Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.686
Filter
1.
Article in English | MEDLINE | ID: mdl-38949757

ABSTRACT

Influenza virus infection is an important public-health concern because of its high transmissibility and potential for severe complications. To mitigate the severity and complications of influenza, probiotics containing Lactobacillus are used and generally recognized as safe. We evaluated the anti-influenza effect of Limosilactobacillus reuteri (L. reuteri) KBL346, isolated from the fecel sample of healthy South Koreans, in mice. BALB/c mice were orally administered live and heat-inactivated L. reuteri KBL346. After infection with influenza virus (A/Puerto Rico/8/34) 0.5 times the 50% lethal dose (LD50), body weight loss was improved and recovery was accelerated. Furthermore, L. reuteri KBL346 improved body weight loss and survival rate of mice infected with 4 times the LD50 of influenza virus. Heat-inactivated L. reuteri KBL346 reduced the viral titer in the lung and the plasma immunoglobulin G level. Expression levels of genes encoding inflammatory cytokines, such as interferon-γ and toll-like receptor 2 (Tlr2), were decreased in the lung tissues of mice administered L. reuteri KBL346. Live and heat-inactivated L. reuteri KBL346 increased the expression level of Adamts4, which promotes recovery after infection, and decreased that of Tlr2. The α-diversity of the gut microbiome was modulated by the administration of L. reuteri KBL346. In addition, the structure of the gut microbial community differed according to the degree of weight loss. L. reuteri KBL346 has the potential to alleviate disease severity and improve histopathological changes in mice infected with influenza A/PR8, suggesting its efficacy as a probiotic against influenza infection.

2.
Front Cell Neurosci ; 18: 1423410, 2024.
Article in English | MEDLINE | ID: mdl-38957539

ABSTRACT

Microglia are the resident macrophages of the central nervous system (CNS) that control brain development, maintain neural environments, respond to injuries, and regulate neuroinflammation. Despite their significant impact on various physiological and pathological processes across mammalian biology, there remains a notable gap in our understanding of how microglia perceive and transmit mechanical signals in both normal and diseased states. Recent studies have revealed that microglia possess the ability to detect changes in the mechanical properties of their environment, such as alterations in stiffness or pressure. These changes may occur during development, aging, or in pathological conditions such as trauma or neurodegenerative diseases. This review will discuss microglial Piezo1 mechanosensitive channels as potential therapeutic targets for Alzheimer's disease (AD). The structure, function, and modulation of Piezo1 will be discussed, as well as its role in facilitating microglial clearance of misfolded amyloid-ß (Aß) proteins implicated in the pathology of AD.

3.
Annu Rev Biomed Eng ; 26(1): 415-440, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38959388

ABSTRACT

Autoimmunity, allergy, and transplant rejection are a collection of chronic diseases that are currently incurable, drastically decrease patient quality of life, and consume considerable health care resources. Underlying each of these diseases is a dysregulated immune system that results in the mounting of an inflammatory response against self or an innocuous antigen. As a consequence, afflicted patients are required to adhere to lifelong regimens of multiple immunomodulatory drugs to control disease and reclaim agency. Unfortunately, current immunomodulatory drugs are associated with a myriad of side effects and adverse events, such as increased risk of cancer and increased risk of serious infection, which negatively impacts patient adherence rates and quality of life. The field of immunoengineering is a new discipline that aims to harness endogenous biological pathways to thwart disease and minimize side effects using novel biomaterial-based strategies. We highlight and discuss polymeric micro/nanoparticles with inherent immunomodulatory properties that are currently under investigation in biomaterial-based therapies for treatment of autoimmunity, allergy, and transplant rejection.


