Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64.513
Filter
1.
Proc Natl Acad Sci U S A ; 121(28): e2401318121, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38968103

ABSTRACT

Mineral precipitation caused by fluid mixing presents complex control and predictability challenges in a variety of natural and engineering processes, including carbon mineralization, geothermal energy, and microfluidics. Precipitation dynamics, particularly under the influence of fluid flow, remain poorly understood. Combining microfluidic experiments and three-dimensional reactive transport simulations, we demonstrate that fluid inertia controls mineral precipitation and clogging at flow intersections, even in laminar flows. We observe distinct precipitation regimes as a function of Reynolds number (Re). At low Reynolds numbers (Re < 10), precipitates form a thin, dense layer along the mixing interface, which shuts precipitation off, while at high Reynolds numbers (Re > 50), strong three-dimensional flows significantly enhance precipitation over the entire intersection, resulting in rapid clogging. When injection rates from two inlets are uneven, flow symmetry-breaking leads to unexpected flow bifurcation phenomena, which result in enhanced concurrent precipitation in both downstream channels. Finally, we extend our findings to rough channel networks and demonstrate that the identified inertial effects on precipitation at the intersection scale are also present and even more dramatic at the network scale. This study sheds light on the fundamental mechanisms underlying mixing-induced mineral precipitation and provides a framework for designing and optimizing processes involving mineral precipitation.

2.
Proc Natl Acad Sci U S A ; 121(28): e2403581121, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38968108

ABSTRACT

Adverse cardiac outcomes in COVID-19 patients, particularly those with preexisting cardiac disease, motivate the development of human cell-based organ-on-a-chip models to recapitulate cardiac injury and dysfunction and for screening of cardioprotective therapeutics. Here, we developed a heart-on-a-chip model to study the pathogenesis of SARS-CoV-2 in healthy myocardium established from human induced pluripotent stem cell (iPSC)-derived cardiomyocytes and a cardiac dysfunction model, mimicking aspects of preexisting hypertensive disease induced by angiotensin II (Ang II). We recapitulated cytopathic features of SARS-CoV-2-induced cardiac damage, including progressively impaired contractile function and calcium handling, apoptosis, and sarcomere disarray. SARS-CoV-2 presence in Ang II-treated hearts-on-a-chip decreased contractile force with earlier onset of contractile dysfunction and profoundly enhanced inflammatory cytokines compared to SARS-CoV-2 alone. Toward the development of potential therapeutics, we evaluated the cardioprotective effects of extracellular vesicles (EVs) from human iPSC which alleviated the impairment of contractile force, decreased apoptosis, reduced the disruption of sarcomeric proteins, and enhanced beta-oxidation gene expression. Viral load was not affected by either Ang II or EV treatment. We identified MicroRNAs miR-20a-5p and miR-19a-3p as potential mediators of cardioprotective effects of these EVs.


Subject(s)
Angiotensin II , COVID-19 , Extracellular Vesicles , Induced Pluripotent Stem Cells , Myocytes, Cardiac , SARS-CoV-2 , Humans , Angiotensin II/pharmacology , COVID-19/virology , COVID-19/metabolism , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/virology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Extracellular Vesicles/metabolism , Induced Pluripotent Stem Cells/metabolism , Apoptosis/drug effects , Lab-On-A-Chip Devices , MicroRNAs/metabolism , MicroRNAs/genetics , Cytokines/metabolism
3.
Proc Natl Acad Sci U S A ; 121(28): e2318691121, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38968121

