Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 240
Filter
1.
J Gastrointest Oncol ; 15(4): 1746-1759, 2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39279982

ABSTRACT

Background: Lactate dehydrogenase A (LDHA) plays a crucial role in the final step of anaerobic glycolysis, converting L-lactate and NAD+ to pyruvate and nicotinamide adenine dinucleotide (NADH). Its high expression has been linked to tumorigenesis and patient survival in various human cancers. However, the full implications of LDHA's role and its correlation with clinicopathological features in pancreatic adenocarcinoma (PAAD) remain to be fully understood. This study was thus conducted to elucidate the specific functions of LDHA in PAAD, with the aim of providing more robust evidence for clinical diagnosis and treatment. Methods: In an extensive systems analysis, we searched through numerous databases, including The Cancer Genome Atlas (TCGA) and Oncomine. Our objective was to clarify the clinical implications and functional role of LDHA in PAAD. Bioinformatics was used to identify the biological function of LDHA expression and its correlation with tumor immune status. Results: Our analysis revealed that the LDHA gene is overexpressed in PAAD and that this upregulation was associated with a worse patient prognosis. Through gene set enrichment analysis, we found that LDHA's influence on PAAD is linked to signaling pathways involving Kirsten rat sarcoma viral oncogene homolog (K-Ras), transforming growth factor-ß (TGF-ß), and hypoxia inducible factor-1 (HIF-1). Mutation of K-Ras could upregulate its own expression and was positively correlated with LDHA expression. Moreover, our data demonstrated that LDHA expression was linked to immune infiltration and poor prognosis in PAAD, indicating its role in disease pathogenesis. Overexpression of LDHA may suppress tumor immunity, suggesting it as a potential target for the diagnosis and treatment of PAAD, thus providing new insights into managing this aggressive cancer. Conclusions: Overall, our results showed that LDHA as a prognostic biomarker could serve as a novel target for future PAAD immunotherapy.

2.
Int J Mol Sci ; 25(17)2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39273131

ABSTRACT

Juvenile localized and systemic scleroderma are rare autoimmune diseases which cause significant disability and morbidity in children. The mechanisms driving juvenile scleroderma remain unclear, necessitating further cellular and molecular level studies. The Visium CytAssist spatial transcriptomics (ST) platform, which preserves the spatial location of cells and simultaneously sequences the whole transcriptome, was employed to profile the histopathological slides from skin lesions of juvenile scleroderma patients. (1) Spatial domains were identified from ST data and exhibited strong concordance with the pathologist's annotations of anatomical structures. (2) The integration of paired ST data and single-cell RNA sequencing (scRNA-seq) from the same patients validated the comparable accuracy of the two platforms and facilitated the estimation of cell type composition in ST data. (3) The pathologist-annotated immune infiltrates, such as perivascular immune infiltrates, were clearly delineated by the ST analysis, underscoring the biological relevance of the findings. This is the first study utilizing spatial transcriptomics to investigate skin lesions in juvenile scleroderma patients. The validity of the ST data was corroborated by gene expression analyses and the pathologist's assessments. Integration with scRNA-seq data facilitated the cell type-level analysis and validation. Analyses of immune infiltrates through combined ST data and pathological review enhances our understanding of the pathogenesis of juvenile scleroderma.


Subject(s)
Gene Expression Profiling , Scleroderma, Systemic , Skin , Transcriptome , Humans , Child , Skin/pathology , Skin/metabolism , Pilot Projects , Scleroderma, Systemic/genetics , Scleroderma, Systemic/pathology , Scleroderma, Systemic/metabolism , Female , Male , Adolescent , Scleroderma, Localized/genetics , Scleroderma, Localized/pathology , Scleroderma, Localized/metabolism , Single-Cell Analysis , Child, Preschool , Sequence Analysis, RNA
3.
Int J Biol Macromol ; 272(Pt 2): 132797, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38848833