Subject(s)
Autoimmunity , Graft Rejection , Hypersensitivity , Polymers , Humans , Graft Rejection/immunology , Graft Rejection/prevention & control , Polymers/chemistry , Autoimmunity/drug effects , Hypersensitivity/immunology , Hypersensitivity/therapy , Animals , Biocompatible Materials/chemistry , Nanoparticles/chemistry , Autoimmune Diseases/therapy , Autoimmune Diseases/immunology , Immunomodulating Agents/therapeutic use , Immunologic Factors/therapeutic use
5.
Article in English | MEDLINE | ID: mdl-38963798

ABSTRACT

Statins are a cornerstone in the medical management of cardiovascular disease, yet their efficacy varies greatly between individuals. In this commentary, we outline evidence for the role of CD4+CD28null T-cell expansion as a critical moderator of the effects of statins in preventing cardiovascular events via the reduction of pathological inflammation. Given this relationship, we argue that T-cell profiles should be considered as a patient characteristic in clinical and pre-clinical studies examining statin efficacy in other age- and inflammation-related pathologies. We discuss the implications this may have for studies of statin use in numerous disease processes - notably, dementia and neurocognitive dysfunction - and the potential for T-cell profiles to be used as a prognosticator for statin efficacy in rheumatoid arthritis, Alzheimer's disease, and multiple sclerosis.

6.
Article in English | MEDLINE | ID: mdl-38965168

ABSTRACT

Short-chain fatty acids (SCFAs), such as acetate, propionate, and butyrate, modulate immune cell functions, particularly macrophages. This review explores the potential therapeutic applications of SCFAs in pulmonary fungal infections, a critical concern due to their high mortality rates and antifungal resistance. SCFAs enhance macrophage functions by promoting phagosome-lysosome fusion, increasing reactive oxygen species production, and balancing cytokine responses. Pulmonary fungal infections, caused by pathogens like Aspergillus fumigatus, are prevalent in immunocompromised patients, including those with diabetes, chronic obstructive pulmonary disease, and those on high-dose corticosteroids. SCFAs have shown promise in improving macrophage function in these contexts. However, the application of SCFAs must be balanced against potential side effects, including gut microbiota disruption and metabolic disorders. Further research is needed to optimize SCFA therapy for managing pulmonary fungal infections.

7.
J Biochem Mol Toxicol ; 38(7): e23765, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38967724

ABSTRACT

Mangiferin is a naturally occurring glucosylxanthone that has shown promising immunomodulatory effects. It is generally isolated from the leaves, peels, bark, and kernels of Mangifera indica Linn. Mangiferin is like a miraculous natural bioactive molecule that has an immunomodulatory function that makes it a potential therapeutic candidate for the treatment of rheumatoid arthritis (RA) and cancer. The anticancer activity of mangiferin acts by blocking NF-κB, as well as regulating the ß-catenin, EMT, MMP9, MMP2, LDH, ROS, and NO, and also by the activation of macrophages. It has no cytotoxic effect on grown chondrocytes and lowers matrix metalloproteinase levels. Additionally, it has a potent proapoptotic impact on synoviocytes. The precise molecular mechanism of action of mangiferin on RA and malignancies is still unknown. This comprehensive review elaborates on the immunomodulatory effect of mangiferin and its anticancer and anti-RA activity. This also explained the total synthesis of mangiferin and its in vitro and in vivo screening models.


Subject(s)
Arthritis, Rheumatoid , Neoplasms , Xanthones , Xanthones/pharmacology , Xanthones/therapeutic use , Xanthones/chemistry , Humans , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/immunology , Animals , Neoplasms/drug therapy , Neoplasms/immunology , Immunomodulating Agents/pharmacology , Immunomodulating Agents/chemistry
8.
Ann Gastroenterol ; 37(4): 392-402, 2024.
Article in English | MEDLINE | ID: mdl-38974082

