Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 173
Filter
1.
Appl Microbiol Biotechnol ; 108(1): 456, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39222096

ABSTRACT

The diagnosis of mycobacterial infections, including both the Mycobacterium tuberculosis complex (MTBC) and non-tuberculous mycobacteria (NTM), poses a significant global medical challenge. This study proposes a novel approach using immunochromatographic (IC) strip tests for the simultaneous detection of MTBC and NTM. Traditional methods for identifying mycobacteria, such as culture techniques, are hindered by delays in distinguishing between MTBC and NTM, which can affect patient care and disease control. Molecular methods, while sensitive, are resource-intensive and unable to differentiate between live and dead bacteria. In this research, we developed unique monoclonal antibodies (mAbs) against Ag85B, a mycobacterial secretory protein, and successfully implemented IC strip tests named 8B and 9B. These strips demonstrated high concordance rates with conventional methods for detecting MTBC, with positivity rates of 93.9% and 85.9%, respectively. For NTM detection, the IC strip tests achieved a 63.2% detection rate compared to culture methods, considering variations in growth rates among different NTM species. Furthermore, this study highlights a significant finding regarding the potential of MPT64 and Ag85B proteins as markers for MTBC detection. In conclusion, our breakthrough method enables rapid and accurate detection of both MTBC and NTM bacteria within the BACTEC MGIT system. This approach represents a valuable tool in clinical settings for distinguishing between MTBC and NTM infections, thereby enhancing the management and control of mycobacterial diseases. KEY POINTS: • Panel of mAbs for differentiating MTB versus NTM • IC strips for diagnosing MTBC and NTM after the BACTEC MGIT • Combined detection of MTP64 and Ag85B enhances diagnostic accuracy.


Subject(s)
Antibodies, Monoclonal , Antigens, Bacterial , Bacterial Proteins , Mycobacterium tuberculosis , Nontuberculous Mycobacteria , Tuberculosis , Mycobacterium tuberculosis/growth & development , Mycobacterium tuberculosis/isolation & purification , Mycobacterium tuberculosis/genetics , Antibodies, Monoclonal/immunology , Humans , Nontuberculous Mycobacteria/isolation & purification , Nontuberculous Mycobacteria/classification , Nontuberculous Mycobacteria/growth & development , Antigens, Bacterial/analysis , Antigens, Bacterial/immunology , Tuberculosis/diagnosis , Tuberculosis/microbiology , Bacterial Proteins/genetics , Chromatography, Affinity/methods , Sensitivity and Specificity , Mycobacterium Infections, Nontuberculous/diagnosis , Mycobacterium Infections, Nontuberculous/microbiology , Acyltransferases , Antibodies, Bacterial/immunology
2.
Animals (Basel) ; 14(16)2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39199843

ABSTRACT

The prevalence and impact of Getah virus (GETV) are significant concerns in China. GETV can infect a wide range of animals, including horses, pigs, sheep, cattle, birds, and humans, resulting in substantial losses in the livestock and agricultural industries. GETV infection can cause the development of ulcers and inflammation in the mouth and gums of horses, which result in pain and discomfort and lead to symptoms such as reduced appetite, drooling, and difficulty chewing. As a result, there is a pressing need for efficient and rapid disease diagnosis methods. However, the currently available diagnostic methods have limitations in terms of operational time, equipment, and the experience of the individuals using them. In this study, a rapid, specific, and sensitive detection method was developed using a colloidal gold-based immunochromatographic strip (ICS) for the detection of antibodies against GETV in horses. To prepare the ICS, the antigen domain of the E2 glycoprotein of GETV was expressed using the Escherichia coli expression system after analysis with DNAstar v7.1 software. The nitrocellulose membrane was coated with rE2 protein or SPA to form the test line and control line, respectively. After optimizing the reaction conditions, the sensitivity, specificity, and repeatability of the strip were verified. The results showed that the test strip had a detection limit of up to 1:320 dilutions for GETV-positive serum, with no cross-reactivity observed with other equine-susceptible pathogens such as equine arteritis virus (EAV), equine herpesvirus-1 (EHV-I), equine infectious anemia virus (EIAV), equine influenza virus (EIV), African horse sickness virus (AHSV), and Japanese encephalitis virus (JEV). Furthermore, the ICS exhibited a concordance rate of 94.0% when testing 182 clinical serum samples compared to the virus neutralization test. Overall, this ICS diagnosis method will be an effective tool for the rapid detection of GETV in the field.

