Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 561
Filter
1.
Adv Sci (Weinh) ; : e2405668, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38981049

ABSTRACT

Near-infrared (NIR) light powdered CO2 photoreduction reaction is generally restricted to the separation efficiency of photogenerated carriers and the supply of active hydrogen (*H). Herein, the study reports a retrofitting hydrogenated MoO3-x (H-MoO3-x) nanosheet photocatalysts with Ru single atom substitution (Ru@H-MoO3-x) fabricated by one-step solvothermal method. Experiments together with theoretical calculations demonstrate that the synergistic effect of Ru substitution and oxygen vacancy can not only inhibit the recombination of photogenerated carriers, but also facilitate the CO2 adsorption/activation as well as the supply of *H. Compared with H-MoO3-x, the Ru@H-MoO3-x exhibit more favorable formation of *CHO in the process of *CO conversion due to the fast *H generation on electron-rich Ru sites and transfer to *CO intermediates, leading to the preferential photoreduction of CO2 to CH4 with high selectivity. The optimized Ru@H-MoO3-x exhibits a superior CO2 photoreduction activity with CH4 evolution rate of 111.6 and 39.0 µmol gcatalyst -1 under full spectrum and NIR light irradiation, respectively, which is 8.8 and 15.0 times much higher than that of H-MoO3-x. This work provides an in-depth understanding at the atomic level on the design of NIR responsive photocatalyst for achieving the goal of carbon neutrality.

2.
Vet World ; 17(5): 1124-1129, 2024 May.
Article in English | MEDLINE | ID: mdl-38911083

ABSTRACT

Background and Aim: Low-level laser therapy (LLLT) has shown benefits as an alternative treatment of feline chronic gingivostomatitis by reducing pain and inflammation within the oral cavity. Extraoral application technique in cats provides more comfort compared to intraoral application. However, the efficacy of LLLT through buccal tissue is still controversial. This study aimed to investigate the penetration efficacy of LLLT using 830 nm continuous waves with various settings and different application techniques. Materials and Methods: Twenty-four healthy cats were included in this study. The wavelength of LLLT was 830 nm with an output power of 200 mW through extraoral application, using fluences of 2 and 6 J/cm2 in continuous-wave mode. This study compared different distances (contact and non-contact) and three different transmission media (absent media, alcohol, and normal saline solution). Measurement of the laser power within the oral cavity is represented as the mean output power (MOP). Results: Penetration efficacy was detectable for all fluences, distances, and transmission media, with an average buccal thickness of 2.68 mm. MOP did not differ between fluences of 2 and 6 J/cm2 (p = 0.19). In the absence of media, MOP was significantly higher compared with alcohol (p < 0.05) but was not significantly different from normal saline solution (p = 0.26). Conclusion: Extraoral application of LLLT demonstrated penetration efficacy through the buccal tissue with both contact and non-contact skin (<10 mm). This is a potential alternative treatment for oral diseases in clinical practice. However, there is a need for further study on the efficacy of treatment in clinical practice.

