Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Fish Physiol Biochem ; 46(6): 2157-2167, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32862281

ABSTRACT

This study aimed to evaluate hematological, biochemical, and gasometric parameters of tambaqui juveniles (Colossoma macropomum) exposed to hypoxia and subsequent recovery. Six animals were subjected to normoxia (basal) treatment with dissolved oxygen (DO) 6.27 ± 0.42 mg L-1. Water flow and aeration were reduced for 3 days (hypoxia), during which DO was 0.92 ± 0.37 mg L-1. Water flow and aeration were then reestablished with DO remaining similar to basal. The treatments were as follows: normoxia (basal); 24 h after initiating hypoxia (24H); 72 h after initiating hypoxia (72H); 24 h after reestablishing normoxia (24R); 48 h after reestablishing normoxia (48R); and 96 after reestablishing normoxia (96R). The highest glucose level was recorded at 24H (P < 0.05); the highest lactate level was at 72R; and the highest blood pH was at 24H and 72H (P < 0.05). The highest concentration of PvCO2 was at 24H (P < 0.05), while at 96R it was equivalent to basal (P > 0.05). The variable PvO2 was only higher than basal at 24R (P < 0.05). Juvenile C. macropomum managed to reestablish the main stress indicators (glucose and lactate) at 96R, while the other indicators varied during the study, with homeostatic physiology being reestablished during the recovery period.


Subject(s)
Characiformes , Stress, Physiological , Anaerobiosis , Animals , Blood Glucose/analysis , Characiformes/blood , Lactic Acid/blood , Oxygen/analysis , Water/analysis
2.
J Exp Bot ; 67(1): 301-13, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26494730

ABSTRACT

Mitochondrial uncoupling protein 1 (UCP1) decreases reactive oxygen species production under stress conditions by uncoupling the electrochemical gradient from ATP synthesis. This study combined transcriptome profiling with experimentally induced hypoxia to mechanistically dissect the impact of Arabidopsis thaliana UCP1 (AtUCP1) overexpression in tobacco. Transcriptomic analysis of AtUCP1-overexpressing (P07) and wild-type (WT) plants was carried out using RNA sequencing. Metabolite and carbohydrate profiling of hypoxia-treated plants was performed using (1)H-nuclear magnetic resonance spectroscopy and high-performance anion-exchange chromatography with pulsed amperometric detection. The transcriptome of P07 plants revealed a broad induction of stress-responsive genes that were not strictly related to the mitochondrial antioxidant machinery, suggesting that overexpression of AtUCP1 imposes a strong stress response within the cell. In addition, transcripts that mapped into carbon fixation and energy expenditure pathways were broadly altered. It was found that metabolite markers of hypoxic adaptation, such as alanine and tricarboxylic acid intermediates, accumulated in P07 plants under control conditions at similar rates to WT plants under hypoxia. These findings indicate that constitutive overexpression of AtUCP1 induces a hypoxic response. The metabolites that accumulated in P07 plants are believed to be important in signalling for an improvement in carbon assimilation and induction of a hypoxic response. Under these conditions, mitochondrial ATP production is less necessary and fermentative glycolysis becomes critical to meet cell energy demands. In this scenario, the more flexible energy metabolism along with an intrinsically activated hypoxic response make these plants better adapted to face several biotic and abiotic stresses.


Subject(s)
Arabidopsis/genetics , Gene Expression Regulation, Plant , Ion Channels/genetics , Mitochondrial Proteins/genetics , Nicotiana/physiology , Oxidative Stress , Arabidopsis/metabolism , Ion Channels/metabolism , Mitochondrial Proteins/metabolism , Plant Leaves/physiology , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Sequence Analysis, DNA , Nicotiana/genetics , Uncoupling Protein 1
SELECTION OF CITATIONS
SEARCH DETAIL