a lentiviral vector capable of co-expressing short hairpin RNA (shRNA) against HPRT alongside two anti-HIV-1 genes: shRNA targeting HIV-1 co-receptor CCR5 and a membrane-anchored HIV-1 fusion inhibitor, C46, for efficient in vivo selection of anti-HIV-1 gene-modified human HSPC. 6TG-mediated preconditioning and in vivo selection significantly enhanced engraftment of HPRT-knockdown anti-HIV-1 gene-modified cells (>2-fold, p < 0.0001) in humanized bone marrow/liver/thymus (huBLT) mice. Viral load was significantly reduced (>1 log fold, p < 0.001) in 6TG-treated HIV-1-infected huBLT mice compared to 6TG-untreated mice. We demonstrated that 6TG-mediated preconditioning and in vivo selection considerably improved engraftment of HPRT-knockdown anti-HIV-1 gene-modified HSPC and repopulation of anti-HIV-1 gene-modified hematopoietic cells in huBLT mice, allowing for efficient HIV-1 inhibition.


Subject(s)
HIV-1 , Hematopoietic Stem Cell Transplantation , Humans , Mice , Animals , HIV-1/physiology , Hypoxanthine Phosphoribosyltransferase/genetics , Hypoxanthine Phosphoribosyltransferase/metabolism , Hematopoietic Stem Cells/metabolism , Bone Marrow/metabolism , Thioguanine/metabolism , Thioguanine/pharmacology , RNA, Small Interfering/genetics
16.
Int J Food Microbiol ; 410: 110485, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-37984214

ABSTRACT

This study aimed to explore the diversity of fifty-four Photobacterium strains isolated from muscle tissue of European plaice (Pleuronectes platessa) caught at different fishing seasons and stored 14-days under various conditions. Single phylogenetic markers (16S rRNA, gapA, gyrB and recA) and multilocus sequence analysis (MLSA) were employed to classify isolates at species level. Furthermore, intra- and interspecies variability in the phenotypic traits, maximum specific growth rate (µmax) and spoilage potential of the Photobacterium isolates were investigated. The isolates were classified into the P. iliopiscarium (53.7 %), P. phosphoreum (40.7 %) and P. piscicola (5.6 %) clades using MLSA. Two housekeeping genes, gyrB and recA, exhibited a consistent phylogenetic relationship with MLSA, suggesting that they might be used as individual phylogenetic markers for the Photobacterium genus. Intra- and interspecies variability in the expression of phenotypic characteristics and the production of trimethylamine (TMA), inosine (HxR), and hypoxanthine (Hx) were observed. A growth optimum temperature for P. iliopiscarium was approximately 20 °C, while those for P. phosphoreum and P. piscicola were closer to 15 °C. All isolates exhibited the highest growth density at 1.5 % NaCl, followed by 0.5 %, 3 %, and 6 % NaCl. However, P. phosphoreum demonstrated a higher NaCl tolerance than the other two species. Although, the high CO2 atmosphere significantly inhibited the growth of all strains at 4 °C, P. phosphoreum and P. piscicola showed higher growth density at 15 °C than P. iliopiscarium. Notably, all strains demonstrated H2S production. The µmax varied considerably within each species, highlighting the significance of strain-level variability. This study demonstrates that P. iliopiscarium and P. piscicola, alongside P. phosphoreum, are efficient TMA-, HxR-, Hx-, and H2S-producers, suggesting their potential contribution to synergistic off-odour generation and spoilage. Moreover, the Photobacterium isolates seem to exhibit diverse adaptations to their environments, resulting in fluctuated growth and spoilage potential. Understanding intra- and interspecies variability will facilitate modelling seafood spoilage in microbial risk assessments and developing targeted hurdles to prolong products' shelf-life.