ABSTRACT

Inflammatory bowel disease is a debilitating condition that undergoes a relapsing and remitting course. The pathogenesis of how this disease manifests remains to be elucidated; however, there is growing evidence that a synergism of familial predisposition and epigenetic alterations influenced by environmental factors all contribute to the development of the disease. The role of nutrition in improving the outcomes of the condition has garnered increasing interest, given the greater risks of neoplastic conversion and concerns about inappropriate remission with available pharmacotherapeutic treatments alone. Available reports, often anecdotal, have documented patient relief with employment of various dietary strategies. These have led to curiosity about nutritional assessments and nutrition therapies to ameliorate the morbidity and all-cause mortality of the disease. One group of such nutrition therapies, supported by a compendium of available articles, is flavonoids-although the greater abundance of in vitro experiments with relatively few clinical trials has limited their clinical use. Nonetheless, flavonoids have been shown to be functional foods with immunomodulatory capabilities. This article will thus delve into the role of flavonoids in altering the course of the immune response in inflammatory bowel disease, while assessing their clinical outcomes in human trials.

9.
Immune Netw ; 24(3): e26, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38974210

ABSTRACT

Recent advancements in various technologies have shed light on the critical role of metabolism in immune cells, paving the way for innovative disease treatment strategies through immunometabolism modulation. This review emphasizes the glucose metabolism of myeloid-derived suppressor cells (MDSCs), an emerging pivotal immunosuppressive factor especially within the tumor microenvironment. MDSCs, an immature and heterogeneous myeloid cell population, act as a double-edged sword by exacerbating tumors or mitigating inflammatory diseases through their immune-suppressive functions. Numerous recent studies have centered on glycolysis of MDSC, investigating the regulation of altered glycolytic pathways to manage diseases. However, the specific changes in MDSC glycolysis and their exact functions continue to be areas of ongoing discussion yet. In this paper, we review a range of current findings, including the latest research on the alteration of glycolysis in MDSCs, the consequential functional alterations in these cells, and the outcomes of attempts to modulate MDSC functions by regulating glycolysis. Ultimately, we will provide insights into whether these research efforts could be translated into clinical applications.

10.
Heliyon ; 10(12): e32624, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38975149

ABSTRACT

The treatment for stage III melanoma has advanced significantly, nevertheless, a substantial proportion of patients experience relapse. Neoadjuvant immune checkpoint blockade has emerged as a promising approach, allowing early micrometastatic disease treatment, reduction of tumor burden before surgery, and enhanced tumor-specific T-cell responses. However, not all patients respond to treatment, highlighting the need for understanding immune mechanisms behind failure and identification of predictive markers. Here we performed a robust evaluation of systemic and tumoral immune profiles in a well-defined cohort of advanced melanoma patients treated with immune checkpoint inhibitors. Elevated CTACK and CXCL9 chemokines pre-treatment suggested their potential as predictive tools for treatment response. Furthermore, CD95 expression in CD8+ T lymphocytes surfaced as a favorable prognostic indicator, while PD-1, CD161, and PD-L2 exhibited correlations with worst outcomes. These findings shed light on the intricate interplay between immune markers and melanoma response to neoadjuvant immune checkpoint therapy, offering insights into personalized treatment strategies.

11.
Theranostics ; 14(9): 3739-3759, 2024.
Article in English | MEDLINE | ID: mdl-38948054

ABSTRACT

Background: The repair of osteoporotic bone defects remains challenging due to excessive reactive oxygen species (ROS), persistent inflammation, and an imbalance between osteogenesis and osteoclastogenesis. Methods: Here, an injectable H2-releasing hydrogel (magnesium@polyethylene glycol-poly(lactic-co-glycolic acid), Mg@PEG-PLGA) was developed to remodel the challenging bone environment and accelerate the repair of osteoporotic bone defects. Results: This Mg@PEG-PLGA gel shows excellent injectability, shape adaptability, and phase-transition ability, can fill irregular bone defect areas via minimally invasive injection, and can transform into a porous scaffold in situ to provide mechanical support. With the appropriate release of H2 and magnesium ions, the 2Mg@PEG-PLGA gel (loaded with 2 mg of Mg) displayed significant immunomodulatory effects through reducing intracellular ROS, guiding macrophage polarization toward the M2 phenotype, and inhibiting the IκB/NF-κB signaling pathway. Moreover, in vitro experiments showed that the 2Mg@PEG-PLGA gel inhibited osteoclastogenesis while promoting osteogenesis. Most notably, in animal experiments, the 2Mg@PEG-PLGA gel significantly promoted the repair of osteoporotic bone defects in vivo by scavenging ROS and inhibiting inflammation and osteoclastogenesis. Conclusions: Overall, our study provides critical insight into the design and development of H2-releasing magnesium-based hydrogels as potential implants for repairing osteoporotic bone defects.