3.
Oncoimmunology ; 13(1): 2370544, 2024.
Article in English | MEDLINE | ID: mdl-38915782

ABSTRACT

Regulatory T cells (Tregs) play a crucial role in mediating immunosuppression in the tumor microenvironment. Furthermore, Tregs contribute to the lack of efficacy and hyperprogressive disease upon Programmed cell death protein 1 (PD-1) blockade immunotherapy. Thus, Tregs are considered a promising therapeutic target, especially when combined with PD-1 blockade. However, systemic depletion of Tregs causes severe autoimmune adverse events, which poses a serious challenge to Treg-directed therapy. Here, we developed a novel treatment to locally and predominantly damage Tregs by near-infrared duocarmycin photorelease (NIR-DPR). In this technology, we prepared anti-CD25 F(ab')2 conjugates, which site-specifically uncage duocarmycin in CD25-expressing cells upon exposure to NIR light. In vitro, CD25-targeted NIR-DPR significantly increased apoptosis of CD25-expressing HT2-A5E cells. When tumors were irradiated with NIR light in vivo, intratumoral CD25+ Treg populations decreased and Ki-67 and Interleukin-10 expression was suppressed, indicating impaired functioning of intratumoral CD25+ Tregs. CD25-targeted NIR-DPR suppressed tumor growth and improved survival in syngeneic murine tumor models. Of note, CD25-targeted NIR-DPR synergistically enhanced the efficacy of PD-1 blockade, especially in tumors with higher CD8+/Treg PD-1 ratios. Furthermore, the combination therapy induced significant anti-cancer immunity including maturation of dendritic cells, extensive intratumoral infiltration of cytotoxic CD8+ T cells, and increased differentiation into CD8+ memory T cells. Altogether, CD25-targeted NIR-DPR locally and predominantly targets Tregs in the tumor microenvironment and synergistically improves the efficacy of PD-1 blockade, suggesting that this combination therapy can be a rational anti-cancer combination immunotherapy.


Subject(s)
Duocarmycins , Programmed Cell Death 1 Receptor , T-Lymphocytes, Regulatory , Tumor Microenvironment , Animals , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/drug effects , Mice , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/immunology , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology , Duocarmycins/pharmacology , Immunoconjugates/pharmacology , Immunoconjugates/therapeutic use , Humans , Cell Line, Tumor , Female , Interleukin-2 Receptor alpha Subunit/metabolism , Interleukin-2 Receptor alpha Subunit/immunology , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Disease Models, Animal , Mice, Inbred C57BL , Apoptosis/drug effects , Infrared Rays
4.
ACS Appl Mater Interfaces ; 16(24): 31489-31499, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38833169

ABSTRACT

Currently, photodynamic therapy (PDT) is restricted by the laser penetration depth. Except for PDT at 1064 nm wavelength excitation, the development of other NIR-II-activated nanomaterials with a higher response depth is still hindered and rarely reported in the literature. To overcome these problems, we fabricated a nanoplatform with heterostructures that generate reactive oxygen species (ROS) and ferrite nanoparticles under a high concentration of zinc doping (ZnxFe3-xO4 NPs), which can achieve oxidative damage of tumor cells under near-infrared (NIR) illumination. The recombination of photoelectrons and holes has been markedly inhibited due to the formation of heterostructures in the interfaces, thus greatly enhancing the capability for ROS and oxygen production by modulating the single-component doping content. The efficiency of PDT was verified by in vivo and in vitro assays under NIR light. Our results revealed that NIR-II (1208 nm) light irradiation of ZnxFe3-xO4 NPs exerted a remarkable antitumor activity, superior to NIR-I light (808 nm). More importantly, the reported ZnxFe3-xO4 NPs strategy provides an opportunity for the success of comparison with light in the first and second near-infrared regions.


Subject(s)
Infrared Rays , Photochemotherapy , Zinc , Humans , Zinc/chemistry , Zinc/pharmacology , Animals , Mice , Reactive Oxygen Species/metabolism , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Ferric Compounds/chemistry , Ferric Compounds/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Mice, Inbred BALB C
5.
J Nanobiotechnology ; 22(1): 311, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831332

ABSTRACT

Efficient thrombolysis in time is crucial for prognostic improvement of patients with acute arterial thromboembolic disease, while limitations and complications still exist in conventional thrombolytic treatment methods. Herein, our study sought to investigate a novel dual-mode strategy that integrated ultrasound (US) and near-infrared light (NIR) with establishment of hollow mesoporous silica nanoprobe (HMSN) which contains Arginine-glycine-aspartate (RGD) peptide (thrombus targeting), perfluoropentane (PFP) (thrombolysis with phase-change and stable cavitation) and indocyanine green (ICG) (thrombolysis with photothermal conversion). HMSN is used as the carrier, the surface is coupled with targeted RGD to achieve high targeting and permeability of thrombus, PFP and ICG are loaded to achieve the collaborative diagnosis and treatment of thrombus by US and NIR, so as to provide a new strategy for the integration of diagnosis and treatment of arterial thrombus. From the in vitro and in vivo evaluation, RGD/ICG/PFP@HMSN can aggregate and penetrate at the site of thrombus, and finally establish the dual-mode directional development and thrombolytic treatment under the synergistic effect of US and NIR, providing strong technical support for the accurate diagnosis and treatment of arterial thrombosis.