3.
Foods ; 13(16)2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39200477

ABSTRACT

Lomefloxacin (LOM), an antibiotic crucial for preventing various animal diseases in animal husbandry, can pose serious health risks when found in excessive amounts in meat products. The development of highly specific and sensitive colloidal gold immunochromatographic test strips is essential for the accurate detection of this class of antibiotics. Our study utilized a monoclonal antibody (mAb) assay and immunochromatographic strips to detect lomefloxacin residues in meat products. The results showed minimal cross-reactivity with other structural analogs, with a maximum half inhibitory concentration (IC50) of 0.93 ng/mL and a linear range of 0.38 to 2.3 ng/mL for the indirect competitive enzyme-linked immunosorbent assay (ic-ELISA). The recovery of LOM was 80% to 120%, with an average coefficient of variation below 5%. The immunochromatographic strip test results showed a visual detection limit of 2.5 ng/g, meeting the market requirements for the test. This study highlights the significance of specific and sensitive testing methods for detecting lomefloxacin, ensuring consumers' safety and health.

4.
Front Microbiol ; 15: 1418959, 2024.
Article in English | MEDLINE | ID: mdl-38962124

ABSTRACT

In recent years, porcine diarrhea-associated viruses have caused significant economic losses globally. These viruses present similar clinical symptoms, such as watery diarrhea, dehydration, and vomiting. Co-infections with porcine epidemic diarrhea virus (PEDV) and transmissible gastroenteritis virus (TGEV) are common. For the rapid and on-site preliminary diagnosis on the pig farms, this study aimed to develop a colloidal gold immunochromatography assay (GICA) strip for the detection of PEDV and TGEV simultaneously. The GICA kit showed that there was no cross-reactivity with the other five common porcine viruses. With visual observation, the lower limits were approximately 104 TCID50/mL and 104 TCID50/mL for PEDV and TGEV, respectively. The GICA strip could be stored at 4°C or 25°C for 12 months without affecting its efficacy. To validate the GICA strip, 121 clinical samples were tested. The positive rates of PEDV and TGEV were 42.9 and 9.9%, respectively, and the co-infection rate of the two viruses was 5.8% based on the duplex GICA strip. Thus, the established GICA strip is a rapid, specific, and stable tool for on-site preliminary diagnosis of PEDV- and TGEV-associated diarrhea.

5.
Heliyon ; 10(12): e32784, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38975074

ABSTRACT

Early diagnosis of HIV-1 is crucial to minimize transmission, morbidity, and mortality, particularly for neonates with developing immune systems. This study aimed to develop and evaluate a simplified, high-sensitivity assay for early HIV-1 detection before seroconversion. The assay utilizes reverse-transcription-polymerase chain reaction (RT-PCR) to amplify the HIV-1 RNA protease gene. Digoxigenin (dig)-labeled forward, and biotin-labeled universal reverse primers are used, generating digoxigenin-amplicon-biotin (DAB) products. These products are detected using a lateral flow assay (LFA) containing a conjugated pad with colloidal gold-labeled 6-histidine tag-fused maltose-binding protein-monomeric streptavidin (6HISMBP-mSA-CGC). Anti-dig monoclonal antibody (mAb) and biotinylated-BSA are immobilized in the test and control line zones, respectively. Five plasma samples with known viral load (VL) were used to simulate the efficacy of early HIV-1 detection. RNA extracted from these samples was amplified by RT-PCR using the labeled primers, and DAB products were examined on agarose gel electrophoresis and LFA. RT-PCR from diluted clinical samples yielded visible DNA bands in agarose gel electrophoresis, consistent with positive LFA results. Conversely, negative samples only displayed the control line on LFA. This assay exhibited a limit of detection (LOD) of 82.29 RNA copies/mL, comparable to other nucleic acid amplification tests (NAATs). This novel technique provides a highly sensitive assay for early HIV-1 diagnosis, even with low VL, making it suitable for resource-limited settings.

6.
Food Chem ; 459: 140417, 2024 Nov 30.
Article in English | MEDLINE | ID: mdl-39003856

ABSTRACT

Bupirimate (BPM) is a high-efficiency and low-toxicity fungicide used to combat powdery mildew in crops. To mitigate potential health risks to consumers resulting from improper BPM usage, we prepared a monoclonal antibody against BPM based on novel hapten synthesis, which has high sensitivity and strong specificity, and then successfully designed a colloidal gold-based immunochromatographic (ICG) strip. The newly designed ICG strip was then employed for detecting BPM residues in peach, orange, and carrot. The results show that for the peach, orange, and carrot samples, the calculated detection limits of the ICG strip are 9.36, 0.79, and 0.57 ng/g, respectively, and that it is resistant to the matrix effect and meets the maximum residue limit requirements of European Commission for BPM. Therefore, this developed ICG strip is expected to enable swift detection of BPM residues on the spot.