ABSTRACT

Dietary lipids play an essential role in regulating the function of the gut microbiota and gastrointestinal tract, and these luminal interactions contribute to mediating host metabolism. Palmitic Acid Hydroxy Stearic Acids (PAHSAs) are a family of lipids with antidiabetic and anti-inflammatory properties, but whether the gut microbiota contributes to their beneficial effects on host metabolism is unknown. Here, we report that treating chow-fed female and male germ-free (GF) mice with PAHSAs improves glucose tolerance, but these effects are lost upon high fat diet (HFD) feeding. However, transfer of feces from PAHSA-treated, but not vehicle-treated, chow-fed conventional mice increases insulin sensitivity in HFD-fed GF mice. Thus, the gut microbiota is necessary for, and can transmit, the insulin-sensitizing effects of PAHSAs in HFD-fed GF male mice. Analyses of the cecal metagenome and lipidome of PAHSA-treated mice identified multiple lipid species that associate with the gut commensal Bacteroides thetaiotaomicron (Bt) and with insulin sensitivity resulting from PAHSA treatment. Supplementing live, and to some degree, heat-killed Bt to HFD-fed female mice prevented weight gain, reduced adiposity, improved glucose tolerance, fortified the colonic mucus barrier and reduced systemic inflammation compared to HFD-fed controls. These effects were not observed in HFD-fed male mice. Furthermore, ovariectomy partially reversed the beneficial Bt effects on host metabolism, indicating a role for sex hormones in mediating the Bt probiotic effects. Altogether, these studies highlight the fact that PAHSAs can modulate the gut microbiota and that the microbiota is necessary for the beneficial metabolic effects of PAHSAs in HFD-fed mice.


Subject(s)
Diet, High-Fat , Gastrointestinal Microbiome , Insulin Resistance , Obesity , Animals , Male , Female , Mice , Gastrointestinal Microbiome/drug effects , Obesity/metabolism , Obesity/microbiology , Obesity/etiology , Diet, High-Fat/adverse effects , Mice, Inbred C57BL , Stearic Acids/metabolism , Palmitic Acid/metabolism , Feces/microbiology , Mice, Obese
4.
Int J Biol Macromol ; 276(Pt 1): 133792, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38992539

ABSTRACT

Doxorubicin (Dox), a chemotherapeutic agent frequently used to treat cancer, elicits cardiotoxicity, a condition referred to as Dox-induced cardiotoxicity (DIC), and ferroptosis plays a contributory role in its pathophysiology. Fucoidan, a polysaccharide with various biological activities and safety profile, has potential therapeutic and pharmaceutical applications. This study aimed to investigate the protective effects and underlying mechanisms of fucoidan in DIC. Echocardiography, biomarkers of cardiomyocyte injury, serum creatine kinase, creatine kinase isoenzyme and lactate dehydrogenase, as well as histological staining results, revealed that fucoidan significantly reduced myocardial damage and improved cardiac function in DIC mice. Transmission electron microscopy; levels of lipid reactive oxygen species, glutathione, and malondialdehyde; ferroptosis-related markers; and regulatory factors such as glutathione peroxidase 4 (GPX4), transferrin receptor protein-1, ferritin heavy chain-1, heme oxygenase-1 in the heart tissue were measured to explore the effect of fucoidan on Dox-induced ferroptosis. These results suggested that fucoidan could inhibit cardiomyocyte ferroptosis caused by Dox. In vitro experiments revealed that silencing nuclear factor-erythroid 2-related factor 2 (Nrf2) in cardiomyocytes reduced the inhibitory effect of fucoidan on ferroptosis. Hence, fucoidan has the potential to ameliorate DIC by inhibiting ferroptosis via the Nrf2/GPX4 pathway.