Subject(s)
Indocyanine Green , Infrared Rays , Oligopeptides , Thrombolytic Therapy , Thrombosis , Animals , Thrombolytic Therapy/methods , Oligopeptides/chemistry , Indocyanine Green/chemistry , Thrombosis/diagnostic imaging , Thrombosis/drug therapy , Nanoparticles/chemistry , Fluorocarbons/chemistry , Silicon Dioxide/chemistry , Humans , Mice , Male , Rabbits , Ultrasonography/methods , Pentanes
6.
Article in Russian | MEDLINE | ID: mdl-38934955

ABSTRACT

OBJECTIVE: To analyze the effects and tolerability of physiotherapeutic methods with optical radiation (phototherapy) in acute respiratory diseases (ARD) on the basis of the modern scientific literature data and the results of doctors and patients survey. MATERIAL AND METHODS: An analysis of regulatory sources and modern scientific literature on the subject of research, survey of 200 patients with ARD and 100 primary care physicians of the Central Federal District on their sociomedical status and awareness of phototherapeutic treatment methods were conducted. RESULTS: Phototherapy in ARD have demonstrated chromogenic, immunostimulating, photosensitizing, vitamin-forming, trophostimulating, anti-inflammatory, analgesic, desensitizing, bactericidal and mycocidal, metabolic, coagulo-correcting therapeutic effects. Patients and doctors have been insufficiently aware of phototherapy methods and used them in practice relatively rare. A significant proportion of patients had ARD risk factors, namely teamwork, tobacco smoking and chronic diseases. CONCLUSION: 1. The therapeutic effects of all types of phototherapy in acute respiratory infections are interrelated with their etiopathogenesis. 2. Patients and doctors are insufficiently informed and relatively rarely use phototherapy methods. 3. A significant proportion of patients have risk factors for acute respiratory infections: teamwork (88%), tobacco smoking (68%) and chronic diseases (52%).


Subject(s)
Phototherapy , Humans , Phototherapy/methods , Acute Disease , Male , Female , Adult , Respiratory Tract Diseases/therapy , Respiratory Tract Infections/therapy , Middle Aged
7.
Angew Chem Int Ed Engl ; : e202407638, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38941107

ABSTRACT

Near-infrared light-driven photocatalytic CO2 reduction (NIR-CO2PR) holds tremendous promise for the production of valuable commodity chemicals and fuels. However, designing photocatalysts capable of reducing CO2 with low energy NIR photons remains challenging. Herein, a novel NIR-driven photocatalyst comprising an anionic Ru complex intercalated between NiAl-layered double hydroxide nanosheets (NiAl-Ru-LDH) is shown to deliver efficient CO2 photoreduction (0.887 µmol h-1) with CO selectivity of 84.81% under 1200 nm illumination and excellent stability over 50 testing cycles. This remarkable performance results from the intercalated Ru complex lowering the LDH band gap (0.98 eV) via a compression-related charge redistribution phenomenon. Furthermore, transient absorption spectroscopy data verified light-induced electron transfer from the Ru complex towards the LDH sheets, increasing the availability of electrons to drive CO2PR. The presence of hydroxyl defects in the LDH sheets promotes the adsorption of CO2 molecules and lowers the energy barriers for NIR-CO2PR to CO. To our knowledge, this is one of the first reports of NIR-CO2PR at wavelengths up to 1200 nm in LDH-based photocatalyst systems.

