Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 16.681
Filter
1.
J Clin Invest ; 134(12)2024 May 09.
Article in English | MEDLINE | ID: mdl-38950310

ABSTRACT

In utero gene editing (IUGE) is a potential treatment for inherited diseases that cause pathology before or soon after birth. Preexisting immunity to adeno-associated virus (AAV) vectors and Cas9 endonuclease may limit postnatal gene editing. The tolerogenic fetal immune system minimizes a fetal immune barrier to IUGE. However, the ability of maternal immunity to limit fetal gene editing remains a question. We investigated whether preexisting maternal immunity to AAV or Cas9 impairs IUGE. Using a combination of fluorescent reporter mice and a murine model of a metabolic liver disease, we demonstrated that maternal anti-AAV IgG antibodies were efficiently transferred from dam to fetus and impaired IUGE in a maternal titer-dependent fashion. By contrast, maternal cellular immunity was inefficiently transferred to the fetus, and neither maternal cellular nor humoral immunity to Cas9 impaired IUGE. Using human umbilical cord and maternal blood samples collected from mid- to late-gestation pregnancies, we demonstrated that maternal-fetal transmission of anti-AAV IgG was inefficient in midgestation compared with term, suggesting that the maternal immune barrier to clinical IUGE would be less relevant at midgestation. These findings support immunologic advantages for IUGE and inform maternal preprocedural testing protocols and exclusion criteria for future clinical trials.


Subject(s)
Dependovirus , Gene Editing , Animals , Female , Dependovirus/genetics , Dependovirus/immunology , Mice , Pregnancy , Humans , Immunoglobulin G/immunology , Immunoglobulin G/genetics , Immunoglobulin G/blood , CRISPR-Associated Protein 9/genetics , CRISPR-Associated Protein 9/immunology , Genetic Vectors/immunology , Maternal-Fetal Exchange/immunology , Maternal-Fetal Exchange/genetics , Antibodies, Viral/immunology , Antibodies, Viral/blood , CRISPR-Cas Systems , Fetus/immunology , Immunity, Maternally-Acquired/immunology
2.
Sci Rep ; 14(1): 15006, 2024 07 01.
Article in English | MEDLINE | ID: mdl-38951583

ABSTRACT

Although the relationship between allergies and cancer has been investigated extensively, the role of allergies in head and neck cancer (HNC) appears less consistent. It is unclear whether allergies can independently influence the risk of HNC in the presence of substantial environmental risk factors, including consumption of alcohol, betel quid, and cigarettes. This study aims to find this association. We examined the relationship between allergies and HNC risk in a hospital-based case-control study with 300 cases and 375 matched controls. Logistic regression models were used to estimate odds ratios (OR) and 95% confidence intervals, controlling for age, sex, tobacco smoking and opium usage history, alcohol consumption, and socioeconomic status. Our study showed a significant reduction in the risk of HNC associated with allergy symptoms after adjusting for confounders. The risk of HNC was greatly reduced among those with any type of allergy (OR 0.42, 95% CI 0.28, 0.65). The ORs were considerably reduced by 58-88% for different kinds of allergies. The risk of HNC reduction was higher in allergic women than in allergic men (71% vs. 49%). Allergies play an influential role in the risk of HNC development. Future studies investigating immune biomarkers, including cytokine profiles and genetic polymorphisms, are necessary to further delineate the relationship between allergies and HNC. Understanding the relationship between allergies and HNC may help to devise effective strategies to reduce and treat HNC.