Subject(s)
Bone Regeneration , Hydrogels , Hydrogen , Magnesium , Osteogenesis , Osteoporosis , Polyethylene Glycols , Reactive Oxygen Species , Animals , Magnesium/chemistry , Magnesium/administration & dosage , Reactive Oxygen Species/metabolism , Mice , Polyethylene Glycols/chemistry , Hydrogels/chemistry , Osteoporosis/drug therapy , Osteogenesis/drug effects , Hydrogen/pharmacology , Hydrogen/administration & dosage , Hydrogen/chemistry , RAW 264.7 Cells , Bone Regeneration/drug effects , Immunomodulation/drug effects , Tissue Scaffolds/chemistry , Macrophages/drug effects , Macrophages/metabolism , Polyesters
12.
J Pharmacopuncture ; 27(2): 59-69, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38948310

ABSTRACT

This study investigates the therapeutic potential of Indigo Naturalis (IN) in treating a Inflammatory Bowel Disease (IBD). The objective is to comprehensively examine the effects and pharmacological mechanisms of IN on IBD, assessing its potential as an novel treatment for IBD. Analysis of 11 selected papers is conducted to understand the effects of IN, focusing on compounds like indirubin, isatin, indigo, and tryptanthrin. This study evaluates their impact on Disease Activity Index (DAI) score, colon length, mucosal damage, and macrophage infiltration in Dextran Sulfate Sodium (DSS)-induced colitis mice. Additionally, It investigate into the anti-inflammatory mechanisms, including Aryl hydrocarbon Receptor (AhR) pathway activation, Nuclear Factor kappa B (NF-κB)/nod-like receptor family pyrin domain containing 3 (NLRP3)/Interleukin 1 beta (IL-1ß) inhibition, and modulation of Toll-like receptor 4 (TLR4)/myeloid differentiation primary response 88 (MYD88)/NF-κB and Mitogen Activated Protein Kinase (MAPK) pathways. Immunomodulatory effects on T helper 17 (Th17)/regulatory T cell (Treg cell) balance and Glycogen synthase kinase-3 beta (GSK3-ß) expression are also explored. Furthermore, the study addresses the role of IN in restoring intestinal microbiota diversity, reducing pathogenic bacteria, and increasing beneficial bacteria. The findings reveal that IN, particularly indirubin and indigo, demonstrates significant improvements in DAI score, colon length, mucosal damage, and macrophage infiltration in DSS-induced colitis mice. The anti-inflammatory effects are attributed to the activation of the AhR pathway, inhibition of inflammatory pathways, and modulation of immune responses. These results exhibit the potential of IN in IBD treatment. Notably, the restoration of intestinal microbiota diversity and balance further supports its efficacy. IN emerges as a promising and effective treatment for IBD, demonstrating anti-inflammatory effects and positive outcomes in preclinical studies. However, potential side effects necessitate further investigation for safe therapeutic development. The study underscores the need for future research to explore a broader range of active ingredients in IN to enhance therapeutic efficacy and safety.