Subject(s)
Chromatography, Affinity , Citrus sinensis , Daucus carota , Food Contamination , Pesticide Residues , Prunus persica , Food Contamination/analysis , Daucus carota/chemistry , Prunus persica/chemistry , Chromatography, Affinity/methods , Chromatography, Affinity/instrumentation , Citrus sinensis/chemistry , Pesticide Residues/analysis , Fungicides, Industrial/analysis , Antibodies, Monoclonal/analysis , Limit of Detection
7.
BMC Vet Res ; 20(1): 182, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720329

ABSTRACT

BACKGROUND: Porcine cysticercosis, a serious zoonotic parasitic disease, is caused by the larvae of Taenia solium and has been acknowledged by the World Organization for Animal Health. The current detection methods of Cysticercus cellulosae cannot meet the needs of large-scale and rapid detection in the field. We hypothesized that the immunofluorescence chromatography test strip (ICS) for detecting Cysticercus cellulosae, according to optimization of a series of reaction systems was conducted, and sensitivity, specificity, and stability testing, and was finally compared with ELISA. This method utilizes Eu3+-labeled time-resolved fluorescent microspheres (TRFM) coupled with TSOL18 antigen to detect TSOL18 antibodies in infected pig sera. RESULTS: ICS and autopsy have highly consistent diagnostic results (n = 133), as determined by Cohen's κ analysis (κ = 0.925). And the results showed that the proposed ICS are high sensitivity (0.9459) with specificity (0.9792). The ICS was unable to detect positive samples of other parasites. It can be stored for at least six months at 4℃. CONCLUSIONS: In summary, we established a TRFM-ICS method with higher sensitivity and specificity than indirect ELISA. Results obtained from serum samples can be read within 10 min, indicating a rapid, user-friendly test suitable for large-scale field detection.


Subject(s)
Antibodies, Helminth , Antigens, Helminth , Cysticercosis , Enzyme-Linked Immunosorbent Assay , Fluorescent Antibody Technique , Sensitivity and Specificity , Swine Diseases , Animals , Swine , Swine Diseases/diagnosis , Swine Diseases/parasitology , Swine Diseases/blood , Cysticercosis/veterinary , Cysticercosis/diagnosis , Antibodies, Helminth/blood , Antigens, Helminth/blood , Antigens, Helminth/immunology , Fluorescent Antibody Technique/veterinary , Fluorescent Antibody Technique/methods , Enzyme-Linked Immunosorbent Assay/veterinary , Enzyme-Linked Immunosorbent Assay/methods , Cysticercus/immunology , Taenia solium/immunology
8.
Anal Biochem ; 692: 115575, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38796117

ABSTRACT

This study demonstrates, for the first time, the proof-of-concept of a novel immunosensor, a touchpad-based immunochromatographic strip, that non-invasively extracts and detects skin surface proteins. The strip was composed of a nitrocellulose membrane at the center, where a spot of anti-human IgG capture antibody was physically adsorbed. The capture antibody spot was covered with a glass fiber membrane impregnated with phosphate-buffered saline (PBS) to extract skin surface proteins, avoiding direct contact of the human skin with the capture antibodies. Skin surface IgG was detected in two steps: (1) touching the capture antibody via a glass fiber membrane containing PBS, and (2) dipping the strip into the Au-nanoparticle-labeled secondary antibody to visualize the existence of the captured skin surface IgG on the strip. We qualitatively demonstrated that using a very small amount of PBS while maintaining contact with the skin, skin surface proteins can be concentrated and detected, even with a relatively low-sensitivity immunochromatographic chip. This sensor is expected to be a potential biosensor for the non-invasive diagnosis of the integrity of human skin.