5.
J Ethnopharmacol ; 334: 118582, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39009325

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Radiation-induced heart disease (RIHD) is one of the most serious complications in patients receiving chest radiotherapy, partially offsetting its benefits. At present, there is a lack of effective treatments for RIHD. Ferroptosis is a newly discovered type of cell death that results from iron-dependent lipid peroxide accumulation. It was recently shown that irradiation generates severe ferroptosis, providing new insights for the treatment of RIHD. Abelmoschus manihot (L.) possesses excellent pharmacological properties and is widely used in treating various ischemic heart and brain diseases; however, its efficacy and mechanism in treating RIHD are unknown. AIM: This study aimed to investigate the efficacy and mechanism of total extracts from A. manihot (L.) (TEA) in treating RIHD. MATERIALS AND METHODS: C57BL/6 mice and H9C2 cells were exposed to irradiation to induce RIHD in vivo and in vitro, respectively. In vivo, we evaluated the protective effects of TEA (150 and 300 mg/kg) on RIHD. Body and heart weight changes of mice were calculated in each group, and malondialdehyde (MDA) level, glutathione/oxidized glutathione (GSH/GSSH) and nicotinamide adenine dinucleotide phosphate (NADPH/NADP+) ratios, western blot, heart histology, and immunohistochemistry were used to evaluate TEA effectiveness. We identified the potential mechanism of radiation-induced cardiomyocyte injury in H9C2 cells treated with small interfering RNA. We determined the effective dose of TEA (0.6 mg/mL) using a Cell Counting Kit-8 assay. Intracellular Fe2+ and lipid peroxidation levels were detected by Phen Green™ SK diacetate probe, BODIPY 581/591 C11 staining, and MDA, GSH, and NADPH kits, and the level of target protein was evaluated by immunofluorescence and western blot. RESULTS: Radiation inhibited system Xc-cystine (xCT)/glutathione peroxidase 4 (GPX4) expression and activity in cardiomyocytes in a time and dose-dependent manner. After silencing xCT/GPX4, MDA significantly increased and GSH/GSSH and NADPH/NADP+ ratios were reduced. xCT/GPX4 inhibition drove ferroptosis in radiation-induced H9C2 injury. Oxidative stress in H9C2 was significantly enhanced by irradiation, which also significantly increased NADPH oxidase 4 (NOX4) expression and inhibited nuclear factor E2-related factor 2 (Nrf2) expression in vivo and in vitro. Inhibition of xCT/GPX4 drove ferroptosis in radiation-induced H9C2 injury, which was aggravated by inactivation of Nrf2 and alleviated by inhibition of NOX4. Compared with the ionizing radiation-only group, TEA improved body weight loss, MDA levels, and histological changes induced by irradiation in mice hearts, and increased the ratio of GSH/GSSH and NADPH/NADP+in vivo; it also reduced lipid peroxidation and intracellular Fe2+ accumulation, restored MDA levels, and elevated the ratios of GSH/GSSH and NADPH/NADP+ in irradiation-injured H9C2 cells. TEA up-regulated Nrf2, xCT, and GPX4 expression and inhibited NOX4 expression in vivo and in vitro. CONCLUSIONS: Ferroptosis induced by redox imbalance mediated through the NOX4/xCT/GPX4 axis is a potential mechanism behind radiation-induced cardiomyocyte injury, and can be prevented by TEA.

6.
Sci Rep ; 14(1): 16444, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39013979

ABSTRACT

Colistin is a polymyxin antibiotic currently experiencing renewed clinical interest due to its efficacy in the treatment of multidrug resistant (MDR) bacterial infections. The frequent onset of acute dose-dependent kidney injury, with the potential of leading to long-term renal damage, has limited its use and hampered adequate dosing regimens, increasing the risk of suboptimal plasma concentrations during treatment. The mechanism of colistin-induced renal toxicity has been postulated to stem from mitochondrial damage, yet there is no direct evidence of colistin acting as a mitochondrial toxin. The aim of this study was to evaluate whether colistin can directly induce mitochondrial toxicity and, if so, uncover the underlying molecular mechanism. We found that colistin leads to a rapid permeability transition of mitochondria isolated from mouse kidney that was fully prevented by co-incubation of the mitochondria with desensitizers of the mitochondrial transition pore cyclosporin A or L-carnitine. The protective effect of L-carnitine was confirmed in experiments in primary cultured mouse tubular cells. Consistently, the relative risk of colistin-induced kidney damage, calculated based on histological analysis as well as by the early marker of tubular kidney injury, Kim-1, was halved under co-administration with L-carnitine in vivo. Notably, L-carnitine neither affected the pharmacokinetics of colistin nor its antimicrobial activity against relevant bacterial strains. In conclusion, colistin targets the mitochondria and induces permeability transition thereof. L-carnitine prevents colistin-induced permeability transition in vitro. Moreover, L-carnitine co-administration confers partial nephroprotection in mice treated with colistin, without interfering with its pharmacokinetics and antibacterial activity.