8.
J Cutan Aesthet Surg ; 17(2): 158-159, 2024.
Article in English | MEDLINE | ID: mdl-38800817

ABSTRACT

Venesection is common procedure performed in day to day life of every doctor. Conventional vein finders available are costly and not easily available. The present paper highlights the use of makeshift vein finder.

9.
Adv Mater ; : e2404851, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38742925

ABSTRACT

Photocatalytic synthesis of hydrogen peroxide (H2O2) from O2 and H2O under near-infrared light is a sustainable renewable energy production strategy, but challenging reaction. The bottleneck of this reaction lies in the regulation of O2 reduction path by photocatalyst. Herein, the center of the one-step two-electron reduction (OSR) pathway of O2 for H2O2 evolution via the formation of the hydroxyl-bonded Co single-atom sites on boroncarbonitride surface (BCN-OH2/Co1) is constructed. The experimental and theoretical prediction results confirm that the hydroxyl group on the surface and the electronic band structure of BCN-OH2/Co1 are the key factor in regulating the O2 reduction pathway. In addition, the hydroxyl-bonded Co single-atom sites can further enrich O2 molecules with more electrons, which can avoid the one-electron reduction of O2 to •O2 -, thus promoting the direct two-electron activation hydrogenation of O2. Consequently, BCN-OH2/Co1 exhibits a high H2O2 evolution apparent quantum efficiency of 0.8% at 850 nm, better than most of the previously reported photocatalysts. This study reveals an important reaction pathway for the generation of H2O2, emphasizing that precise control of the active site structure of the photocatalyst is essential for achieving efficient conversion of solar-to-chemical.

10.
Alzheimers Dement ; 20(6): 4032-4042, 2024 06.
Article in English | MEDLINE | ID: mdl-38700095

ABSTRACT

INTRODUCTION: Delirium is associated with mortality and new onset dementia, yet the underlying pathophysiology remains poorly understood. Development of imaging biomarkers has been difficult given the challenging nature of imaging delirious patients. Diffuse optical tomography (DOT) offers a promising approach for investigating delirium given its portability and three-dimensional capabilities. METHODS: Twenty-five delirious and matched non-delirious patients (n = 50) were examined using DOT, comparing cerebral oxygenation and functional connectivity in the prefrontal cortex during and after an episode of delirium. RESULTS: Total hemoglobin values were significantly decreased in the delirium group, even after delirium resolution. Functional connectivity between the dorsolateral prefrontal cortex and dorsomedial prefrontal cortex was strengthened post-resolution compared to during an episode; however, this relationship was still significantly weaker compared to controls. DISCUSSION: These findings highlight DOT's potential as an imaging biomarker to measure impaired cerebral oxygenation and functional dysconnectivity during and after delirium. Future studies should focus on the role of cerebral oxygenation in delirium pathogenesis and exploring the etiological link between delirium and dementias. HIGHLIGHTS: We developed a portable diffuse optical tomography (DOT) system for bedside three-dimensional functional neuroimaging to study delirium in the hospital. We implemented a novel DOT task-focused seed-based correlation analysis. DOT revealed decreased cerebral oxygenation and functional connectivity strength in the delirium group, even after resolution of delirium.


Subject(s)
Delirium , Tomography, Optical , Humans , Tomography, Optical/methods , Delirium/diagnostic imaging , Delirium/physiopathology , Male , Female , Aged , Prefrontal Cortex/diagnostic imaging , Hemodynamics/physiology , Cerebrovascular Circulation/physiology , Brain Mapping , Middle Aged
11.
Biosens Bioelectron ; 259: 116412, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38795498