ABSTRACT

BACKGROUND: lipocalin 2 (LCN2) is a secreted glycoprotein that plays key roles in tumorigenesis and progression. Interestingly, LCN2 appears to have a contradictory function in developing lung adenocarcinoma (LUAD). Thus, we intend to explore the role of LCN2 in LUAD through bioinformatics and experimental validation. METHODS: LCN2 expression of LUAD was investigated in the TCGA, TIMER and HPA databases. The relationship between LCN2 and prognosis was investigated by KM plotter, TCGA and GEO databases. GO, KEGG and protein-protein interactions network analysis were conducted to investigate the potential mechanism of LCN2. The relevance of LCN2 to cancer-immune infiltrates was investigated in the TCGA and TIMER databases. Quantitative reverse transcription PCR, western blot and enzyme-linked immunosorbent assay were performed to identify the expression level of LCN2 in cells and serum samples. The CCK-8, wound healing and transwell assay were used to confirm the effect of LCN2 on cell proliferation, migration and invasion in LUAD. The receiver operating characteristic curve was utilized to assess the diagnostic efficiency of LCN2 further. RESULTS: LCN2 expression was significantly upregulated in LUAD (P < 0.05), and was correlated with the clinical stage, tumor size, lymph node metastasis and distant metastasis (P < 0.05). There was a high correlation between high LCN2 and worse prognosis in LUAD. Functional network analysis suggested that LCN2 was associated with multiple signal pathways in cancers, such as JAK-STAT, TNF, NF-κB, HIF-1 and PI3K-Akt signal pathways. In addition, the knockdown of LCN2 significantly inhibited the ability of cell proliferation, migration and invasion. Immune infiltration analysis indicated that LCN2 is associated with multiple immune cell infiltration. Notably, LCN2 demonstrated high diagnostic efficiency for LUAD (AUC = 0.818, P < 0.05), especially for stage III-IV patients could reach 0.895. CONCLUSIONS: LCN2 as an oncogenic glycoprotein promotes the cancer progression related to immune infiltrates, which might be a potential diagnostic and prognostic marker in LUAD.


Subject(s)
Adenocarcinoma of Lung , Biomarkers, Tumor , Cell Proliferation , Computational Biology , Gene Expression Regulation, Neoplastic , Lipocalin-2 , Lung Neoplasms , Lipocalin-2/genetics , Lipocalin-2/metabolism , Humans , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/diagnosis , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/metabolism , Computational Biology/methods , Prognosis , Biomarkers, Tumor/genetics , Lung Neoplasms/diagnosis , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Cell Proliferation/genetics , Male , Cell Movement/genetics , Female , Cell Line, Tumor , Middle Aged , Protein Interaction Maps/genetics , ROC Curve
4.
Sci Rep ; 14(1): 14051, 2024 06 18.
Article in English | MEDLINE | ID: mdl-38890507

ABSTRACT

Mitochondrial phosphoenolpyruvate carboxykinase (PCK2), a mitochondrial isoenzyme, supports the growth of cancer cells under glucose deficiency conditions in vitro. This study investigated the role and potential mechanism of PCK2 in the occurrence and development of Hepatocellular carcinoma (HCC). The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), and other databases distinguish the expression of PCK2 and verified by qRT-PCR and Western blotting. Kaplan-Meier was conducted to assess PCK2 survival in HCC. The potential biological function of PCK2 was verified by enrichment analysis and gene set enrichment analysis (GSEA). The correlation between PCK2 expression and immune invasion and checkpoint was found by utilizing Tumor Immune Estimation Resource (TIMER). Lastly, the effects of PCK2 on the proliferation and metastasis of hepatocellular carcinoma cells were evaluated by cell tests, and the expressions of Epithelial mesenchymal transformation (EMT) and apoptosis related proteins were detected. PCK2 is down-regulated in HCC, indicating a poor prognosis. PCK2 gene mutation accounted for 1.3% of HCC. Functional enrichment analysis indicated the potential of PCK2 as a metabolism-related therapeutic target. Subsequently, we identified several signaling pathways related to the biological function of PCK2. The involvement of PCK2 in immune regulation was verified and key immune checkpoints were predicted. Ultimately, after PCK2 knockdown, cell proliferation and migration were significantly increased, and N-cadherin and vimentin expression were increased. PCK2 has been implicated in immune regulation, proliferation, and metastasis of hepatocellular carcinoma, and is emerging as a novel predictive biomarker and metabolic-related clinical target.


Subject(s)
Carcinoma, Hepatocellular , Cell Proliferation , Gene Expression Regulation, Neoplastic , Liver Neoplasms , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/immunology , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Liver Neoplasms/immunology , Liver Neoplasms/mortality , Humans , Prognosis , Cell Line, Tumor , Phosphoenolpyruvate Carboxykinase (GTP)/genetics , Phosphoenolpyruvate Carboxykinase (GTP)/metabolism , Epithelial-Mesenchymal Transition/genetics , Mitochondria/metabolism , Mitochondria/genetics , Male , Female , Apoptosis , Cell Movement/genetics , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Middle Aged , Phosphoenolpyruvate Carboxykinase (ATP)/metabolism , Phosphoenolpyruvate Carboxykinase (ATP)/genetics
5.
Clin Exp Med ; 24(1): 92, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38693353