Subject(s)
Acute Kidney Injury , Anti-Bacterial Agents , Carnitine , Colistin , Mitochondria , Animals , Colistin/adverse effects , Colistin/administration & dosage , Acute Kidney Injury/prevention & control , Acute Kidney Injury/chemically induced , Acute Kidney Injury/metabolism , Carnitine/pharmacology , Carnitine/administration & dosage , Mice , Mitochondria/drug effects , Mitochondria/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/administration & dosage , Male , Mitochondrial Permeability Transition Pore/metabolism , Kidney/drug effects , Kidney/metabolism , Kidney/pathology , Mice, Inbred C57BL , Cyclosporine
7.
J Colloid Interface Sci ; 676: 72-79, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-39018812

ABSTRACT

Due to the sensitivity to water, the all-inorganic CsPbBr3 nanocrystals have been widely applied in information encryption with spatial dimensions. However, the absence of time-dimension information limits the information capacity for the application of CsPbBr3. In this work, the CsPbBr3 nanocrystal was combined with water-sensitive borophosphate glass, achieving decomposing/recrystallization of CsPbBr3 nanocrystal with multi-dimension. The addition of SiO2 confirms that the collapse of the borophosphate glass network structure causes the exposure of the CsPbBr3 nanocrystals. The decomposition and recrystallization mechanism of CsPbBr3 nanocrystals in glass-ceramics upon encountering water has been verified. Finally, an information encryption strategy, using the mixture of CsPbBr3 glass ceramic and sodium carboxymethylcellulose as ink, is designed via adopting screen-printing technology, which not only provides a new idea for the preparation of CsPbBr3 nanocrystals, but also establish a new avenue for the information encryption technology.

8.
J Environ Manage ; 366: 121854, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39018865

ABSTRACT

The whopping increase in solid waste landfills poses serious threats to the environment. Compared to the drilling method, geophysical methods are effective, non-invasive techniques for delineating the contaminant distribution. In this study, electrical resistivity tomography (ERT) and induced polarization (IP) were used to investigate a solid waste deposit. The results of ERT/IP imaging illustrate the potential of the method in environmental studies. Based on the results of 21 survey lines, geo-electrical signals can be summarized as three types: with only high resistivity for construction & demolition wastes (CDWs) areas (RO type), contaminated soil for high chargeability (CO type), and contaminants under CDWs layer have both high resistivity and chargeability (RC type). Chargeability values over 10.2 mV/V correspond to contaminated soil with an overall concentration larger than 75 mg/kg. With the three-dimensional interpolation results and the determined chargeability criteria, the total volume of contaminated soil is 40,555 cubic meters. Finally, comparing the efficiency, cost and results of IP and drilling sampling methods shows that the IP is an efficient, low-cost and high-resolution contamination characterization. The results support that ERT/IP information can fulfill rapid and initial identification as a reliable tool in engineering and environmental investigations.

9.
Biomed Pharmacother ; 177: 117138, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39018878

ABSTRACT

Glucocorticoids (GCs) are potent anti-inflammatory and immunosuppressant medications and remain the cornerstone of systemic lupus erythematosus (SLE) therapy. However, ongoing exposure to GCs has the potential to elicit multiple adverse effects. Considering the irreplaceability of GCs in SLE therapy, it is important to explore the optimal regimen of GCs. Here, we compared the long-term efficacy and safety of pulsed and oral GC therapy in a lupus-prone mouse model. Mice were grouped using a randomized block design. We monitored survival rates, proteinuria, serum autoantibodies, and complement 3 (C3) levels up to 28 weeks of age, and assessed renal damage, bone quality, lipid deposition in the liver and marrow, glucose metabolic parameters, and levels of hormones of the hypothalamic-pituitary-adrenal (HPA) axis. Finally, we explored the mechanisms underlying the superior efficacy of the pulse regimen over oral prednisone regimen. We found that both GC regimens alleviated the poor survival rate, proteinuria, and glomerulonephritis, while also reducing serum autoantibodies and increasing the level of C3. The pulsed GC regimen showed less resistance to insulin, less suppression of the HPA axis, less bone loss, and less bone marrow fat deposition than the oral GC regimen. Additionally, GC-induced leucine zipper (GILZ) was significantly overexpressed in the GC pulse group. These results suggest that the GC pulse regimen ameliorated symptoms in lupus-prone mice, with fewer side effects, which may be related to GILZ overexpression. Our findings offer a potentially promising GC treatment option for SLE.