13.
BJC Rep ; 2(1)2024.
Article in English | MEDLINE | ID: mdl-38938748

ABSTRACT

Background: Small (30-150nm) extracellular vesicles (sEV), also known as exosomes, play a key role in cell-to-cell signaling. They are produced by all cells, circulate freely and are present in all body fluids. Evidence indicates that cytokines are present on the surface and/or in the lumen of sEV. The contribution of intravesicular cytokines to cytokine levels in plasma are unknown. Methods: sEV were isolated by ultrafiltration/size exclusion chromatography from pre-cleared plasma obtained from patients with head and neck squamous cell carcinoma (HNSCC) and healthy donors (HDs). Multiplex immunoassays were used to measure cytokine levels in paired untreated and detergent-treated (0.5% Triton X-100) plasma and plasma-derived detergent-treated sEV. Non-parametric tests were used to assess differences in cytokine levels. Results: The presence of cytokines in sEV isolated from patients' and HDs' plasma was confirmed by immunoblots and on-bead flow cytometry. sEV-associated cytokines were functional in various in vitro assays. Levels of cytokines in sEV varied among the HNSCC patients and were generally significantly higher than the levels observed in sEV from HDs. Compared to untreated plasma, levels for the majority (40/51) of the evaluated proteins were significantly higher in detergent-treated plasma (P<0.0001-0.03). In addition, levels of 24/51 proteins in sEV, including IL6, TNFRII, IL-17a, IFNa and IFNg, were significantly positively correlated with the difference between levels detected in detergent-treated plasma and untreated plasma. Discussion: The data indicate that sEV-associated cytokines account for the differences in cytokine levels measured in detergent-treated versus untreated plasma. Ab-based assays using untreated plasma detect only soluble cytokines and miss cytokines carried in the lumen of sEV. Permeabilization of sEV with a mild detergent allows for Ab-based detection of sEV-associated and soluble cytokines in plasma. The failure to detect cytokines carried in the sEV lumen leads to inaccurate estimates of cytokine levels in body fluids.

14.
Crit Care ; 28(1): 210, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38943192

ABSTRACT

In a phase 3 trial (PANAMO, NCT04333420), vilobelimab, a complement 5a (C5a) inhibitor, reduced 28-day mortality in mechanically ventilated COVID-19 patients. This post hoc analysis of 368 patients aimed to explore treatment heterogeneity through unsupervised learning. All available clinical variables at baseline were used as input. Treatment heterogeneity was assessed using latent class analysis (LCA), Ward's hierarchical clustering (HC) and the adjudication to previously described clinical sepsis phenotypes. The primary outcome was 28-day mortality. For LCA, a 2-class latent model was deemed most suitable. In the LCA model, 82 (22%) patients were assigned to class 1 and 286 (78%) to class 2. Class 1 was defined by more severely ill patients with significantly higher mortality. In an adjusted logistic regression, no heterogeneity of treatment effect (HTE) between classes was observed (p = 0.998). For HC, no significant classes were found (p = 0.669). Using the previously described clinical sepsis subtypes, 41 patients (11%) were adjudicated subtype alpha (α), 17 (5%) beta (ß), 112 (30%) delta (δ) and 198 (54%) gamma (γ). HTE was observed between clinical subtypes (p = 0.001) with improved 28-day mortality after treatment with vilobelimab for the δ subtype (OR = 0.17, 95% CI 0.07-0.40, p < 0.001). No signal for harm of treatment with vilobelimab was observed in any class or clinical subtype. Overall, treatment effect with vilobelimab was consistent across different classes and subtypes, except for the δ subtype, suggesting potential additional benefit for the most severely ill patients.


Subject(s)
Antibodies, Monoclonal, Humanized , COVID-19 Drug Treatment , Humans , Female , Male , Middle Aged , Aged , Antibodies, Monoclonal, Humanized/therapeutic use , Treatment Outcome , COVID-19/mortality
15.
J Proteomics ; 304: 105232, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38909954