ABSTRACT

The role of RNA N6-methyladenosine (m6A) modification in immunity is being elucidated. This study aimed to explore the potential association between m6A regulators and the immune microenvironment in IgA nephropathy (IgAN). The expression profiles of 24 m6A regulators in 107 IgAN patients were obtained from the Gene Expression Omnibus (GEO) database. The least absolute shrinkage and selection operator (LASSO) regression and logistic regression analysis were utilized to construct a model for distinguishing IgAN from control samples. Based on the expression levels of m6A regulators, unsupervised clustering was used to identify m6A-induced molecular clusters in IgAN. Gene set enrichment analysis (GSEA) and immunocyte infiltration among different clusters were examined. The gene modules with the highest correlation for each of the three clusters were identified by weighted gene co-expression network analysis (WGCNA). A model containing 10 m6A regulators was developed using LASSO and logistic regression analyses. Three molecular clusters were determined using consensus clustering of 24 m6A regulators. A decrease in the expression level of YTHDF2 in IgAN samples was significantly negatively correlated with an increase in resting natural killer (NK) cell infiltration and was positively correlated with the abundance of M2 macrophage infiltration. The risk scores calculated by the nomogram were significantly higher for cluster-3, and the expression levels of m6A regulators in this cluster were generally low. Immunocyte infiltration and pathway enrichment results for cluster-3 differed significantly from those for the other two clusters. Finally, the expression of YTHDF2 was significantly decreased in IgAN based on immunohistochemical staining. This study demonstrated that m6A methylation regulators play a significant role in the regulation of the immune microenvironment in IgAN. Based on m6A regulator expression patterns, IgAN can be classified into multiple subtypes, which might provide additional insights into novel therapeutic methods for IgAN.


Subject(s)
Adenosine , Adenosine/analogs & derivatives , Glomerulonephritis, IGA , Glomerulonephritis, IGA/genetics , Glomerulonephritis, IGA/immunology , Glomerulonephritis, IGA/pathology , Humans , Adenosine/metabolism , Methylation , Gene Expression Profiling , Female , Gene Regulatory Networks , Male , Gene Expression Regulation , Adult , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , RNA-Binding Proteins/genetics , RNA Methylation
6.
Iran J Basic Med Sci ; 27(7): 813-824, 2024.
Article in English | MEDLINE | ID: mdl-38800011

ABSTRACT

Objectives: Cervical cancer (CC) is the most common gynecological malignant tumor and the fourth leading cause of cancer-related death in women. The progression of CC is significantly affected by autophagy. Our objective was to use bioinformatics analysis to explore the expression, prognostic significance, and immune infiltration of autophagy-related genes in CC. Materials and Methods: We identified a set of autophagy-related differentially expressed genes (ARDEGs) from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. ARDEGs were further validated by The Human Protein Atlas (HPA), GSE52903, and GSE39001 dataset. Hub genes were found by the STRING network and Cytoscape. We performed Gene Set Enrichment Analysis (GSEA), Gene ontology analysis (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, and immune infiltration analysis to further understand the functions of the hub genes. Kaplan-Meier (K-M) and receiver operating characteristic (ROC) were used to check the hub genes. Results: A total of 10 up-regulated (CXCR4, BAX, SPHK1, EIF2AK2, TBK1, TNFSF10, ITGB4, CDKN2A, IL24, and BIRC5) and 19 down-regulated (PINK1, ATG16L2, ATG4D, IKBKE, MLST8, MAPK3, ERBB2, ULK3, TP53INP2, MTMR14, BNIP3, FOS, CCL2, FAS, CAPNS1, HSPB8, PTK6, FKBP1B , and DNAJB1) ARDEGs were identified. The ARDEGs were enriched in cell growth, apoptosis, human papillomavirus infection, and cytokine-mediated. Then, we found that low expression of MAPK3 was associated with poor prognosis in CC patients and was significantly enriched in immune pathways. In addition, the expression of MAPK3 was significantly positively correlated with the infiltration levels of macrophages, B cells, mast cell activation, and cancer-associated fibroblasts. Furthermore, MAPK3 was positively correlated with LGALS9, and negatively correlated with CTLA4 and CD40. Conclusion: Our results show that MAPK3 can be used as a new prognostic biomarker to predict the prognosis of patients with CC.

7.
Comput Biol Med ; 176: 108562, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38728993

ABSTRACT

We attempted to investigate the role of HOXB7 in tumor progression and evolution by means of an extensive computer screening analysis of various cancer types. We performed univariate Cox regression and Kaplan-Meier survival analyses to assess the impact of HOXB7 on overall survival (OS), disease-specific survival (DSS), and progression-free interval (PFI) in different types of cancer. Furthermore, we examined the relationship between HOXB7 and several clinical features: tumor microenvironment, immune regulatory genes, immune checkpoints, tumor mutational burden (TMB), and microsatellite instability (MSI). We performed gene set enrichment analysis to gain deeper insights into the potential molecular mechanisms of HOXB7, and validated our findings through functional assays in cells, including methyl thiazolyl tetrazolium cytotoxicity and Transwell invasion assays. HOXB7 expression was associated with different clinical characteristics in numerous malignancies. Higher HOXB7 expression was associated with worse OS, DSS, and PFI in some cancer types. In particular, HOXB7 expression was favorably associated with immune cell infiltration, immune regulatory genes, immunological checkpoints, TMB, and MSI in malignancies. Furthermore, we identified a strong link between copper death-associated gene expression and HOXB7 expression. According to the findings of this study, HOXB7 might serve as an appealing focus for tumor diagnosis and immunotherapy and a prospective indicator of prognosis.