Subject(s)
Head and Neck Neoplasms , Hypersensitivity , Humans , Male , Female , Head and Neck Neoplasms/etiology , Head and Neck Neoplasms/epidemiology , Case-Control Studies , Middle Aged , Hypersensitivity/epidemiology , Hypersensitivity/complications , Risk Factors , Aged , Adult , Odds Ratio
3.
Elife ; 122024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953285

ABSTRACT

We studied lysosomal Ca2+ in inflammasome. Lipopolysaccharide (LPS) + palmitic acid (PA) decreased lysosomal Ca2+ ([Ca2+]Lys) and increased [Ca2+]i through mitochondrial ROS, which was suppressed in Trpm2-KO macrophages. Inflammasome activation and metabolic inflammation in adipose tissue of high-fat diet (HFD)-fed mice were ameliorated by Trpm2 KO. ER→lysosome Ca2+ refilling occurred after lysosomal Ca2+ release whose blockade attenuated LPS + PA-induced inflammasome. Subsequently, store-operated Ca2+entry (SOCE) was activated whose inhibition suppressed inflammasome. SOCE was coupled with K+ efflux whose inhibition reduced ER Ca2+ content ([Ca2+]ER) and impaired [Ca2+]Lys recovery. LPS + PA activated KCa3.1 channel, a Ca2+-activated K+ channel. Inhibitors of KCa3.1 channel or Kcnn4 KO reduced [Ca2+]ER, attenuated increase of [Ca2+]i or inflammasome activation by LPS + PA, and ameliorated HFD-induced inflammasome or metabolic inflammation. Lysosomal Ca2+ release induced delayed JNK and ASC phosphorylation through CAMKII-ASK1. These results suggest a novel role of lysosomal Ca2+ release sustained by ER→lysosome Ca2+ refilling and K+ efflux through KCa3.1 channel in inflammasome activation and metabolic inflammation.


Subject(s)
Calcium , Endoplasmic Reticulum , Inflammasomes , Inflammation , Lysosomes , Mice, Knockout , Potassium , Animals , Inflammasomes/metabolism , Mice , Lysosomes/metabolism , Calcium/metabolism , Potassium/metabolism , Inflammation/metabolism , Endoplasmic Reticulum/metabolism , Lipopolysaccharides , TRPM Cation Channels/metabolism , TRPM Cation Channels/genetics , Intermediate-Conductance Calcium-Activated Potassium Channels/metabolism , Mice, Inbred C57BL , Macrophages/metabolism , Male , Diet, High-Fat
5.
iScience ; 27(6): 110121, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38957793

ABSTRACT

Aerobic exercise training (AET) has emerged as a strategy to reduce cancer mortality, however, the mechanisms explaining AET on tumor development remain unclear. Tumors escape immune detection by generating immunosuppressive microenvironments and impaired T cell function, which is associated with T cell mitochondrial loss. AET improves mitochondrial content and function, thus we tested whether AET would modulate mitochondrial metabolism in tumor-infiltrating lymphocytes (TIL). Balb/c mice were subjected to a treadmill AET protocol prior to CT26 colon carcinoma cells injection and until tumor harvest. Tissue hypoxia, TIL infiltration and effector function, and mitochondrial content, morphology and function were evaluated. AET reduced tumor growth, improved survival, and decreased tumor hypoxia. An increased CD8+ TIL infiltration, IFN-γ and ATP production promoted by AET was correlated with reduced mitochondrial loss in these cells. Collectively, AET decreases tumor growth partially by increasing CD8+ TIL effector function through an improvement in their mitochondrial content and function.

6.
BMJ Case Rep ; 17(7)2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38960425

ABSTRACT

A woman in her 40s known to have systemic lupus erythematosus presented with a maculopapular rash on her face, neck and chest following measles exposure. She had received a single-dose measles vaccine as a child in the 1970s and was therefore presumed to be immune, and thus not infectious. As a result, she was initially managed in an open bay. Measles virus IgM antibody in serum was undetectable; however, measles virus RNA was subsequently detected in throat swab by PCR, which is consistent with current infection. Measles is one of the most transmissible diseases in the world and cases are rising both in the UK and globally. Our case and literature review highlight the risk of vaccine failure in measles, especially in people who have not received two doses of the measles, mumps and rubella vaccine. It also highlights the challenges in diagnosing measles in previously vaccinated individuals.