Subject(s)
Chromatography, Affinity , Skin , Humans , Skin/chemistry , Chromatography, Affinity/methods , Gold/chemistry , Membrane Proteins/analysis , Membrane Proteins/immunology , Immunoglobulin G/analysis , Immunoglobulin G/immunology , Metal Nanoparticles/chemistry , Collodion/chemistry , Biosensing Techniques/methods
9.
J Immunol Methods ; 530: 113695, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38797275

ABSTRACT

Japanese Encephalitis (JE) is a mosquito borne re-emerging viral zoonotic disease. Sero-conversion in swine occurs 2-3 weeks before human infection, thus swine act as a suitable sentinel for predicting JE outbreaks in humans. The present study was undertaken with the objective of developing immunochromatographic strip (ICS) assay to detect recent infection of Japanese Encephalitis virus (JEV) in swine population. The two formats of ICS assay were standardized. In the first format, gold nanoparticles (GNP) were conjugated with goat anti-pig IgM (50 µg/ml) followed by spotting of recombinant NS1 protein (1 mg/ml) of JEV on NCM as test line and protein G (1 mg/ml) as control line. In the format-II, GNP were conjugated with rNS1 protein (50 µg/ml) followed by spotting of Goat anti-pig IgM (1 mg/ml) as test line and IgG against rNS1 (1 mg/ml) as control line. To decrease the non- specific binding, blocking of serum and nitrocellulose membrane (NCM) was done using 5% SMP in PBS-T and 1% BSA, respectively. Best reaction conditions for the assay were observed when 10 µl of GNP conjugate and 50 µl of 1:10 SMP blocked sera was reacted on BSA blocked NCM followed by reaction time of 15 mins. Samples showing both test and control line were considered positive whereas samples showing only control line were considered negative. A total of 318 field swine sera samples were screened using indirect IgM ELISA and developed ICS assay. Relative diagnostic sensitivity and specificity of format-I was 81.25% and 93.0% whereas of format-II was 87.50% and 62.93%, respectively. Out of 318 samples tested, 32 were positive through IgM ELISA with sero-positivity of 10.06% while sero-positivity with format-I of ICS was 8.1%. Owing to optimal sensitivity and higher specificity of format-I, it was validated in three different labs and the kappa agreement ranged from 0.80 to 1, which signifies excellent repeatability of the developed assay to test field swine sera samples for detecting recent JEV infection.


Subject(s)
Antibodies, Viral , Encephalitis Virus, Japanese , Encephalitis, Japanese , Immunoglobulin M , Metal Nanoparticles , Swine Diseases , Animals , Encephalitis, Japanese/veterinary , Encephalitis, Japanese/diagnosis , Encephalitis, Japanese/immunology , Encephalitis, Japanese/virology , Encephalitis Virus, Japanese/immunology , Swine , Antibodies, Viral/blood , Antibodies, Viral/immunology , Immunoglobulin M/blood , Immunoglobulin M/immunology , Metal Nanoparticles/chemistry , Swine Diseases/diagnosis , Swine Diseases/virology , Swine Diseases/immunology , Swine Diseases/blood , Viral Nonstructural Proteins/immunology , Sensitivity and Specificity , Chromatography, Affinity/methods , Gold/chemistry , Reagent Strips , Reproducibility of Results , Immunoglobulin G/blood , Immunoglobulin G/immunology , Humans
10.
Microb Pathog ; 191: 106669, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38697231

ABSTRACT

African swine fever (ASF) is a lethal disease caused by ASF virus (ASFV), severely impacting the global swine industry. Though nuclear acid-based detection methods are reliable, they are laboratory-dependent. In this study, we developed a device-independent, user friendly and cost-effective quantum dots based immunochromatographic strip (QDs-ICS) with high specificity and sensitivity for the rapid and on-site detection of ASFV antigen. For the preparation of the QDs-ICS, we generated a monoclonal antibody (mAb) mAb-8G8 and polyclonal antibody (pAb) against ASFV-p72 protein. The pAb was labelled with QDs to be used as the detection probe and the mAb-8G8 was coated on the nitrocellulose membrane as the test line. Our results proved that the strip displayed no cross-reactivity with other swine viruses and detection limit of the QDs-ICS was down to 1 ng/mL for the ASFV-p72 protein with great reproducibility. The strip also exhibited high stability with a storage period up to 12 months under room temperature. Twenty blind samples and one hundred clinical samples were examined by the QDs-ICS, conventional PCR and real-time PCR method, respectively. Results showed that the agreement rate between the QDs-ICS and PCR method was 100%, and the agreement rate between the strip and real-time PCR was 94%. The novel QDs-ICS developed here would be an effective tool for on-site detection of ASFV.