Subject(s)
Biomarkers, Tumor , Homeodomain Proteins , Neoplasms , Humans , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Neoplasms/genetics , Neoplasms/metabolism , Prognosis , Cell Line, Tumor , Gene Expression Regulation, Neoplastic
8.
Heliyon ; 10(7): e28794, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38586390

ABSTRACT

Background: Cell Cycle-Associated Protein 1 (CAPRIN1) play an important role in cell proliferation, oxidative stress, and inflammatory response. Nonetheless, its role in tumor immunity and ferroptosis is largely unknown in gastrointestinal cancer patients. Methods: Through comprehensive bioinformatics, we investigate CAPRIN1 expression patterns and its role in diagnosis, functional signaling pathways, tumor immune infiltration and ferroptosis of different gastrointestinal cancer subtypes. Besides, immunohistochemistry (IHC) and immune blot were used to validate our esophagus cancer clinical data. The ferroptotic features of CAPRIN1 in vitro were assessed through knockdown assays in esophagus cancer cells. Results: CAPRIN1 expression was significantly upregulated, correlated with poor prognosis, and served as an independent risk factor for most gastrointestinal cancer. Moreover, CAPRIN1 overexpression positively correlated with gene markers of most infiltrating immune cells, and immune checkpoints. CAPRIN1 knockdown significantly decreased the protein level of major histocompatibility complex class I molecules. We also identified a link between CAPRIN1 and ferroptosis-related genes in gastrointestinal cancer. Knockdown of CAPRIN1 significantly increased the production of lipid reactive oxygen species and malondialdehyde. Inhibition of CAPRIN1 expression promoted ferroptotic cell death induced by RAS-selective lethal 3 and erastin in human esophagus cancer cells. Conclusion: Collectively, our results demonstrate that CAPRIN1 is aberrantly expressed in gastrointestinal cancer, is associated with poor prognosis, and could potentially influence immune infiltration and ferroptosis.

9.
Heliyon ; 10(8): e29451, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38628755

ABSTRACT

The RNA modification 5-methylcytosine (m5C) is widespread across various RNA types, significantly impacting RNA stability and translational efficiency. Accumulating evidence highlights its significant role within the tumorigenesis and progression of multiple malignancies. Nevertheless, the specific process through m5C is implicated in Glioblastoma (GBM) remains unclear. We conducted acomprehensive analysis of m5C expression distribution in single-cell GBM data. Our findings revealed elevated m5C scores in GBM single-cell data compared to the normal group. Additionally, multiple tumors exhibited significantly higher m5C scores than the normal group. Moreover, there was a positive correlation observed between the m5C score and inflammation score. m5C regulatory factor YBX1 exhibited a heightened expression in GBM, correlating closely with metastatic tendencies and an unfavorable prognosis across various cancer types. YBX1 has different biological functions in myeloid cells 1 and myeloid cells 2. YBX1 may act as immunosuppressive regulator by inhibiting the NF-κB pathway and inflammatory response in myeloid cells 1. YBX1 is essential for immune infiltrates, which creates a highly immunosuppressive tumor microenvironment by TNF signaling pathway in myeloid cells 2. YBX1+ neoplastic cells promote cell proliferation by NF-κB pathway. APOE mediates the interaction of YBX1+ myeloid cells and neoplastic cells by NF-κB.

10.
Funct Integr Genomics ; 24(2): 63, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38517555

ABSTRACT

The TRIM family is associated with the membrane, and its involvement in the progression, growth, and development of various cancer types has been researched extensively. However, the role played by the TRIM5 gene within this family has yet to be explored to a great extent in terms of hepatocellular carcinoma (HCC). The data of patients relating to mRNA expression and the survival rate of individuals diagnosed with HCC were extracted from The Cancer Genome Atlas (TCGA) database. UALCAN was employed to examine the potential link between TRIM5 expression and clinicopathological characteristics. In addition, enrichment analysis of differentially expressed genes (DEGs) was conducted as a means of deciphering the function and mechanism of TRIM5 in HCC. The data in the TCGA and TIMER2.0 databases was utilized to explore the correlation between TRIM5 and immune infiltration in HCC. WGCNA was performed as a means of assessing TRIM5-related co-expressed genes. The "OncoPredict" R package was also used for investigating the association between TRIM5 and drug sensitivity. Finally, qRT-PCR, Western blotting (WB) and immunohistochemistry (IHC) were employed for exploring the differential expression of TRIM5 and its clinical relevance in HCC. According to the results that were obtained from the vitro experiments, mRNA and protein levels of TRIM5 demonstrated a significant upregulation in HCC tissues. It is notable that TRIM5 expression levels were found to have a strong association with the infiltration of diverse immune cells and displayed a positive correlation with several immune checkpoint inhibitors. The TRIM5 expression also displayed promising clinical prognostic value for HCC patients.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/diagnosis , Carcinoma, Hepatocellular/genetics , Liver Neoplasms/diagnosis , Liver Neoplasms/genetics , Gene Expression , RNA, Messenger , Biomarkers , Tripartite Motif Proteins/genetics , Antiviral Restriction Factors , Ubiquitin-Protein Ligases
11.
Am J Clin Exp Immunol ; 13(1): 26-34, 2024.
Article in English | MEDLINE | ID: mdl-38496356