ABSTRACT

Conjugated linoleic acid (CLA) is a group of natural isomers of the n-6 polyunsaturated fatty acid (PUFA) linoleic acid, exerting biological effects on cow physiology. This study assessed the impact of the mixture 50:50 (vol:vol) of CLA isomers (cis-9, trans-11 and trans-10, cis-12) on bovine peripheral blood mononuclear cells (PBMC) proteome, identifying 1608 quantifiable proteins. A supervised multivariate statistical analysis, sparse variant partial least squares - discriminant analysis (sPLS-DA) for paired data identified 407 discriminant proteins (DP), allowing the clustering between the CLA and controls. The ProteINSIDE workflow found that DP with higher abundance in the CLA group included proteins related to innate immune defenses (PLIN2, CD36, C3, C4, and AGP), with antiapoptotic (SERPINF2 and ITIH4) and antioxidant effects (HMOX1). These results demonstrated that CLA modulates the bovine PBMC proteome, supports the antiapoptotic and immunomodulatory effects observed in previous in vitro studies on bovine PBMC, and suggests a cytoprotective role against oxidative stress. SIGNIFICANCE: In this study, we report for the first time that the mixture 50:50 (vol:vol) of cis-9, trans-11, and trans-10, cis-12-CLA isomers modulates the bovine PBMC proteome. Our results support the immunomodulatory and antiapoptotic effects observed in bovine PBMC in vitro. In addition, the present study proposes a cytoprotective role of CLA mixture against oxidative stress. We suggest a molecular signature of CLA treatment based on combining a multivariate sparse discriminant analysis and a clustering method. This demonstrates the great value of sPLS-DA as an alternative option to identify discriminant proteins with relevant biological significance.

16.
Biomolecules ; 14(6)2024 May 24.
Article in English | MEDLINE | ID: mdl-38927026

ABSTRACT

Mesenchymal stem/stromal cell-derived small extracellular vesicles (MSC-sEVs) are promising therapeutic agents. In this study, we investigated how the administration route of MSC-sEVs affects their therapeutic efficacy in a mouse model of bleomycin (BLM)-induced skin scleroderma (SSc). We evaluated the impact of topical (TOP), subcutaneous (SC), and intraperitoneal (IP) administration of MSC-sEVs on dermal fibrosis, collagen density, and thickness. All three routes of administration significantly reduced BLM-induced fibrosis in the skin, as determined by Masson's Trichrome staining. However, only TOP administration reduced BLM-induced dermal collagen density, with no effect on dermal thickness observed for all administration routes. Moreover, SC, but not TOP or IP administration, increased anti-inflammatory profibrotic CD163+ M2 macrophages. These findings indicate that the administration route influences the therapeutic efficacy of MSC-sEVs in alleviating dermal fibrosis, with TOP administration being the most effective, and this efficacy is not mediated by M2 macrophages. Since both TOP and SC administration target the skin, the difference in their efficacy likely stems from variations in MSC-sEV delivery in the skin. Fluorescence-labelled TOP, but not SC MSC-sEVs when applied to skin explant cultures, localized in the stratum corneum. Hence, the superior efficacy of TOP over SC MSC-sEVs could be attributed to this localization. A comparison of the proteomes of stratum corneum and MSC-sEVs revealed the presence of >100 common proteins. Most of these proteins, such as filaggrin, were known to be crucial for maintaining skin barrier function against irritants and toxins, thereby mitigating inflammation-induced fibrosis. Therefore, the superior efficacy of TOP MSC-sEVs over SC and IP MSC-sEVs against SSc is mediated by the delivery of proteins to the stratum corneum to reinforce the skin barrier.


Subject(s)
Bleomycin , Extracellular Vesicles , Mesenchymal Stem Cells , Skin , Animals , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Mice , Extracellular Vesicles/metabolism , Skin/pathology , Skin/metabolism , Skin/drug effects , Disease Models, Animal , Fibrosis , Female , Filaggrin Proteins , Macrophages/metabolism , Macrophages/drug effects , Drug Administration Routes , Humans
17.
Biomedicines ; 12(6)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38927536