Subject(s)
African Swine Fever Virus , African Swine Fever , Antibodies, Monoclonal , Antibodies, Viral , Antigens, Viral , Chromatography, Affinity , Quantum Dots , Sensitivity and Specificity , African Swine Fever Virus/isolation & purification , African Swine Fever Virus/immunology , African Swine Fever Virus/genetics , Animals , African Swine Fever/diagnosis , African Swine Fever/virology , African Swine Fever/immunology , Swine , Antibodies, Monoclonal/immunology , Antibodies, Viral/immunology , Chromatography, Affinity/methods , Antigens, Viral/analysis , Antigens, Viral/immunology , Reproducibility of Results , Reagent Strips
11.
Front Microbiol ; 15: 1399123, 2024.
Article in English | MEDLINE | ID: mdl-38765685

ABSTRACT

Introduction: Pseudorabies (PR) is a multi-animal comorbid disease caused by pseudorabies virus (PRV), which are naturally found in pigs. At the end of 2011, the emergence of PRV variant strains in many provinces in China had caused huge economic losses to pig farms. Rapid detection diagnosis of pigs infected with the PRV variant helps prevent outbreaks of PR. The immunochromatography test strip with colloidal gold nanoparticles is often used in clinical testing due to its low cost and high throughput. Methods: This study was designed to produce monoclonal antibodies targeting PRV through immunization of mice using the eukaryotic system to express the gE glycoprotein. Subsequently, paired monoclonal antibodies were screened based on their sensitivity and specificity for use in the preparation of test strips. Results and discussion: The strip prepared in this study was highly specific, only PRV was detected, and there was no cross-reactivity with glycoprotein gB, glycoprotein gC, glycoprotein gD, and glycoprotein gE of herpes simplex virus and varicellazoster virus, porcine epidemic diarrhea virus, Senecavirus A, classical swine fever virus, porcine reproductive and respiratory syndrome virus, and porcine parvovirus. Moreover, it demonstrated high sensitivity with a detection limit of 1.336 × 103 copies/µL (the number of viral genome copies per microliter); the coincidence rate with the RT-PCR detection method was 96.4%. The strip developed by our laboratory provides an effective method for monitoring PRV infection and controlling of PR vaccine quality.

12.
Poult Sci ; 103(6): 103648, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38574460

ABSTRACT

Avian infectious bronchitis virus (IBV) still causes serious economic losses in the poultry industry. Currently, there are multiple prevalent genotypes and serotypes of IBVs. It is imperative to develop a new diagnosis method that is fast, sensitive, specific, simple, and broad-spectrum. A monoclonal hybridoma cell, N2D5, against the IBV N protein was obtained after fusion of myeloma SP2/0 cells with spleen cells isolated from the immunized Balb/c mice. The N2D5 monoclonal antibody (mAb) and the previously prepared mouse polyclonal antibody against the IBV N protein were used to target IBV as a colloidal gold-mAb conjugate and a captured antibody, respectively, in order to develop an immunochromatographic strip. The optimal pH and minimum antibody concentration in the reaction system for colloidal gold-mAb N2D5 conjugation were pH 6.5 and 30 µg/mL, respectively. Common avian pathogens were tested to evaluate the specificity of the strip and no cross-reaction was observed. The sensitivity of the strip for detecting IBV was 10-1.4522 EID50/mL. The strip showed a broad-spectrum cross-reactive capacity for detecting IBV antigens, including multiple IBV genotypes in China and all of the seven serotypes of IBV that are currently prevalent in southern China. Additionally, the result can be observed within 2 min without any equipment. The throat and cloacal swab samples of chickens that were artificially infected with three IBV strains were tested using the developed strip and the qPCR method; the strip test demonstrated a high consistency in detecting IBV via qPCR gene detection. In conclusion, the immunochromatographic strip that was established is rapid, sensitive, specific, simple, practical, and broad-spectrum; additionally, it has the potential to serve as an on-site rapid detection method of IBV and can facilitate the surveillance and control of the disease, especially in resource-limited areas.


Subject(s)
Antibodies, Monoclonal , Chickens , Coronavirus Infections , Gold Colloid , Infectious bronchitis virus , Mice, Inbred BALB C , Poultry Diseases , Infectious bronchitis virus/isolation & purification , Infectious bronchitis virus/immunology , Animals , Gold Colloid/chemistry , Poultry Diseases/diagnosis , Poultry Diseases/virology , Coronavirus Infections/veterinary , Coronavirus Infections/diagnosis , Coronavirus Infections/virology , Antibodies, Monoclonal/immunology , Chromatography, Affinity/veterinary , Chromatography, Affinity/methods , Mice , Sensitivity and Specificity , Reagent Strips
13.
Food Microbiol ; 121: 104510, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38637074