Subject(s)
Measles , Humans , Measles/prevention & control , Measles/diagnosis , Female , Measles Vaccine , Adult , Measles virus/immunology , Measles virus/isolation & purification , Measles-Mumps-Rubella Vaccine , Lupus Erythematosus, Systemic/complications , Lupus Erythematosus, Systemic/immunology , Vaccination , Middle Aged , Antibodies, Viral/blood , Immunoglobulin M/blood
7.
J Surg Oncol ; 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38946193

ABSTRACT

BACKGROUND: Co-inhibitor and co-stimulator mediators trigger actions that result in immunological homeostasis and are being evaluated as potential therapeutic targets in gastric cancer (GC). OBJECTIVE: To evaluate the soluble levels of sPD-1, sPD-L1, sPD-L2, sTIM-3, sGal9, sGITR, and sGITRL in GC patients. METHODS: The cross-sectional study was carried out at the Hospital de Cancer de Pernambuco, Brazil between 2017 and 2018. A total of 74 GC patients and 30 healthy controls were included. RESULTS: Low levels of sPD1 (p = 0.0179), sPDL2 (p = 0.0003), and sGal9 (p < 0.0001), and higher levels of sPDL1 (p = 0.004), sTIM-3 (p = 0.0072), sGITR (p = 0.0179), and sGITRL (p = 0.0055) compared to the control group. High sPD-1, sTIM-3, and sGal9 levels in stage IV compared I/II and III (p < 0.05). High sPDL1, sGal9, and sGITRL levels in esophagogastric junction compared to body and Pylorus/Antrum groups (p < 0.05). No significant differences were observed in sPD1, sPDL1, sPDL2, sTIM3, sGal9, sGITR, and sGITRL levels between the intestinal, diffuse, and mixed GC groups. Low sGITR levels in GC patients who died within the first 24 months compared to the who survived (p = 0.0332). CONCLUSIONS: There is an association of sPD1, sTIM-3, and sGal9 with disease progression and sGITR with death, these mediators may be potential prognostic biomarkers in GC.

8.
Cell Rep ; 43(7): 114452, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38968068

ABSTRACT

Macrophages are effector immune cells that experience substantial changes to oxygenation when transiting through tissues, especially when entering tumors or infected wounds. How hypoxia alters gene expression and macrophage effector function at the post-transcriptional level remains poorly understood. Here, we use TimeLapse-seq to measure how inflammatory activation modifies the hypoxic response in primary macrophages. Nucleoside recoding sequencing allows the derivation of steady-state transcript levels, degradation rates, and transcriptional synthesis rates from the same dataset. We find that hypoxia produces distinct responses from resting and inflammatory macrophages. Hypoxia induces destabilization of mRNA transcripts, though inflammatory macrophages substantially increase mRNA degradation compared to resting macrophages. Increased RNA turnover results in the upregulation of ribosomal protein genes and downregulation of extracellular matrix components in inflammatory macrophages. Pathways regulated by mRNA decay in vitro are differentially regulated in tumor-associated macrophages implying that mixed stimuli could induce post-transcriptional regulation of macrophage function in solid tumors.

9.
medRxiv ; 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38947010

ABSTRACT

Neonatal health is dependent on early risk stratification, diagnosis, and timely management of potentially devastating conditions, particularly in the setting of prematurity. Many of these conditions are poorly predicted in real-time by clinical data and current diagnostics. Umbilical cord blood may represent a novel source of molecular signatures that provides a window into the state of the fetus at birth. In this study, we comprehensively characterized the cord blood proteome of infants born between 24 to 42 weeks using untargeted mass spectrometry and functional enrichment analysis. We determined that the cord blood proteome at birth varies significantly across gestational development. Proteins that function in structural development and growth (e.g., extracellular matrix organization, lipid particle remodeling, and blood vessel development) are more abundant earlier in gestation. In later gestations, proteins with increased abundance are in immune response and inflammatory pathways, including complements and calcium-binding proteins. Furthermore, these data contribute to the knowledge of the physiologic state of neonates across gestational age, which is crucial to understand as we strive to best support postnatal development in preterm infants, determine mechanisms of pathology causing adverse health outcomes, and develop cord blood biomarkers to help tailor our diagnosis and therapeutics for critical neonatal conditions.