ABSTRACT

While there is significant potential for DNA machine-built enzyme-free fluorescence biosensors in the imaging analysis of live biological samples, they persist certain shortcomings. These encompass a deficiency of signal enrichment within a singular interface, uncontrolled premature activation during bio-delivery, and a slow reaction rate due to free nucleic acid collisions. In this contribution, we are committed to resolving the above challenges. Firstly, a single-interface-integrated domino-like driving amplification is constructed. In this conception, a specific target acts as the domino promotor (namely the energy source), initiating a cascading chain reaction that grafts onto a singular interface. Next, an 808 nm near-infrared (NIR) light-excited up-converting luminescence-induced light-activatable biosensing technique is introduced. By locking the target-specific identification segment with a photo-cleavage connector, the up-converted ultraviolet emission can activate target binding in a completely controlled manner. Moreover, a fast reaction rate is achieved by confining nucleic acid collisions within the surface of a DNA wire nano-scaffold, leading to a substantial enhancement in local contact concentration (30.8-fold increase, alongside a 15 times elevation in rate). When a non-coding microRNA (miRNA-221) is positioned as the model low-abundance target for proof-of-concept validation, our intelligent DNA machine demonstrates ultra-high sensitivity (with a limit of detection down to 62.65 fM) and good specificity for this hepatic malignant tumor-associated biomarker in solution detection. Going further, it is worth highlighting that the biosensing system can be employed to carry out high-performance imaging analysis in live bio-samples (ranging from the cellular level to the nude mouse body), thereby propelling the field of DNA machines in disease diagnosis.


Subject(s)
Biosensing Techniques , DNA , Infrared Rays , MicroRNAs , Biosensing Techniques/methods , Humans , DNA/chemistry , DNA/genetics , MicroRNAs/analysis , MicroRNAs/genetics , Animals , Mice , Nucleic Acid Amplification Techniques/methods , Optical Imaging/methods , Nanostructures/chemistry
12.
Biomaterials ; 309: 122618, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38797122

ABSTRACT

Over the last decades, a variety of metal complexes have been developed as chemotherapeutic agents. Despite the promising therapeutic prospects, the vast majority of these compounds suffer from low solubility, poor pharmacological properties, and most importantly poor tumor accumulation. To circumvent these limitations, herein, the incorporation of cytotoxic Ir(III) complexes and a variety of photosensitizers into polymeric gemini nanoparticles that selectively accumulate in the tumorous tissue and could be activated by near-infrared (NIR) light to exert an anticancer effect is reported. Upon exposure to light, the photosensitizer is able to generate singlet oxygen, triggering the rapid dissociation of the nanostructure and the activation of the Ir prodrug, thereby initiating a cascade of mitochondrial targeting and damage that ultimately leads to cell apoptosis. While selectively accumulating into tumorous tissue, the nanoparticles achieve almost complete eradication of the cisplatin-resistant cervical carcinoma tumor in vivo upon exposure to NIR irradiation.


Subject(s)
Antineoplastic Agents , Boron Compounds , Infrared Rays , Iridium , Nanoparticles , Polymers , Nanoparticles/chemistry , Humans , Animals , Boron Compounds/chemistry , Boron Compounds/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/chemistry , Iridium/chemistry , Polymers/chemistry , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Photosensitizing Agents/therapeutic use , Female , Mice , Cell Line, Tumor , Apoptosis/drug effects , Mice, Inbred BALB C , Photochemotherapy/methods , HeLa Cells , Mice, Nude
13.
Front Neurol ; 15: 1366239, 2024.
Article in English | MEDLINE | ID: mdl-38711557