ABSTRACT

Mycotoxins, as secondary metabolites produced by fungi, have been the focus of researchers in various countries and are considered to be one of the major risk factors in agricultural products. There is an urgent need for a rapid, simple and high-performance method to detect residues of harmful mycotoxins in agricultural foods. We have developed a gold nanoparticle-based multiplexed immunochromatographic strip biosensor that can simultaneously detect fifteen mycotoxins in cereal samples. With this optimized procedure, five representative mycotoxins, deoxynivalenol (DON), zearalenone (ZEN), T-2 toxin (T-2), tenuazonic acid (TEA) and alternariol (AOH) were detected in the range of 0.91-4.77, 0.04-0.56, 0.11-0.68, 0.12-1.02 and 0.09-0.75 ng/mL, respectively. The accuracy and stability of these measurements were demonstrated by analysis of spiked samples with recoveries of 91.8%-115.3% and coefficients of variation <8.7%. In addition, commercially available samples of real cereals were tested using the strips and showed good agreement with the results verified by LC-MS/MS. Therefore, Our assembled ICA strips can be used for the simultaneous detection of 5 mycotoxins and their analogs (15 mycotoxins in total) in grain samples, and the results were consistent between different types of cereal foods, this multiplexed immunochromatographic strip biosensor can be used as an effective tool for the primary screening of mycotoxin residues in agricultural products.


Subject(s)
Metal Nanoparticles , Mycotoxins , Mycotoxins/analysis , Gold/analysis , Gold/chemistry , Chromatography, Liquid , Food Contamination/analysis , Metal Nanoparticles/analysis , Metal Nanoparticles/chemistry , Tandem Mass Spectrometry , Edible Grain/microbiology
14.
J Hazard Mater ; 469: 134100, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38522202

ABSTRACT

Contamination of oilfield chemicals (OFCs) by benzo[a]pyrene (B[a]P) is increasingly becoming a severe environmental security issue. There is an urgent need to develop a rapid and accurate method for B[a]P detection in OFCs. In this study, B[a]P hapten was designed using computer aided molecular design. A high-affinity, specific, and matrix-insensitive monoclonal antibody (mAb) with IC50 values of 6.77 ng/mL was obtained. Based on this mAb, we developed a rapid gold nanoparticle-based immunochromatographic strip assay (GICA) with double T-line mode for on-site detection of B[a]P in OFCs samples. The GICA exhibited excellent detection performance in OFCs samples with strong acidity, strong alkalinity, and deep color. Under optimal conditions, the proposed method detected B[a]P in OFCs at 0.42-300 mg/kg, and limit of detection was 0.23-1.07 mg/kg. The recovery rate was 88-106% with a coefficient of variation of 1.46-6.35%. Confirmed by natural positive OFCs samples and high-performance liquid chromatography, this GICA is accurate and reliable, with great potential for rapid and cost-effective on-site detection.


Subject(s)
Gold , Metal Nanoparticles , Gold/chemistry , Benzo(a)pyrene , Cost-Benefit Analysis , Oil and Gas Fields , Metal Nanoparticles/chemistry , Chromatography, Affinity , Immunoassay/methods , Antibodies, Monoclonal , Limit of Detection
15.
Environ Pollut ; 348: 123776, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38492750

ABSTRACT

The International Agency for Research on Cancer (IARC) classifies PFOA as a Class 1 carcinogen. Here, a new naked-eye PFOA immunochromographic strip was developed to recognize PFOA in domestic water and real human samples within 10 min based on a novel custom designed anti-PFOA monoclonal antibody (mAb) 2A3, which was firstly an immune rapid detection method for PFOA has been proposed. Using computer simulation techniques such as quantum computing to assist in designing the structural formula of PFOA semi antigen, which hapten was firstly proposed. The half maximal inhibitory concentration of PFOA monoclonal antibody (mAb) 2A3 was 2.4 µg/mL. Using mAb 2A3, we developed an immunochromatographic strip (ICS) for detecting PFOA in real samples. The developed method generated results in 10 min, with visual detection limits of 20, 20, and 200 µg/mL and limit of detection of 50, 200, and 500 µg/mL for water, blood and urine samples, respectively. The established ICS and indirect competitive enzyme-linked immunosorbent assay were used to analyze the actual samples, and the results were confirmed by LC-MS/MS. Our study findings showed that the ICS and ic-ELISA can quickly detect PFOA in actual samples.