Subject(s)
Flounder , Animals , Phylogeny , Flounder/genetics , Photobacterium , RNA, Ribosomal, 16S/genetics , Sodium Chloride , Seafood
17.
J Nutr Sci ; 12: e108, 2023.
Article in English | MEDLINE | ID: mdl-37964979

ABSTRACT

Although elevated blood levels of trimethylamine N-oxide (TMAO) have been associated with atherosclerosis development in humans, the role of its gut microbiota-derived precursor, TMA, in this process has not been yet deciphered. Taking this into account, and the fact that increased intestinal fatty acid absorption contributes to atherosclerosis onset and progression, this study aimed to evaluate the effect of TMA on fatty acid absorption in a cell line that mimics human enterocytes. Caco-2 cells were treated with TMA 250 µM for 24 h. Fatty acid absorption was assessed by measuring the apical-to-basolateral transport and the intracellular levels of BODIPY-C12, a fluorescently labelled fatty acid analogue. Gene expression of the main intestinal fatty acid transporters was evaluated by real-time quantitative reverse transcription PCR. Compared to control conditions, TMA increased, in a time-dependent manner and by 20-50 %, the apical-to-basolateral transport and intracellular levels of BODIPY-C12 fatty acid in Caco-2 cells. Fatty acid transport protein 4 (FATP4) and fatty acid translocase (FAT)/CD36 gene expression were not stimulated by TMA, suggesting that TMA-induced increase in fatty acid transport may be mediated by an increase in FAT/CD36 and/or FATP4 activity and/or fatty acid passive transport. This study demonstrated that TMA increases the intestinal absorption of fatty acids. Future studies are necessary to confirm if this may constitute a novel mechanism that partially explains the existing positive association between the consumption of a diet rich in TMA sources (e.g. red meat) and the increased risk of atherosclerotic diseases.


Subject(s)
Atherosclerosis , Boron Compounds , Fatty Acids , Methylamines , Humans , Fatty Acids/pharmacology , Fatty Acids/metabolism , Caco-2 Cells , Intestinal Absorption , CD36 Antigens , Cell Culture Techniques
18.
J Agric Food Chem ; 71(43): 16381-16390, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37908144

ABSTRACT

Considering the enormous demand for meat in people's daily lives, the development of efficient meat freshness assays is of great significance for safeguarding food safety. Here, a novel bimetallic nanozyme Fe@CeO2 with high peroxidase-like activity was first synthesized by embedding ferrocenecarboxylic acid (Fc) into hollow CeO2 nanospheres, which combined with xanthine oxidase (XOD) to develop a self-supplying H2O2-facilitated enzymatic cascade catalytic system of XOD + Fe@CeO2, yielding a meat freshness indicator hypoxanthine (Hx)-responsive colorimetric and photothermal dual-mode analytical platform for judging meat freshness upon the assistance of 3,3',5,5'-tetramethylbenzidine (TMB). Owing to the catalytic activity of XOD to convert Hx into H2O2, Fe@CeO2 rapidly dissociated it into •OH via a peroxidase activity-triggered Fenton-like reaction, emerging a typical enzymatic cascade catalytic reaction. As a result, the colorless TMB was oxidized to be the product of dark-blue oxTMB by •OH, with a chromogenic reaction-driven absorption enhancement at 652 nm, which endowed it with a significant photothermal effect under 660 nm laser irradiation. On this basis, an Hx concentration-dependent colorimetric and photothermal dual-mode signal cascade catalytic enhancement sensing platform was proposed by integrating with a Color Picker App-installed smartphone and a 660 nm laser-equipped handheld thermal imager, achieving the onsite quantitative, reliable, and visual detection of Hx in real meat samples for judging meat freshness with acceptable results. Notably, the colorimetric and photothermal dual-mode signal cascade catalytic enhancement improved not only the reliability but also the sensitivity of the assay, which provided new insights for efficient onsite visual monitoring of meat freshness to safeguard food safety.