10.
Biochem Biophys Res Commun ; 731: 150375, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-39018971

ABSTRACT

Research within the hepato-biliary system and hepatic function is currently experiencing heightened interest, this is due to the high frequency of relapse rates observed in chronic conditions, as well as the imperative for the development of innovative therapeutic strategies to address both inherited and acquired diseases within this domain. The most commonly used sources for studying hepatocytes include primary human hepatocytes, human hepatic cancer cell lines, and hepatic-like cells derived from induced pluripotent stem cells. However, a significant challenge in primary hepatic cell culture is the rapid decline in their phenotypic characteristics, dedifferentiation and short cultivation time. This limitation creates various problems, including the inability to maintain long-term cell cultures, which can lead to failed experiments in drug development and the creation of relevant disease models for researchers' purposes. To address these issues, the creation of a powerful 3D cell model could play a pivotal role as a personalized disease model and help reduce the use of animal models during certain stages of research. Such a cell model could be used for disease modelling, genome editing, and drug discovery purposes. This review provides an overview of the main methods of 3D-culturing liver cells, including a discussion of their characteristics, advantages, and disadvantages.

11.
Biosens Bioelectron ; 262: 116573, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39018976

ABSTRACT

Drug-induced liver injury (DILI) poses a severe threat to public health. Endoplasmic reticulum (ER) stress contributes significantly to DILI pathogenesis, with peroxynitrite (ONOO-) identified as a pivotal indicator. However, the temporal and spatial fluctuations of ONOO- associated with ER stress in the pathogenesis of DILI remain unclear. Herein, a novel ER-specific near-infrared (NIR) probe (QM-ONOO) with aggregation-induced emission (AIE) features for monitoring ONOO- fluctuations in DILI was elaborately constructed. QM-ONOO exhibited excellent ER-targeting specificity, a large Stoke's shift, and a low detection limit (26.9 nM) toward ONOO-. QM-ONOO performed well in imaging both exogenous and endogenous ONOO- in HepG2 cells. Furthermore, molecular docking calculations validated the ER-targeting mechanism of QM-ONOO. Most importantly, using this probe allowed us to intuitively observe the dynamic fluctuations of ONOO- during the formation and remediation processes of DILI in the acetaminophen (APAP)-induced mouse model. Consequently, this work provides a promising tool for in-depth research of ONOO- associated pathological processes in DILI.

12.
Phys Med Biol ; 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39019059

ABSTRACT

OBJECTIVE: Radiation-induced acoustic (RA) computed tomographic (RACT) imaging is being thoroughly explored for radiation dosimetry. It is essential to understand how key machine parameters like beam pulse, size, and energy deposition affect image quality in RACT. We investigate the intricate interplay of these parameters and how these factors influence dose map resolution in RACT. APPROACH: We first conduct an analytical assessment of time-domain RA signals and their corresponding frequency spectra for certain testcases, and computationally validate these analyses. Subsequently, we simulated a series of X-ray-based RACT (XACT) experiments and compared the simulations with experimental measurements. In-silico reconstruction studies have also been conducted to demonstrate the resolution limits imposed by the temporal pulse profiles on RACT. XACT experiments were performed using clinical machines and the reconstructions were analyzed for resolution capabilities. MAIN RESULTS: Our paper establishes the theory for predicting the time- and frequency-domain behavior of RA signals. We illustrate that the frequency content of RA signal is not solely dependent on the spatial energy deposition characteristics but also on the temporal features of radiation. The same spatial energy deposition through a Gaussian pulse and a rectangular pulse of equal pulsewidths results in different frequency spectra of the RA signals. RA signals corresponding to the rectangular pulse exhibit more high-frequency content than their Gaussian pulse counterparts and hence provide better resolution in the reconstructions. XACT experiments with ~3.2 us and ~4 us rectangular radiation pulses were performed, and the reconstruction results were found to correlate well with the in-silico results. SIGNIFICANCE: Here, we discuss the inherent resolution limits for RACT-based radiation dosimetric systems. While our study is relevant to the broader community engaged in research on photoacoustics, X-ray-acoustics, and proto/ionoacoustics, it holds particular significance for medical physics researchers aiming to set up RACT for dosimetry and radiography using clinical radiation machines.