11.
Sci Rep ; 14(1): 15188, 2024 07 02.
Article in English | MEDLINE | ID: mdl-38956276

ABSTRACT

Wildlife harbour a diverse range of microorganisms that affect their health and development. Marsupials are born immunologically naïve and physiologically underdeveloped, with primary development occurring inside a pouch. Secretion of immunological compounds and antimicrobial peptides in the epithelial lining of the female's pouch, pouch young skin, and through the milk, are thought to boost the neonate's immune system and potentially alter the pouch skin microbiome. Here, using 16S rRNA amplicon sequencing, we characterised the Tasmanian devil pouch skin microbiome from 25 lactating and 30 non-lactating wild females to describe and compare across these reproductive stages. We found that the lactating pouch skin microbiome had significantly lower amplicon sequence variant richness and diversity than non-lactating pouches, however there was no overall dissimilarity in community structure between lactating and non-lactating pouches. The top five phyla were found to be consistent between both reproductive stages, with over 85% of the microbiome being comprised of Firmicutes, Proteobacteria, Fusobacteriota, Actinobacteriota, and Bacteroidota. The most abundant taxa remained consistent across all taxonomic ranks between lactating and non-lactating pouch types. This suggests that any potential immunological compounds or antimicrobial peptide secretions did not significantly influence the main community members. Of the more than 16,000 total identified amplicon sequence variants, 25 were recognised as differentially abundant between lactating and non-lactating pouches. It is proposed that the secretion of antimicrobial peptides in the pouch act to modulate these microbial communities. This study identifies candidate bacterial clades on which to test the activity of Tasmanian devil antimicrobial peptides and their role in pouch young protection, which in turn may lead to future therapeutic development for human diseases.


Subject(s)
Lactation , Marsupialia , Microbiota , RNA, Ribosomal, 16S , Animals , Female , Marsupialia/microbiology , RNA, Ribosomal, 16S/genetics , Skin/microbiology , Bacteria/classification , Bacteria/genetics
12.
Immunol Cell Biol ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38952337

ABSTRACT

Microbial metabolites can be viewed as the cytokines of the microbiome, transmitting information about the microbial and metabolic environment of the gut to orchestrate and modulate local and systemic immune responses. Still, many immunology studies focus solely on the taxonomy and community structure of the gut microbiota rather than its functions. Early sequencing-based microbiota profiling approaches relied on PCR amplification of small regions of bacterial and fungal genomes to facilitate identification of the microbes present. However, recent microbiome analysis methods, particularly shotgun metagenomic sequencing, now enable culture-independent profiling of microbiome functions and metabolites in addition to taxonomic characterization. In this review, we showcase recent advances in functional metagenomics methods and applications and discuss the current limitations and potential avenues for future development. Importantly, we highlight a few examples of key areas of opportunity in immunology research where integrating functional metagenomic analyses of the microbiome can substantially enhance a mechanistic understanding of microbiome-immune interactions and their contributions to health and disease states.

13.
iScience ; 27(6): 109798, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38947509

ABSTRACT

High salt (HS) consumption is a risk factor for multiple autoimmune disorders via disturbing immune homeostasis. Nevertheless, the exact mechanisms by which HS exacerbates rheumatoid arthritis (RA) pathogenesis remain poorly defined. Herein, we found that heightened phosphorylation of PDPK1 and SGK1 upon HS exposure attenuated FoxO1 expression to enhance the glycolytic capacity of CD4 T cells, resulting in strengthened Th17 but compromised Treg program. GSK2334470 (GSK), a dual PDPK1/SGK1 inhibitor, effectively mitigated the HS-induced enhancement in glycolytic capacity and the overproduction of IL-17A. Therefore, administration of GSK markedly alleviated HS-exacerbated RA progression in collagen-induced arthritis (CIA) model. Collectively, our data indicate that HS consumption subverts Th17/Treg homeostasis through the PDPK1-SGK1-FoxO1 signaling, while GSK could be a viable drug against RA progression in clinical settings.