ABSTRACT

Introduction: This study sought to determine the effect of Occupational Safety and Health Administration (OSHA) compliant noise on auditory health and assess whether pre-noise near infrared (NIR) light therapy can mitigate the effects of noise exposure. Methods: Over four visits, participants (n = 30, NCT#: 03834714) with normal hearing completed baseline hearing health assessments followed by exposure to open ear, continuous pink noise at 94 dBA for 15 min. Immediately thereafter, post-noise hearing tests at 3000, 4000, and 6000 Hz and distortion product otoacoustic emissions (DPOAEs) were conducted along with the Modified Rhyme Test (MRT), Masking Level Difference Test (MLD), and Fixed Level Frequency Tests (FLFT) [collectively referred to as the Central and Peripheral Auditory Test Battery (CPATB)] to acquire baseline noise sensitivity profiles. Participants were then randomized to either Active or Sham NIR light therapy for 30 min binaurally to conclude Visit 1. Visit 2 (≥24 and ≤ 48 h from Visit 1) began with an additional 30-min session of Active NIR light therapy or Sham followed by repeat CPATB testing and noise exposure. Post-noise testing was again conducted immediately after noise exposure to assess the effect of NIR light therapy. The remaining visits were conducted following ≥2 weeks of noise rest in a cross-over design (i.e., those who had received Active NIR light therapy in Visits 1 and 2 received Sham therapy in Visits 3 and 4). Results: Recovery hearing tests and DPOAEs were completed at the end of each visit. Participants experienced temporary threshold shifts (TTS) immediately following noise exposure, with a mean shift of 6.79 dB HL (±6.25), 10.61 dB HL (±6.89), and 7.30 dB HL (±7.25) at 3000, 4000, and 6000 Hz, respectively, though all thresholds returned to baseline at 3000, 4000, and 6000 Hz within 75 min of noise exposure. Paradoxically, Active NIR light therapy threshold shifts were statistically higher than Sham therapy at 3000 Hz (p = 0.04), but no other differences were observed at the other frequencies tested. An age sub-analysis demonstrated that TTS among younger adults were generally larger in the Sham therapy group versus Active therapy, though this was not statistically different. There were no differences in CPATB test results across Active or Sham groups. Finally, we observed no changes in auditory function or central processing following noise exposure, suggestive of healthy and resilient inner ears. Conclusion: In this study, locally administered NIR prior to noise exposure did not induce a significant protective effect in mitigating noise-induced TTS. Further exploration is needed to implement effective dosage and administration for this promising otoprotective therapy.

14.
Talanta ; 276: 126193, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38735244

ABSTRACT

Di(2-ethylhexyl)phthalate (DEHP) is commonly released from plastics in aqueous environment, which can disrupt endocrine system and cause adverse effects on public health. There is a pressing need to highly sensitive detect DEHP. Herein, a near-infrared (NIR) light-driven lab-on-paper cathodic photoelectrochemical aptasensing platform integrated with AgInS2/Cu2O/FeOOH photocathode and "Y"-like ternary conjugated DNA nanostructure-mediated "ON-OFF" catalytic switching of hemin monomer-to-dimer was established for ultrasensitive DEHP detection. Profiting from the collaborative roles of the effective photosensitization of NIR-response AgInS2 and the fast hole extraction of FeOOH, the NIR light-activated AgInS2/Cu2O/FeOOH photocathode generated a markedly enhanced photocathodic signal. The dual hemin-labelled "Y"-like ternary conjugated DNA nanostructures made the hemin monomers separated in space and they maintained highly active to catalyze in situ generation of electron acceptors (O2). The hemin monomers were relocated in close proximity with the help of target-induced allosteric change of DNA nanostructures, which could spontaneously dimerize into catalytically inactive hemin dimers and fail to mediate electron acceptors generation, resulting in a decreased photocathodic signal. Therefore, the ultrasensitive DEHP detection was realized with a linear response range of 1 pM-500 nM and a detection limit of 0.39 pM. This work rendered a promising prototype to construct powerful paper-based photocathodic aptasensing system for sensitive and accurate screening of DEHP in aqueous environment.