13.
J Adv Res ; 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39019109

ABSTRACT

INTRODUCTION: Post-mastectomy radiotherapy plays a crucial role in breast cancer treatment but can lead to an inflammatory response causing soft tissue damage, particularly radiation-induced capsular contracture (RICC), impacting breast reconstruction outcomes. Adipose-derived stem cells (ADSCs), known for their regenerative potential via paracrine capacity, exhibit inherent radiotolerance. The influence of tumor necrosis factor-alpha (TNF-α) on ADSCs has been reported to enhance the paracrine effect of ADSCs, promoting wound healing by modulating inflammatory responses. OBJECTIVE: This study investigates the potential of TNF-α-treated human ADSCs (T-hASCs) on silicone implants to alleviate RICC, hypothesizing to enhance suppressive effects on RICC by modulating inflammatory responses in a radiation-exposed environment. METHODS: In vitro, T-hASCs were cultured on various surfaces to assess viability after exposure to radiation up to 20 Gy. In vivo, T-hASC and non-TNF-α-treated hASC (C-hASCs)-coated membranes were implanted in mice before radiation exposure, and an evaluation of the RICC mitigation took place 4 and 8 weeks after implantation. In addition, the growth factors released from T-hASCs were assessed. RESULTS: In vitro, hASCs displayed significant radiotolerance, maintaining consistent viability after exposure to 10 Gy. TNF-α treatment further enhanced radiation tolerance, as evidenced by significantly higher viability than C-hASCs at 20 Gy. In vivo, T-hASC-coated implants effectively suppressed RICC, reducing capsule thickness. T-hASCs exhibited remarkable modulation of the inflammatory response, suppressing M1 macrophage polarization while enhancing M2 polarization. The elevated secretion of vascular endothelial growth factor from T-hASCs is believed to induce macrophage polarization, potentially reducing RICC. CONCLUSION: This study establishes T-hASCs as a promising strategy for ameliorating the adverse effects experienced by breast reconstruction patients after mastectomy and radiation therapy. The observed radiotolerance, anti-fibrotic effects, and immune modulation suggest the possibility of enhancing patient outcomes and quality of life. Further research and clinical trials are warranted for broader clinical uses.

14.
Mol Metab ; : 101992, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39019114

ABSTRACT

OBJECTIVE: We here assessed whether typical pathogens of laboratory mice affect the development of diet-induced obesity and glucose intolerance, and whether colonization affects the efficacy of the GLP-1R agonist liraglutide and of the GLP-1/GIP co-agonist MAR709 to treat obesity and diabetes. METHODS: Male C57BL/6J mice were experimentally infected with Helicobacter hepaticus, Rodentibacter pneumotropicus and Staphylococcus aureus and compared to a group of uninfected specific and opportunistic pathogen free (SOPF) mice. The development of diet-induced obesity and glucose intolerance was monitored over a period of 26 weeks. To study the influence of pathogens on drug treatment, mice were then subjected for 6 days daily treatment with either the GLP-1 receptor agonist liraglutide or the GLP-1/GIP co-agonist MAR709. RESULTS: Colonized mice did not differ from SOPF controls regarding HFD-induced body weight gain, food intake, body composition, glycemic control, or responsiveness to treatment with liraglutide or the GLP-1/GIP co-agonist MAR709. CONCLUSIONS: We conclude that the occurrence of Helicobacter hepaticus, Rodentibacter pneumotropicus and Staphylococcus aureus does neither affect the development of diet-induced obesity or type 2 diabetes, nor the efficacy of GLP-1-based drugs to decrease body weight and to improve glucose control in mice.

15.
Fish Shellfish Immunol ; : 109773, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39019124

ABSTRACT

Fish nocardiosis is a chronic disease mainly caused by Nocardia seriolae, which occurs in a variety of economically cultured freshwater and marine fish. Studies have shown that DNA vaccine is an effective treatment to protect fish from bacterial infection. In our previous experiment, an in vivo-induced gene of N. seriolae, encoding phosphoketolase (PK) family protein, was identified by in vivo-induced antigen technology. In the present study, the antigenic gene encoding PK family protein was analyzed by bioinformatics and further inserted into the eukaryotic expression vector pcDNA3.1-myc-his-A for DNA vaccine development. The immunological effects of pcDNA-PK DNA vaccine were assessed in hybrid snakehead (Channa maculata ♀ × Channa argus ♂), showing induction in several serum enzyme activity parameters (including LZM, SOD, ACP and AKP), increasing in specific-antibody IgM levels, as well as up-regulation in six immune-related genes (CD4, CD8α, TNFα, IL-1ß, MHCIα and MHCIIα). Moreover, an immune-protection with a relative survival rate was provided at 53.82% following artificial challenge with N. seriolae in vaccinated fish in comparison to the control group. In summary, these results indicate that pcDNA-PK DNA vaccine could boost strong immune responses in hybrid snakehead and show preferably protective efficacy against N. seriolae, which may be applied in aquaculture to control fish nocardiosis.