ABSTRACT

NAA40 belongs to the N-terminal acetyltransferase (NATs) family, responsible for protein N-terminal modification, and it exerts crucial roles across various cancers. However, its impact on patient prognosis and immune infiltration in hepatocellular carcinoma (HCC) remains elusive. To address this, our study delved into the comprehensive analysis of NAA40 in the context of cancer. Our pan-cancer analysis unveiled elevated NAA40 expression in multiple tumor types, including BLCA, BRCA, CHOL, COAD, ESCA, HNSC, LIHC, LUAD, LUSC, STAD, and THCA. Additionally, through a comprehensive examination across various cancer types within TCGA, we discovered that high NAA40 gene expression correlated with poor prognosis in HCC, pointing toward its role in promoting oncogenesis. Further investigation illuminated the association of increased NAA40 expression with T stage, pathologic stage, tumor status, and histologic grade. Interestingly, we noted a significant inverse correlation between NAA40 expression and the infiltration levels of immune cells, such as DC cells, neutrophils, NK cells, and T cells, in liver cancer. This observation underpins the hypothesis that NAA40 influences HCC development by modulating immune cell infiltration. Functional enrichment analysis provided valuable insights into the pathways influenced by NAA40. Enriched pathways encompassed oxidative phosphorylation, xenobiotic metabolism, bile acid metabolism, fatty acid metabolism, G2M checkpoint, and E2F targets. These findings collectively position NAA40 as a potential biomarker for prognostic prediction and monitoring the effects of immunotherapy in HCC.

12.
Front Pharmacol ; 15: 1338929, 2024.
Article in English | MEDLINE | ID: mdl-38425648

ABSTRACT

LDL lipoprotein receptor-related protein 11 (LRP11) plays a role in several tumors. However, their roles in hepatocellular carcinoma remain unclear. The present study aimed to explore the expression profile and prognostic value of LRP11 in liver hepatocellular carcinoma (LIHC) patients using various cancer databases and bioinformatic tools. In bioinformatics analysis, The Cancer Genome Atlas datasets showed increased LRP11 expression in tumor tissues compared to that in non-tumor tissues in various cancers. Moreover, patients with high expression LRP11 correlated with poor prognosis and clinical features. The LRP11 expression positively correlated with the infiltration of immune cells such as macrophages, neutrophils, and myeloid-derived suppressor cells and a combination of high LRP11 expression and high immune infiltrates was associated with the worst survival in LIHC tumors. Our results also indicated that LRP11 expression was closely associated with immune-modulate function, such as antigen presentation. In DNA methylation profiling, hypomethylation of LRP11 is widely observed in tumors and has prognostic value in LIHC patients. Functional enrichment analysis revealed that LIHC-specific LRP11 interacting genes are involved in protein binding, intracellular processing, and G-protein-related signaling pathways. Analyses of drug sensitivity and immune checkpoint inhibitor predict a number of drugs that could potentially be used to target LRP11. In addition, in vitro experiments verified the promoting effect of LRP11 on the migration, invasion, and colony formation capacity of hepatocellular carcinoma cells. Collectively, our results aided a better understanding of the clinical significance of LRP11 in gene expression, functional interactions, and epigenetic regulation in LIHC and suggested that it may be a useful prognostic biomarker for LIHC patients.