Subject(s)
Caprylates , Computing Methodologies , Fluorocarbons , Tandem Mass Spectrometry , Humans , Chromatography, Liquid , Computer Simulation , Quantum Theory , Antibodies, Monoclonal , Enzyme-Linked Immunosorbent Assay/methods , Limit of Detection
16.
Viruses ; 16(2)2024 02 06.
Article in English | MEDLINE | ID: mdl-38400034

ABSTRACT

Japanese encephalitis virus (JEV) causes acute encephalitis in humans and is of major public health concern in most Asian regions. Dogs are suitable sentinels for assessing the risk of JEV infection in humans. A neutralization test (NT) or an enzyme-linked immunosorbent assay (ELISA) is used for the serological detection of JEV in dogs; however, these tests have several limitations, and, thus, a more convenient and reliable alternative test is needed. In this study, a colloidal gold immunochromatographic strip (ICS), using a purified recombinant EDIII protein, was established for the serological survey of JEV infection in dogs. The results show that the ICSs could specifically detect JEV antibodies within 10 min without cross-reactions with antibodies against other canine viruses. The test strips could detect anti-JEV in serum with dilution up to 640 times, showing high sensitivity. The coincidence rate with the NT test was higher than 96.6%. Among 586 serum samples from dogs in Shanghai examined using the ICS test, 179 (29.98%) were found to be positive for JEV antibodies, and the high seropositivity of JEV in dogs in China was significantly correlated with the season and living environment. In summary, we developed an accurate and economical ICS for the rapid detection of anti-JEV in dog serum samples with great potential for the surveillance of JEV in dogs.


Subject(s)
Encephalitis Virus, Japanese , Encephalitis, Japanese , Dogs , Animals , Humans , Gold Colloid , China/epidemiology , Encephalitis, Japanese/diagnosis , Encephalitis, Japanese/veterinary , Encephalitis, Japanese/epidemiology , Enzyme-Linked Immunosorbent Assay/methods , Antibodies, Viral , Recombinant Proteins
17.
Biosensors (Basel) ; 13(11)2023 Oct 28.
Article in English | MEDLINE | ID: mdl-37998135

ABSTRACT

In order to facilitate monitoring of cannabidiol (CBD), we devised a gold immunochromatographic sensor based on a specific monoclonal antibody (mAb). To prepare the antigen, a novel hapten with CBD moiety and a linear carbon chain was employed. By utilizing hybridoma technology, a specific mAb was screened and identified that exhibited a 50% maximal inhibitory concentration against CBD ranging from 28.97 to 443.97 ng/mL. Extensive optimization led to the establishment of visual limits of detection for CBD, achieving a remarkable sensitivity of 8 µg/mL in the assay buffer. To showcase the accuracy and stability, an analysis of CBD-spiked wine, sparkling water, and sports drink was conducted. The recovery rates observed were as follows: 88.4-109.2% for wine, 89.9-107.8% for sparkling water, and 83.2-95.5% for sports drink. Furthermore, the coefficient of variation remained impressively low, less than 4.38% for wine, less than 2.07% for sparkling water, and less than 6.34% for sports drink. Importantly, the developed sensor exhibited no cross-reaction with tetrahydrocannabinol (THC). In conclusion, the proposed paper sensor, employing gold nanoparticles, offers a user-friendly and efficient approach for the precise, rapid, and dependable determination of CBD in products.


Subject(s)
Cannabidiol , Carbonated Water , Metal Nanoparticles , Gold/chemistry , Metal Nanoparticles/chemistry , Dronabinol , Antibodies, Monoclonal
18.
Anal Chim Acta ; 1280: 341842, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37858545

ABSTRACT

In this work, a portable multichannel detection instrument based on time-resolved fluorescence immunochromatographic test strip (TRFIS) was proposed for on-site detecting pesticide residues in vegetables. Its hardware consisted of a silicon photodiode and excitation light source array, a mainboard of the lower machine with STMicroelectronics 32 (STM32) and a linear stepping motor. While detecting, cardboard with 6-channel TRFIS was pulled into the cassette by the stepping motor. The peak area of the test (T) line and control (C) line of each TRFIS was sampled and calculated by software, then the concentration of the detected pesticide was obtained according to the ratio of the T to C value. This instrument could sample 6-channel TRFIS within 30 s simultaneously, and it exhibited excellent accuracy with a 2.5% average coefficient of variation for each channel (n = 12). In addition, the TRFIS was constructed by using europium oxide time-resolved fluorescent microspheres to label the monoclonal antibody against acetamiprid and form a fluorescent probe, which was fixed on the binding pad. The TRFIS was used for the detection of acetamiprid in celery cabbage, cauliflower and baby cabbage. This instrument was used to complete the qualitative and quantitative analysis of the TRFIS, so as to enhance the practical application of the detection method. This TRFIS possessed excellent linearity ranging from 0.25 mg kg-1 to 1.75 mg kg-1 for the detection of acetamiprid, and the limit of detection were 0.056-0.074 mg kg-1 in the different vegetable matrix. The platform combines the accuracy and portability of traditional test strips with the highly sensitive and efficient fluorescence intensity recognition function of detection equipment, which shows a great application prospect of multi-channel rapid detection of small molecule pollutants in the field.