14.
iScience ; 27(6): 110143, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38947519

ABSTRACT

Evading host innate immune defenses is a critical feature of Chlamydia trachomatis infections, and the mechanisms used by C. trachomatis to subvert these pathways are incompletely understood. We screened a library of chimeric C. trachomatis mutants for genetic factors important for interference with cell-autonomous immune defenses. Mutant strains with predicted truncations of the inclusion membrane protein CT135 were susceptible to interferon gamma-activated immunity in human cells. CT135 functions to prevent host-driven recruitment of ubiquitin and p62/SQSTM to the inclusion membrane. In a nonhuman primate model of C. trachomatis infection, a CT135-deficient strain was rapidly cleared, highlighting the importance of this virulence factor for C. trachomatis pathogenesis. Analysis of CT135 phenotypes in primary macaque cells revealed that cell-autonomous immune defenses against C. trachomatis are conserved between humans and nonhuman primates and connects mechanistic findings with in vivo infection outcomes.

15.
iScience ; 27(6): 110117, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38947521

ABSTRACT

Dysregulated host immune responses contribute to disease severity and worsened prognosis in COVID-19 infection and the underlying mechanisms are not fully understood. In this study, we observed that IL-33, a damage-associated molecular pattern molecule, is significantly increased in COVID-19 patients and in SARS-CoV-2-infected mice. Using IL-33-/- mice, we demonstrated that IL-33 deficiency resulted in significant decreases in bodyweight loss, tissue viral burdens, and lung pathology. These improved outcomes in IL-33-/- mice also correlated with a reduction in innate immune cell infiltrates, i.e., neutrophils, macrophages, natural killer cells, and activated T cells in inflamed lungs. Lung RNA-seq results revealed that IL-33 signaling enhances activation of inflammatory pathways, including interferon signaling, pathogen phagocytosis, macrophage activation, and cytokine/chemokine signals. Overall, these findings demonstrate that the alarmin IL-33 plays a pathogenic role in SARS-CoV-2 infection and provides new insights that will inform the development of effective therapeutic strategies for COVID-19.

16.
iScience ; 27(6): 110118, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38947526

ABSTRACT

Inflammatory bowel disease (IBD) is a chronic disorder with an increasing global prevalence. Managing disease activity relies on various pharmacological options. However, the effectiveness of current therapeutics is limited and not universally applicable to all patients and circumstances. Consequently, developing new management strategies is necessary. Recent advances in endoscopically obtained intestinal biopsy specimens have highlighted the potential of intestinal epithelial organoid transplantation as a novel therapeutic approach. Experimental studies using murine and human organoid transplantations have shown promising outcomes, including tissue regeneration and functional recovery. Human trials with organoid therapy have commenced; thus, this article provides readers with insights into the necessity and potential of intestinal organoid transplantation as a new regenerative therapeutic option in clinical settings and explores its associated challenges.

17.
iScience ; 27(6): 110045, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38947529

ABSTRACT

Aging is closely associated with inflammation, which affects renal function reserve (RFR) in the kidneys. This study aims to investigate the impact of reduced RFR reduction on kidney aging and the influence of renal inflammation and RFR reduction on this process. Natural aging rats and those subjected to unilateral nephrectomy (UNX), 1/6 nephrectomy (1/6NX), and unilateral ureteral obstruction (UUO) were observed at 6, 12, 18, and 21 months. Our findings suggest that RFR reduction and renal inflammation can accelerate kidney aging, and inflammation contributes more. Metabolomics analysis revealed alterations in amino acid metabolism contribute to RFR decline. Furthermore, experiments in vitro confirmed the involvement of pentose phosphate pathway (PPP) in promoting aging though inflammation. Our research provides novel insights into for the mechanism of kidney aging and provides indirect support for clinical treatment decisions, such as addressing kidney inflammation, stones, or tumors that may necessitate partial or complete nephrectomy.