13.
Heliyon ; 10(5): e27368, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38495206

ABSTRACT

Purpose: This study aimed to investigate the diagnostic and prognostic values of neuropilin-1 (NRP-1) in triple-negative breast cancer (TNBC) and analyze its immune function in the tumor microenvironment. Methods: Based on The Cancer Genome Atlas (TCGA), Gene Expression Omnibus, Genotype Tissue Expression, Immune Cell Abundance Identifier (ImmuCellAI), Reactome, and Genomics of Drug Sensitivity in Cancer databases, the cancer tissues from 50 patients with TNBC and corresponding adjacent noncancerous tissues from 10 patients (tissue microarrays were purchased from Shanghai Xinchao Biotechnology Co., Ltd.) were collected for validation. Bioinformatics combined with immunohistochemistry was used to analyze the relationship among NRP-1 expression, prognosis, tumor immune cell infiltration, immune genes, and drug resistance so as to investigate the role of NRP-1 in the development of TNBC. Results: A significant difference in NRP-1 gene expression was found between the cancerous and noncancerous tissues (p-value < 0.05); NRP-1 expression was high in carcinoma. No significant correlation was found between NRP-1 protein expression levels and each stage in the TCGA database. Prognostic expression survival analysis showed that the survival probability of patients with high NRP-1 expression was significantly lower than that of patients with low NRP-1 expression (p-value < 0.05), suggesting that the gene might be a pro-oncogene. The data from 50 clinical samples also confirmed that the NRP-1 expression was significantly higher in triple-negative breast cancer (TNBC) tissues than in adjacent noncancerous tissues. The NRP-1 expression significantly correlated with the tumor diameter and pathological grade (p-value < 0.05), but not with age, stage, and ki67 (p-value > 0.05). The Kaplan-Meier survival curves suggested that the median overall survival was significantly shorter in patients with high NRP-1 expression than in those with low NRP-1 expression (13.6 months vs 15.2 months, p-value < 0.05). The 300 genes most significantly positively associated with this gene were selected for Gene Ontology (including Biological Process, Molecular Function, and Cellular Component groups) and Kyoto Encyclopedia of Genes and Genomics enrichment analysis. The findings showed that NRP-1 was involved in immune regulation in TNBC. In addition, the NRP-1 expression in TNBC positively correlated with a variety of immune cells and checkpoints. Conclusion: NRP-1 can be used as a potential biomarker and therapeutic target in TNBC.

14.
Heliyon ; 10(2): e24464, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38298655

ABSTRACT

Glioma is typically characterized by a poor prognosis and is associated with a decline in the quality of life as the disease advances. However, the development of effective therapies for glioma has been inadequate. Caveolin-1 (CAV-1) is a membrane protein that plays a role in caveolae formation and interacts with numerous signaling proteins, compartmentalizing them in caveolae and frequently exerting direct control over their activity through binding to its scaffolding domain. Although CAV-1 is a vital regulator of tumour progression, its role in glioma remains unclear. Our findings indicated that the knockdown of CAV-1 significantly inhibits the proliferation and metastasis of glioma. Subsequent mechanistic investigations demonstrated that CAV-1 promotes proliferation and metastasis by activating the photoshatidylinositol 3-kinase/protein kinase B (PI3K/Akt) signaling pathway. Furthermore, we demonstrated that CAV-1 overexpression upregulates the expression of serpin peptidase inhibitor, class E, member 1 (SERPINE1, also known as PAI-1), which serves as a marker for the epithelial-mesenchymal transition (EMT) process. Further research showed that PAI-1 knockdown abolished the CAV-1 mediated activation of PI3K/Akt signaling pathway. In glioma tissues, CAV-1 expression exhibited a correlation with unfavorable prognosis and immune infiltration among glioma patients. In summary, our study provided evidence that CAV-1 activates the PI3K/Akt signaling pathway by upregulating PAI-1, thereby promoting the proliferation and metastasis of glioma through enhanced epithelial-mesenchymal transition (EMT) and angiogenesis, and CAV-1 is involved in the immune infiltration.

15.
J Surg Oncol ; 129(5): 885-892, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38196111

ABSTRACT

BACKGROUND AND OBJECTIVES: Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer with poor response to systemic therapies, including immunotherapy. Given the immunotherapeutic potential of natural killer (NK) cells, we evaluated intratumoral NK cell infiltrates along with cytotoxic T cells in PDAC to determine their association with patient outcomes. METHODS: We analyzed tumors from 93 PDAC patients treated from 2012 to 2020. Predictor variables included tumor-infiltrating lymphocytes (TILs), T-cell markers (CD3, CD8, CD45RO), NK marker (NKp46), and NK inhibitory marker (major histocompatibility complex class I [MHC-I]) by immunohistochemistry. Primary outcome variables were recurrence-free survival (RFS) and overall survival (OS). RESULTS: Mean TILs, CD3, and NKp46 scores were 1.3 ± 0.63, 20.6 ± 17.5, and 3.1 ± 3.9, respectively. Higher expression of CD3 and CD8 was associated with higher OS, whereas NK cell infiltration was not associated with either RFS or OS. There was a tight positive correlation between MHC-I expression and all T-cell markers, but not with NKp46. CONCLUSIONS: Overall NK cell infiltrates were low in PDAC and did not predict clinical outcomes, whereas T-cell infiltrates did. Further characterization of the immune infiltrate in PDAC, including inhibitory signals and suppressive cell types, may yield better biomarkers of prognosis and immune targeting in this refractory disease.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , T-Lymphocytes, Cytotoxic/metabolism , T-Lymphocytes, Cytotoxic/pathology , Pancreatic Neoplasms/drug therapy , Carcinoma, Pancreatic Ductal/drug therapy , Lymphocytes, Tumor-Infiltrating , Killer Cells, Natural , Prognosis , CD8-Positive T-Lymphocytes
16.
BMC Med Genomics ; 17(1): 1, 2024 01 02.
Article in English | MEDLINE | ID: mdl-38169378