ABSTRACT

In this work, we focused on the analysis of VEGF content in saliva and its relationship with pro-inflammatory cytokines and amino acids involved in immunomodulation and angiogenesis in breast cancer. The study included 230 breast cancer patients, 92 patients with benign breast disease, and 59 healthy controls. Before treatment, saliva samples were obtained from all participants, and the content of VEGF and cytokines in saliva was determined by an enzyme-linked immunosorbent assay, as well as the content of amino acids by high-performance liquid chromatography. It was found that VEGF was positively correlated with the level of pro-inflammatory cytokines IL-1ß (r = 0.6367), IL-6 (r = 0.3813), IL-8 (r = 0.4370), and IL-18 (r = 0.4184). Weak correlations were shown for MCP-1 (r = 0.2663) and TNF-α (r = 0.2817). For the first time, we demonstrated changes in the concentration of VEGF and related cytokines in saliva in different molecular biological subtypes of breast cancer depending on the stage of the disease, differentiation, proliferation, and metastasis to the lymph nodes. A correlation was established between the expression of VEGF and the content of aspartic acid (r = -0.3050), citrulline (r = -0.2914), and tryptophan (r = 0.3382) in saliva. It has been suggested that aspartic acid and citrulline influence the expression of VEGF via the synthesis of the signaling molecule NO, and then tryptophan ensures tolerance of the immune system to tumor cells.

18.
J Clin Lab Anal ; 38(10): e25076, 2024 May.
Article in English | MEDLINE | ID: mdl-38853390

ABSTRACT

BACKGROUND: Severe acute pancreatitis (SAP) is associated with tremendous systemic inflammation, T-helper 17 (Th17) cells, and regulatory T (Treg) cells play an essential role in the inflammatory responses. Meanwhile, soluble fibrinogen-like protein 2 (Sfgl2) is a critical immunosuppressive effector cytokine of Treg cells and modulates immune responses. However, the impact of SAP induction on Sfgl2 expression and the role of Sfgl2 in immunomodulation under SAP conditions are largely unknown. METHODS: A taurocholate-induced mouse SAP model was established. The ratios of CD4+CD25+Foxp3+ Treg cells or CD4+IL-17+ Th17 cells in blood and pancreatic tissues as well as surface expression of CD80, CD86, and major histocompatibility complex class II (MHC-II) were determined by flow cytometry. Gene mRNA expression was determined by qPCR. Serum amylase and soluble factors were quantitated by commercial kits. Bone marrow-derived dendritic cells (DCs) were generated, and NF-κB/p65 translocation was measured by immunofluorescence staining. RESULTS: SAP induction in mice decreased the Th17/Treg ratio in the pancreatic tissue and increased the Th17/Treg ratio in the peripheral blood. In addition, SAP was associated with a reduced level of Sfgl2 in the pancreatic tissue and blood: higher levels of serum IL-17, IL-2, IFN-α, and TNF-α, and lower levels of serum IL-4 and IL-10. Furthermore, the SAP-induced reduction in Sfgl2 expression was accompanied by dysregulated maturation of bone marrow-derived DCs. CONCLUSIONS: SAP causes reduced Sfgl2 expression and Th17/Treg imbalance, thus providing critical insights for the development of Sfgl2- and Th17/Treg balance-targeted immunotherapies for patients with SAP.


Subject(s)
Disease Models, Animal , Fibrinogen , Pancreatitis , T-Lymphocytes, Regulatory , Taurocholic Acid , Th17 Cells , Animals , Th17 Cells/immunology , T-Lymphocytes, Regulatory/immunology , Pancreatitis/immunology , Pancreatitis/chemically induced , Pancreatitis/metabolism , Mice , Fibrinogen/metabolism , Male , Mice, Inbred C57BL , Down-Regulation , Dendritic Cells/immunology , Dendritic Cells/metabolism , Acute Disease , Pancreas/immunology , Pancreas/pathology , Pancreas/metabolism
19.
Mar Drugs ; 22(6)2024 May 21.
Article in English | MEDLINE | ID: mdl-38921545