16.
Biol Psychiatry ; 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39019389

ABSTRACT

BACKGROUND: Epigenetic changes, leading to long-term neuroadaptations following opioid exposure are not well understood. We examined how histone demethylase JMJD3 in the nucleus accumbens (NAc) influences heroin seeking after abstinence from self-administration. METHODS: Male Sprague-Dawley rats were trained to self-administer heroin. Western blotting and qPCR were performed to quantify JMJD3 and bone morphogenetic protein (BMP) pathway expression in the NAc (n = 7-11/group). Pharmacological inhibitors or viral expression vectors were microinfused into the NAc to manipulate JMJD3 or the BMP pathway member SMAD1 (n = 9-11/group). The RiboTag capture method (n = 3-5/group) and viral vectors (n = 7-8/group) were used in male transgenic rats to identify the contributions of D1- and D2-type medium spiny neurons (MSN) in the NAc. Drug-seeking was tested by cue-induced response previously paired with drug infusion. RESULTS: Levels of JMJD3 and phosphorylated SMAD1/5 in the NAc were increased after 14 days of abstinence from heroin self-administration. Pharmacological and virus-mediated inhibition of JMJD3 or the BMP pathway attenuated cue-induced seeking. Pharmacological inhibition of BMP signaling reduced JMJD3 expression and histone 3 lysine 27 trimethylation (H3K27me3) levels. JMJD3 bidirectionally affected seeking: expression of the wild type increased whereas expression of a catalytic dead mutant decreased cue-induced seeking. JMJD3 expression was increased in D2+ but not D1+ MSNs. Expression of the mutant JMJD3 in D2+ neurons was sufficient to decrease cue-induced heroin seeking. CONCLUSIONS: JMJD3 mediates persistent cellular and behavioral adaptations underlying heroin relapse and this activity is regulated by the BMP pathway.

17.
Ophthalmol Ther ; 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39020238

ABSTRACT

INTRODUCTION: The purpose of the study was to explore the possible correlations between the anterior segment parameters derived from anterior segment swept-source optical coherence tomography (AS-SS-OCT) with the surgically induced corneal astigmatism (CSIA) calculated from total keratometry (TK) measured by AS-SS-OCT. METHODS: Seventy-one eyes of 67 patients with age-related cataract who underwent phacoemulsification combined with intraocular lens implantation with 2.2-mm incision were included. The CSIA values were calculated from anterior keratometry (CSIAKant) and TK (CSIATK) measured by AS-SS-OCT, respectively. Hotelling's T2 test was used to evaluate the difference. The correlation of CSIA with various parameters derived from AS-SS-OCT was tested with the Spearman correlation coefficient. RESULTS: The centroid of CSIAKant and of CSIATK were 0.31 ± 0.55 D @ 54° and 0.41 ± 0.59 D @ 51°, with no significant difference (F = 1.283, p = 0.281, Hotelling's T2). The mean absolute CSIAKant and CSIATK were 0.58 ± 0.24 D and 0.65 ± 0.28 D. Spearman test showed that the magnitude of CSIAKant was negatively correlated with preoperative peripheral corneal thickness (PCT, p = 0.045) and the magnitude of anterior keratometry (p = 0.044). The magnitude of CSIATK was negatively correlated with preoperative central corneal thickness (CCT, p = 0.003) and preoperative PCT (p = 0.015). CONCLUSIONS: The increased thickness of the peripheral cornea is correlated with the decrease in the magnitude of the CSIA. The correlation we identified between the corneal thickness and the CSIA indicated that certain preoperative parameters should be considered for the prediction of CSIA for a more precise refractive outcome.