18.
iScience ; 27(6): 110127, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38966571

ABSTRACT

Identifying the atlas of immune cells from coronary sinus circulation (CSC) of patients with persistent atrial fibrillation (PerAF) may provide new insights into the role of immune cells in the progression of AF. Single-cell sequencing revealed substantial alterations in immune cells from CSCs of patients with PerAF, especially a markedly elevated abundance of T cells, after which we identified a T cell subset: FGFBP2(+)TRDC(-)CD4(-) T cells (Ftc-T cells), which can promote the proliferation of cardiac fibroblasts (CFs),and the proportion of Ftc-T had a positive linear with AF recurrence post catheter ablation (CA). Moreover, IFI27 was found to be highly enriched in Ftc-T cells and promoted CFs proliferation and collagen expression. Altogether, our findings represent a unique resource providing in-depth insights into the heterogeneity of the immune cell from CSC of patients with PerAF and highlight the potential role of Ftc-T cells and IFI27 for AF progression.

19.
J Leukoc Biol ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38973235

ABSTRACT

Secondary hemophagocytic lymphohistiocytosis (sHLH) is a hyperinflammatory syndrome characterized by immune disorders. It is imperative to elucidate the immunophenotypic panorama and the interactions among these cells in patients. Human peripheral blood mononuclear cells were collected from healthy donors and sHLH patients and tested using multicolor flow cytometry. We used FlowSOM to explore and visualize the immunophenotypic characteristics of sHLH. By demonstrating the phenotypes of immune cells, we discovered that sHLH patients had significantly higher levels of CD56+ monocytes, higher levels of myeloid-derived suppressor cells, low-density neutrophil-to-T cell ratio, and higher heterogeneous T cell activation than healthy donors. However, natural killer cell cytotoxicity and function were impaired. We then assessed the correlations among 30 immune cell types and evaluated metabolic analysis. Our findings demonstrated polymorphonuclear myeloid-derived suppressor cells, CD56+ monocytes, and neutrophil-to-T cell ratio were elevated abnormally in sHLH patients, which may indicate an association with immune overactivation and inflammatory response. We are expected to confirm that they are involved in the occurrence of the disease through further in-depth research.

20.
Article in English | MEDLINE | ID: mdl-38973306

ABSTRACT

Allorecognition-the ability of an organism to discriminate between self and nonself-is crucial to colonial marine animals to avoid invasion by other individuals in the same habitat. The cnidarian hydroid Hydractinia has long been a major research model in studying invertebrate allorecognition, establishing a rich knowledge foundation. In this study, we introduce a new cnidarian model Cladonema radiatum (C. radiatum). C. radiatum is a hydroid jellyfish which also forms polyp colonies interconnected with stolons. Allorecognition responses-fusion or regression of stolons-are observed when stolons encounter each other. By transmission electron microscopy, we observe rapid tissue remodeling contributing to gastrovascular system connection in fusion. Meanwhile, rejection responses are regulated by reconstruction of the chitinous exoskeleton perisarc, and induction of necrotic and autophagic cellular responses at cells in contact with the opponent. Genetic analysis identifies allorecognition genes: six Alr genes located on the putative allorecognition complex and four immunoglobulin superfamily genes on a separate genome region. C. radiatum allorecognition genes show notable conservation with the Hydractinia Alr family. Remarkedly, stolon encounter assays of inbred lines reveal that genotypes of Alr1 solely determine allorecognition outcomes in C. radiatum.

SELECTION OF CITATIONS
SEARCH DETAIL
...