ABSTRACT

BACKGROUND: CC chemokine receptors are responsible for regulating the tumor microenvironment (TME) and participating in carcinogenesis and tumor advancement. However, no functional study has investigated CC chemokine receptors in gastric cancer (GC) prognosis, risk, immunotherapy, or other treatments. METHODS: We conducted a bioinformatics analysis on GC data using online databases, including the Human Protein Atlas (HPA), Kaplan-Meier (KM) plotter, GeneMANIA, MethSurv, the University of ALabama at Birmingham CANcer (UALCAN) Data Analysis Portal, Gene Set Cancer Analysis (GSCA), cBioportal, and Tumor IMmune Estimation Resource (TIMER). RESULTS: We noted that CC chemokine receptor expression correlated with survival in GC. CC chemokine receptor expression was also strongly linked to different tumor-infiltrating immune cells. Additionally, CC chemokine receptors were found to be broadly drug-resistant in GC. CONCLUSION: Our study identifed CC chemokine receptor expression helped in predicting the prognosis of patients diagnosed with GC. The expression level of the CC chemokine receptors was also positively related to multiple tumor-infiltrating lymphocytes (TILs). These findings provide evidence to monitor patients with GC using CC chemokine receptors, which can be used as an effective biomarker for predicting the disease prognosis and be regarded as a therapeutic target for modulating the tumor immune microenvironment.


Subject(s)
Stomach Neoplasms , Humans , Stomach Neoplasms/genetics , Prognosis , Carcinogenesis , Receptors, CCR , Tumor Microenvironment
17.
Eur J Med Res ; 29(1): 19, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38173044

ABSTRACT

BACKGROUND: The biological behavior of low-grade glioma (LGG) is significantly affected by N6-methyladenosine (m6A) methylation, an essential epigenetic alteration. Therefore, it is crucial to create a prognostic model for LGG by utilizing genes that regulate m6A methylation. METHODS: Using TCGA and GTEx databases. We examined m6A modulator levels in LGG and normal tissues, and investigated PD-L1 and PD-1 expression, immune scores, immune cell infiltration, tumor immune microenvironment (TIME) and potential underlying mechanisms in different LGG clusters. We also performed immunohistochemistry and RT-qPCR to identify essential m6A adjustment factor. RESULTS: The results showed that m6A regulatory element expression was significantly increased in LGG tissues and was significantly associated with TMIE. A substantial increase in PD-L1 and PD-1 levels in LGG tissues and high-risk cohorts was observed. PD-L1 expression was positively correlated with FTO, ZCCHC4, and HNRNPD, whereas PD-1 expression was negatively correlated with FTO, ZC3H7B, and HNRNPD. The prognostic signature created using regulators of m6A RNA methylation was shown to be strongly associated with the overall survival of LGG patients, and FTO and ZCCHC4 were confirmed as independent prognostic markers by clinical samples. Furthermore, the results revealed different TIME characteristics between the two groups of patients, indicating disrupted signaling pathways associated with LGG. CONCLUSION: Our results present that the m6A regulators play vital role in regulating PD-L1/PD-1 expression and the infiltration of immune cells, thereby exerting a sizable impact on the TIME of LGG. Therefore, m6A regulators have precise predictive value in the prognosis of LGG.


Subject(s)
B7-H1 Antigen , Glioma , Humans , Prognosis , Programmed Cell Death 1 Receptor , Tumor Microenvironment/genetics , RNA Methylation , Glioma/genetics , Biomarkers, Tumor/genetics , Alpha-Ketoglutarate-Dependent Dioxygenase FTO
18.
Open Med (Wars) ; 19(1): 20230886, 2024.
Article in English | MEDLINE | ID: mdl-38221934

ABSTRACT

Background: Dedifferentiated liposarcoma (DDL), a member of malignant mesenchymal tumors, has a high local recurrence rate and poor prognosis. Pyroptosis, a newly discovered programmed cell death, is tightly connected with the progression and outcome of tumor. Objective: The aim of this study was to explore the role of pyroptosis in DDL. Methods: We obtained the RNA sequencing data from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression databases to identify different pyroptosis-related genes (PRGs) expression pattern. An unsupervised method for clustering based on PRGs was performed. Based on the result of cluster analysis, we researched clinical outcomes and immune microenvironment between clusters. The differentially expressed genes (DEGs) between the two clusters were used to develop a prognosis model by the LASSO Cox regression method, followed by the performance of functional enrichment analysis and single-sample gene set enrichment analysis. All of the above results were validated in the Gene Expression Omnibus (GEO) dataset. Results: Forty-one differentially expressed PRGs were found between tumor and normal tissues. A consensus clustering analysis based on PRGs was conducted and classified DDL patients into two clusters. Cluster 2 showed a better outcome, higher immune scores, higher immune cells abundances, and higher expression levels in numerous immune checkpoints. DEGs between clusters were identified. A total of 5 gene signatures was built based on the DEGs and divided all DDL patients of the TCGA cohort into low-risk and high-risk groups. The low-risk group indicates greater inflammatory cell infiltration and better outcome. For external validation, the survival difference and immune landscape between the two risk groups of the GEO cohort were also significant. Receiver operating characteristic curves implied that the risk model could exert its function as an outstanding predictor in predicting DDL patients' prognoses. Conclusion: Our findings revealed the clinical implication and key role in tumor immunity of PRGs in DDL. The risk model is a promising predictive tool that could provide a fundamental basis for future studies and individualized immunotherapy.