18.
ACS Appl Mater Interfaces ; 16(28): 35949-35963, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38970482

ABSTRACT

Chemotherapy-induced oral mucositis (CIOM) is a prevalent complication of chemotherapy and significantly affects the treatment process. However, effective treatment for CIOM is lacking due to the unique environment of the oral cavity and the single effect of current drug delivery systems. In this present study, we propose an innovative approach by combining a methacrylate-modified human recombinant collagen III (rhCol3MA) hydrogel system with hyaluronic acid-epigallocatechin gallate (HA-E) and dopamine-modified methacrylate-alginate (AlgDA-MA). HA-E is used as an antioxidant and anti-inflammatory agent and synergizes with AlgDA-MA to improve the wet adhesion of hydrogel. The results of rhCol3MA/HA-E/AlgDA-MA (Col/HA-E/Alg) hydrogel demonstrate suitable physicochemical properties, excellent wet adhesive capacity, and biocompatibility. Notably, the hydrogel could promote macrophage polarization from M1 to M2 and redress human oral keratinocyte (HOK) inflammation by inhibiting NF-κB activation. Wound healing evaluations in vivo demonstrate that the Col/HA-E/Alg hydrogel exhibits a pro-repair effect by mitigating inflammatory imbalances, fostering early angiogenesis, and facilitating collagen repair. In summary, the Col/HA-E/Alg hydrogel could serve as a promising multifunctional dressing for the treatment of CIOM.


Subject(s)
Alginates , Anti-Inflammatory Agents , Hyaluronic Acid , Hydrogels , Stomatitis , Hydrogels/chemistry , Hydrogels/pharmacology , Humans , Stomatitis/drug therapy , Stomatitis/chemically induced , Stomatitis/pathology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Alginates/chemistry , Animals , Hyaluronic Acid/chemistry , Hyaluronic Acid/pharmacology , Catechin/chemistry , Catechin/analogs & derivatives , Catechin/pharmacology , Catechin/therapeutic use , Mice , Wound Healing/drug effects , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Methacrylates/chemistry , Dopamine/chemistry , Dopamine/pharmacology , Keratinocytes/drug effects
19.
ACS Appl Mater Interfaces ; 16(28): 36715-36726, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38978456

ABSTRACT

Eu3+-induced polystyrene-co-poly(acrylic acid) aggregates (EIPAs) were synthesized using a self-assembly approach, and their structures and photophysical characteristics were examined to achieve effective monochromatic red emission in polymer light-emitting diodes (PLEDs). By adjusting the monomer ratio in RAFT polymerization, the size of Eu3+-induced block copolymer nanoaggregates can be regulated, thereby modulating the luminescence intensity. High-performance bilayer polymer light-emitting devices were fabricated using poly(9,9-dioctylfluorene) (PFO) and 2-(tert-butylphenyl)-5-biphenylyl-1,3,4-oxadiazole (PBD) as the host matrix, with EIPAs as the guest dopant. The devices exhibited narrow red emission at 615 nm with a full width at half-maximum (fwhm) of 15 nm across doping concentrations of 1, 3, 5, and 10 wt %. At a doping concentration of 3 wt %, the device achieved a maximum brightness of 1864.48 cd/m2 at 193.82 mA/cm2 and an external quantum efficiency of 3.20% at a current density of 3.5 mA/cm2. These results indicate that incorporating polystyrene-co-poly(acrylic acid) with Eu3+ complexes enhances the excitation and emission intensity, as well as the structural stability of the emitting layer in PLEDs, thereby improving the device performance.

20.
Respir Physiol Neurobiol ; 327: 104301, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38996857

ABSTRACT

BACKGROUND AND METHODS: Little is known about self-induced cognitive trance (SICT) on respiratory function. The aims of this prospective, single-center, non-randomized, open-label study of healthy volunteers, were to characterize spirometry changes during SICT, confirm the safety of this technique, and investigate the potential clinical benefits of SICT. RESULTS: Nine people participated. There were no significant difference in FEV1 FVC or FEF 25-75 before, during, and after SICT. There were significant improvements in grip strength during SICT (+2.2 kg/5.7 %, p<0.05) and in self-efficacy score related to physical activity at the end of the trance. One participant had a significant worsening of FEV1 during SICT in the context of a recent upper airway infection. CONCLUSION: SICT does not significantly modify spirometry data in healthy volunteers and can improve self-efficacy related to physical activity. SICT should probably be performed with caution during upper airway infections.

SELECTION OF CITATIONS
SEARCH DETAIL
...