Subject(s)
Colorimetry , Hydrogen Peroxide , Humans , Reproducibility of Results , Meat , Peroxidases , Hypoxanthines
19.
Exp Eye Res ; 237: 109689, 2023 12.
Article in English | MEDLINE | ID: mdl-37871883

ABSTRACT

This study aimed to identify the corneal metabolic biomarkers for moderate and high myopia in human. We enrolled 221 eyes from 221 subjects with myopia to perform the femtosecond laser small incision lenticule extraction (SMILE) surgery. Among these, 71 eyes of 71 subjects were enrolled in the low myopic group, 75 eyes of 75 subjects in the moderate myopic group and 75 eyes of 75 subjects in the high myopic group. The untargeted metabolomics analysis was performed to analyze the corneal tissues extracted during the SMILE surgery using an ultra-high-performance liquid chromatography (UHPLC) coupled to a quadrupole time-of-flight (Q-TOF) mass spectrometry (MS). The one-way analysis of variance (ANOVA) was used to identify the different metabolites among the three myopic groups, the orthogonal partial least-squares discriminant analysis (OPLS-DA) model was used to reveal the different metabolites between moderate myopia and low myopia, and between high myopia and low myopia. The Venn gram was used to find the overlapped metabolites of the three datasets of the different metabolites. The stepwise multiple linear regression analysis was used to determine the metabolic molecules associated with manifest refractive spherical equivalents (MRSE). The Receiver Operating Characteristics (ROC) analysis was performed to reveal the corneal biomarkers for moderate and high myopia. The hub biomarker was further selected by the networks among different metabolites created by the Cytoscape software. A total of 1594 metabolites were identified in myopic corneas. 321 metabolites were different among the three myopic groups, 106 metabolites were different between high myopic corneas and low myopic corneas, 104 metabolites were different between moderate myopic corneas and low myopic corneas, and 30 metabolic molecules overlapped among the three datasets. The multivariate linear regression analysis revealed the myopic degree was significantly influenced by the corneal levels of azelaic acid, arginine-proline (Arg-Pro), 1-stearoyl-2-myristoyl-sn-glycero-3-phosphocholine, and hypoxanthine. The ROC curve analysis showed that azelaic acid, Arg-Pro and hypoxanthine were effective in discriminating low myopia from moderate to high myopia with the area under the curve (AUC) values as 0.982, 0.991 and 0.982 for azelaic acid, Arg-Pro and hypoxanthine respectively. The network analysis suggested that Arg-Pro had the maximum connections among these three biomarkers. Thus, this study identified azelaic acid, Arg-Pro and hypoxanthine as corneal biomarkers to discriminate low myopia from moderate to high myopia, with Arg-Pro serving as the hub biomarker for moderate and high myopia.


Subject(s)
Cornea , Myopia , Humans , Visual Acuity , Cornea/surgery , Refraction, Ocular , Myopia/diagnosis , Myopia/surgery , Biomarkers , Hypoxanthines , Corneal Stroma/surgery , Lasers, Excimer
20.
Hepatol Int ; 17(6): 1378-1392, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37666952

ABSTRACT

BACKGROUND: Elevated bile acid levels have been associated with liver tumors in fatty liver. Ileal bile acid transporter inhibitors may inhibit bile acid absorption in the distal ileum and increase bile acid levels in the colon, potentially decreasing the serum and hepatic bile acid levels. This study aimed to investigate the impact of these factors on liver tumor. METHODS: C57BL/6J mice received a one-time intraperitoneal injection of 25-mg/kg diethylnitrosamine. They were fed a choline-deficient high-fat diet for 20 weeks starting from 8 weeks of age, with or without elobixibat (EA Pharma, Tokyo, Japan). RESULTS: Both groups showed liver fat accumulation and fibrosis, with no significant differences between the two groups. However, mice with elobixibat showed fewer liver tumors. The total serum bile acid levels, including free, tauro-conjugated, glyco-conjugated, and tauro-α/ß-muricholic acids in the liver, were noticeably reduced following elobixibat treatment. The proportion of gram-positive bacteria in feces was significantly lower in the group treated with elobixibat (5.4%) than in the group without elobixibat (33.7%). CONCLUSION: Elobixibat suppressed tumor growth by inhibiting bile acid reabsorption, and decreasing total bile acid and primary bile acid levels in the serum and liver. Additionally, the presence of bile acids in the colon may have led to a significant reduction in the proportion of gram-positive bacteria, potentially resulting in decreased secondary bile acid synthesis.


Subject(s)
Liver Neoplasms , Microbiota , Non-alcoholic Fatty Liver Disease , Mice , Animals , Bile Acids and Salts , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/pathology , Mice, Inbred C57BL , Liver/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...