19.
J Gene Med ; 26(1): e3592, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37726168

ABSTRACT

BACKGROUND: Plakophilin 2 gene (PKP2) has been revealed to be differentially expressed in various cancer types and is correlated with prognosis. However, the role of PKP2 in colon adenocarcinoma remains indistinct. METHODS: Differences in transcriptional expression of PKP2 between colon adenocarcinoma tissues and normal adjacent tissues were acquired from the publicly available dataset-the Cancer Genome Atlas. A receiver operating curve (ROC) was constructed to differentiate colon adenocarcinoma tissues from adjacent normal tissues. The Kaplan-Meier plot method was performed to evaluate the effect of PKP2 on survival. The correlation between mRNA expression of PKP2 and immune infiltrating was determined by the Tumor Immune Estimation Resource and Tumor-Immune System Interaction databases. RESULTS: The expression of PKP2 in colon adenocarcinoma tissues was significantly downregulated compared with corresponding adjacent normal tissues. Decreased PKP2 mRNA expression was associated with lymph node metastases and advanced pathological stage. The ROC curve analysis indicated that with a cutoff value of 6.034, the sensitivity and specificity for PKP2 differentiating the colon adenocarcinoma tissues from the adjacent normal tissues were 90.2 and 66.5% respectively. Kaplan-Meier plot survival analysis revealed that colon adenocarcinoma patients with low-PKP2 had a worse prognosis than those with high-PKP2 (68.2 vs. 101.4 months, p = 0.028). Correlation analysis showed that mRNA expression of PKP2 was correlative with immune infiltrates. CONCLUSIONS: Downregulated PKP2 is significantly correlated with unfavorable immune infiltrating and survival in colon adenocarcinoma. This research indicates that PKP2 can be selected as a novel biomarker of potential immunotherapy targets and unfavorable prognosis in colon adenocarcinoma.


Subject(s)
Adenocarcinoma , Colonic Neoplasms , Humans , Adenocarcinoma/genetics , Colonic Neoplasms/diagnosis , Colonic Neoplasms/genetics , Immunotherapy , Plakophilins/genetics , RNA, Messenger/genetics
20.
J Cell Mol Med ; 28(3): e18088, 2024 02.
Article in English | MEDLINE | ID: mdl-38146591

ABSTRACT

Lysosomal dysfunction can drive carcinogenesis. Lysosomal-associated membrane protein 3 (LAMP3), is a member of the Lysosome Associated Membrane Proteins and is involved in the malignant phenotype such as tumour metastasis and drug resistance, while the mechanisms that regulate the malignant progression of tumour remain vague. Our study aims to provide a more systematic and comprehensive understanding of the role of LAMP3 in the progression of various cancers by various databases.We explored the role of LAMP3 in pan-cancer using The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) database. Multiple online web platforms and software were used for data analysis, including HPA, TIMER, TISIDB, GEPIA, UALCAN, Kaplan-Meier plotter, DAVID and TIGER. The immunohistochemistry was used to quantify the LAMP3 and PD-L1 expression levels in cancer.High LAMP3 expression was found in most cancers and differentially expressed across molecular and immune subtypes. The expression of LAMP3 was involved in the immune-associated processes of Antigen processing and presentation, Th17 cell differentiation, Th1 and Th2 cell differentiation, and the immune-associated pathways of T cell receptor and B cell receptor signalling pathways in most cancers. It also correlated with genetic markers of immunomodulators in various cancers. LAMP3 and PD-L1 expression in BRCA and HNSC tissues was higher than that in corresponding adjacent normal tissues by immunohistochemistry. There is a significant correlation between the expression of LAMP3 and PD-L1.Our study elucidates that LAMP3 has different expression patterns and genetic alteration patterns in different tumours. It is a potential biomarker for immune-related cancer diagnosis, prognosis and efficacy prediction.


Subject(s)
B7-H1 Antigen , Neoplasms , Humans , Lysosomal-Associated Membrane Protein 3 , Prognosis , Lysosomal Membrane Proteins
SELECTION OF CITATIONS
SEARCH DETAIL