ABSTRACT

Deep seawater (DS), obtained from a depth over 200 m, has health benefits due to its rich nutrients and minerals, and intake of DS has shown diverse immunomodulatory effects in allergies and cancer. Therefore, the immunostimulatory effects of Korean mineral-rich seawaters were examined in a cyclophosphamide (CPA)-induced immunosuppression model. Three samples of Korean seawater, namely DS from the East Sea off the coasts of Pohang (PDS) and Uljin (UDS), and seawater from the West Sea off the coast of Boryeong (BS), were collected. The seawaters were abundant in several minerals (calcium, iron, zinc, selenium, etc.). Mice were orally administered the seawaters for 42 days, followed by CPA-induced immunosuppression. The CPA induction reduced the weight of the spleen and lymph nodes; however, the administration of seawaters increased the weight of the lymphoid organs, accompanied by stimulation of natural killer cells' activity and NF-kB-mediated cytokine production (IFNγ, TNFα, IL1ß, IL6, and IL12). The mouse-derived splenocytes showed lymphoproliferation without cytotoxicity in the seawater groups. Histopathological analysis revealed that the seawaters improved the CPA-induced atrophic changes by promoting lymphoproliferation in the spleen and lymph nodes. These results provide useful information for the use of Korean mineral-rich seawaters, particularly PDS and UDS, as alternative immunostimulants under immunosuppressive conditions.


Subject(s)
Cyclophosphamide , Seawater , Animals , Cyclophosphamide/pharmacology , Mice , Minerals/pharmacology , Cytokines/metabolism , Republic of Korea , Immunosuppression Therapy , Spleen/drug effects , Spleen/immunology , Killer Cells, Natural/drug effects , Killer Cells, Natural/immunology , Male , Adjuvants, Immunologic/pharmacology , Lymph Nodes/drug effects , Lymph Nodes/immunology , Immunosuppressive Agents/pharmacology , Mice, Inbred BALB C
20.
ACS Appl Mater Interfaces ; 16(25): 32104-32117, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38865210

ABSTRACT

The repair of infected wounds is a complex physiopathologic process. Current studies on infected wound treatment have predominantly focused on infection treatment, while the factors related to delayed healing caused by vascular damage and immune imbalance are commonly overlooked. In this study, an extracellular matrix (ECM)-like dynamic and multifunctional hyaluronic acid (HA) hydrogel with antimicrobial, immunomodulatory, and angiogenic capabilities was designed as wound dressing for the treatment of infected skin wounds. The dynamic network in the hydrogel dressing was based on reversible metal-ligand coordination formed between sulfhydryl groups and bioactive metal ions. In our design, antibacterial silver and immunomodulatory zinc ions were employed to coordinate with sulfhydrylated HA and a vasculogenic peptide. In addition to the desired bioactivities for infected wounds, the hydrogel could also exhibit self-healing and injectable abilities. Animal experiments with infected skin wound models indicated that the hydrogel dressings enabled minimally invasive injection and seamless skin wound covering and then facilitated wound healing by efficient bacterial killing, continuous inflammation inhibition, and improved blood vessel formation. In conclusion, the metal ion-coordinated hydrogels with wound-infection-desired bioactivities and ECM-like dynamic structures represent a class of tissue bionic wound dressings for the treatment of infected and chronic inflammation wounds.


Subject(s)
Anti-Bacterial Agents , Hydrogels , Wound Healing , Wound Healing/drug effects , Animals , Hydrogels/chemistry , Hydrogels/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Mice , Silver/chemistry , Silver/pharmacology , Hyaluronic Acid/chemistry , Hyaluronic Acid/pharmacology , Zinc/chemistry , Zinc/pharmacology , Immunologic Factors/chemistry , Immunologic Factors/pharmacology , Wound Infection/drug therapy , Wound Infection/pathology , Wound Infection/microbiology , Bandages , Humans , Neovascularization, Physiologic/drug effects , Staphylococcus aureus/drug effects , Ions/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...