ABSTRACT
We develop a multicomponent lattice Boltzmann (LB) model for the two-dimensional Rayleigh-Taylor turbulence with a Shan-Chen pseudopotential implemented on GPUs. In the immiscible case, this method is able to accurately overcome the inherent numerical complexity caused by the complicated structure of the interface that appears in the fully developed turbulent regime. The accuracy of the LB model is tested both for early and late stages of instability. For the developed turbulent motion, we analyse the balance between different terms describing variations of the kinetic and potential energies. Then we analyse the role of the interface in the energy balance and also the effects of the vorticity induced by the interface in the energy dissipation. Statistical properties are compared for miscible and immiscible flows. Our results can also be considered as a first validation step to extend the application of LB model to three-dimensional immiscible Rayleigh-Taylor turbulence. This article is part of the theme issue 'Progress in mesoscale methods for fluid dynamics simulation'.
ABSTRACT
In this investigation, the transient electroosmotic flow of multi-layer immiscible viscoelastic fluids in a slit microchannel is studied. Through an appropriate combination of the momentum equation with the rheological model for Maxwell fluids, an hyperbolic partial differential equation is obtained and semi-analytically solved by using the Laplace transform method to describe the velocity field. In the solution process, different electrostatic conditions and electro-viscous stresses have to be considered in the liquid-liquid interfaces due to the transported fluids content buffer solutions based on symmetrical electrolytes. By adopting a dimensionless mathematical model for the governing and constitutive equations, certain dimensionless parameters that control the start-up of electroosmotic flow appear, as the viscosity ratios, dielectric permittivity ratios, the density ratios, the relaxation times, the electrokinetic parameters and the potential differences. In the results, it is shown that the velocity exhibits an oscillatory behavior in the transient regime as a consequence of the competition between the viscous and elastic forces; also, the flow field is affected by the electrostatic conditions at the liquid-liquid interfaces, producing steep velocity gradients, and finally, the time to reach the steady-state is strongly dependent on the relaxation times, viscosity ratios and the number of fluid layers.
ABSTRACT
In this work, a non-isothermal electroosmotic flow of two immiscible fluids within a uniform microcapillary is theoretically studied. It is considered that there is an annular layer of a non-Newtonian liquid, whose behavior follows the power-law model, adjacent to the inside wall of the capillary, which in turn surrounds an inner flow of a second conducting liquid that is driven by electroosmosis. The inner fluid flow exerts an interfacial force, dragging the annular fluid due to shear and Maxwell stresses at the interface between the two fluids. Because the Joule heating effect may be present in electroosmotic flow (EOF), temperature gradients can appear along the microcapillary, making the viscosity coefficients of both fluids and the electrical conductivity of the inner fluid temperature dependent. The above makes the variables of the flow field in both fluids, velocity, pressure, temperature and electric fields, coupled. An additional complexity of the mathematical model that describes the electroosmotic flow is the nonlinear character due to the rheological behavior of the surrounding fluid. Therefore, based on the lubrication theory approximation, the governing equations are nondimensionalized and simplified, and an asymptotic solution is determined using a regular perturbation technique by considering that the perturbation parameter is associated with changes in the viscosity by temperature effects. The principal results showed that the parameters that notably influence the flow field are the power-law index, an electrokinetic parameter (the ratio between the radius of the microchannel and the Debye length) and the competition between the consistency index of the non-Newtonian fluid and the viscosity of the conducting fluid. Additionally, the heat that is dissipated trough the external surface of the microchannel and the sensitivity of the viscosity to temperature changes play important roles, which modify the flow field.