Subject(s)
Pesticide Residues , Pesticide Residues/analysis , Vegetables , Fluorescence , Antibodies, Monoclonal , Microspheres , Limit of Detection , Chromatography, Affinity/methods
19.
Article in English | MEDLINE | ID: mdl-37819997

ABSTRACT

An ultrasensitive and broad-specific monoclonal antibody recognising cyproheptadine hydrochloride and six phenothiazines was produced. The 50% inhibition concentration against cyproheptadine hydrochloride was 0.036 ng/mL, and the cross-reactivities for six phenothiazines were from 6.33% to 63.16%. Based on the developed monoclonal antibody, an immunochromatographic strip was established, with the visual detection limits (cut-off values) of seven drugs ranging from 5 to 100 ng/g in feedstuffs. With the strip reader, the 50% inhibition concentration of the developed immunochromatographic strip for seven drugs ranged from 0.570 to 7.750 ng/g. The intra-assay recoveries were from 79.8% to 103.4% with the highest coefficient of variation of 11.3%. The inter-assay recoveries were from 79.0% to 96.6% with the highest coefficient of variation of 12.7%. In summary, the proposed immunochromatographic strip was considered suitable for simultaneously monitoring cyproheptadine hydrochloride and phenothiazines in feedstuffs.


Subject(s)
Antibodies, Monoclonal , Gold Colloid , Gold Colloid/chemistry , Immunoassay/methods , Chromatography, Affinity/methods , Limit of Detection
20.
Microbiol Spectr ; 11(4): e0195322, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37466437

ABSTRACT

Porcine circovirus type 2 (PCV2) is an important swine infectious pathogen that seriously threatens the global swine industry. PCV2 Cap protein is the only structural and the main immunogenic protein constituting the viral capsid. In this study, a gold nanoparticle-based immunochromatographic strip with high sensitivity and specificity was developed which could be used for rapid detection of PCV2 virions or Cap protein in research. The visual detection limit of the strip was 103.18 50% tissue culture infective does (TCID50)/mL for PCV2, and 2.03 µg/mL for PCV2 Cap protein. No cross-reactivity was observed with the PCV1 and PCV3 Cap proteins and other common swine pathogens such as porcine reproductive and respiratory syndrome virus, classical swine fever virus, pseudorabies virus, porcine epidemic diarrhea virus, porcine parvovirus, and swine influenza virus. The repeatability of the strip was good. The stability of the strip was perfect for 12 months in a dry state at room temperature. Visual results could be obtained within 5 min by simply inserting the strip into the diluted sample. The strip is a time-saving, labor-saving, and reliable tool for testing of PCV2 virions or Cap protein in research. The idea of this study might open a new perspective for the application of the strip. IMPORTANCE Porcine circovirus type 2 (PCV2) Cap protein is the only structural and the main immunogenic protein constituting the viral capsid. Although many methods can be used to identify PCV2 or PCV2 Cap protein in vaccine research, they usually require high workload and time. The developed strip can specifically detect PCV2 virions or Cap protein, and visual qualitative results can be obtained within 5 min by simply diluting the sample and inserting the strip into the sample. The final value of the strip is providing a simple and time-saving method for real-time monitoring of PCV2 antigen in vaccine research with reliable results, such as the different stages of PCV2 Cap protein expression and purification, as well as the different stages of PCV2 reproduction and purification.


Subject(s)
Circoviridae Infections , Circovirus , Metal Nanoparticles , Swine Diseases , Vaccines , Animals , Swine , Circovirus/metabolism , Gold/metabolism , Swine Diseases/epidemiology , Circoviridae Infections/diagnosis , Circoviridae Infections/veterinary , Vaccines/metabolism , Antibodies, Viral
SELECTION OF CITATIONS
SEARCH DETAIL