Subject(s)
Copper , Diethylhexyl Phthalate , Electrochemical Techniques , Electrodes , Infrared Rays , Photochemical Processes , Copper/chemistry , Electrochemical Techniques/methods , Diethylhexyl Phthalate/chemistry , Diethylhexyl Phthalate/analysis , Aptamers, Nucleotide/chemistry , Biosensing Techniques/methods , Paper , Silver/chemistry , Limit of Detection , Indium/chemistry , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry
15.
eNeuro ; 11(5)2024 May.
Article in English | MEDLINE | ID: mdl-38627064

ABSTRACT

Infrared neural stimulation (INS) is a promising area of interest for the clinical application of a neuromodulation method. This is in part because of its low invasiveness, whereby INS modulates the activity of the neural tissue mainly through temperature changes. Additionally, INS may provide localized brain stimulation with less tissue damage. The inferior colliculus (IC) is a crucial auditory relay nucleus and a potential target for clinical application of INS to treat auditory diseases and develop artificial hearing devices. Here, using continuous INS with low to high-power density, we demonstrate the laminar modulation of neural activity in the mouse IC in the presence and absence of sound. We investigated stimulation parameters of INS to effectively modulate the neural activity in a facilitatory or inhibitory manner. A mathematical model of INS-driven brain tissue was first simulated, temperature distributions were numerically estimated, and stimulus parameters were selected from the simulation results. Subsequently, INS was administered to the IC of anesthetized mice, and the modulation effect on the neural activity was measured using an electrophysiological approach. We found that the modulatory effect of INS on the spontaneous neural activity was bidirectional between facilitatory and inhibitory effects. The modulatory effect on sound-evoked responses produced only an inhibitory effect to all examined stimulus intensities. Thus, this study provides important physiological evidence on the response properties of IC neurons to INS. Overall, INS can be used for the development of new therapies for neurological disorders and functional support devices for auditory central processing.


Subject(s)
Inferior Colliculi , Infrared Rays , Animals , Inferior Colliculi/physiology , Mice , Male , Photic Stimulation/methods , Acoustic Stimulation/methods , Neurons/physiology , Mice, Inbred C57BL , Models, Neurological , Evoked Potentials, Auditory/physiology
16.
Photochem Photobiol ; 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38623963

ABSTRACT

The prevalence of male infertility has become a significant clinical concern worldwide, with a noticeable upward trend in recent times. The rates of fertilization and subsequent development of embryos are dependent on many parameters associated with the quality and viability of sperm. Photobiomodulation (PBM) is a promising approach with a great potential for translational applications in the treatment of spermatozoa exhibiting low quality and motility. In this study, a comprehensive analysis of the existing literature, specifically examining the mechanisms of action of PBM has been presented. Our objective was to enhance knowledge in the field of laser light therapy in order to promote the usage of irradiation in clinical settings in a more effective way. Within the realm of reproductive science, the utilization of PBM has been employed to enhance the metabolic processes, motility, and viability of spermatozoa. This is attributed to its advantageous effects on mitochondria, resulting in the activation of the mitochondrial respiratory chain and subsequent synthesis of ATP. This therapeutic approach can be highly advantageous in circumventing the reliance on chemical substances within the culture medium for spermatozoa while also facilitating the viability and motility of spermatozoa, particularly in circumstances involving thawing or samples with significant immotility.

17.
Sci Rep ; 14(1): 8764, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38627445

ABSTRACT

We propose a phoxonic cavity with structural hierarchy to enhance acousto-optic interaction in acoustically dissipative media. In a conventional phoxonic cavity, interaction between infrared light and hypersound with the same wavelength scale became weak due to large acoustic attenuation whose coefficient is proportional to the square of the frequency. To alleviate the acoustic attenuation, it is necessary to use low-frequency sound with much longer wavelength than the infrared light, but the conventional phoxonic cavity is not suitable for confining such hypersound and infrared light simultaneously. In this study, we employ the concept of structural hierarchy into the phoxonic cavity to control infrared light and hypersound with different wavelength scales. A phoxonic cavity with two different scales achieves the acousto-optic interaction approximately 1.6 times that in the conventional one. To further enhance the interaction, we adjust geometrical constitution and material properties of the two-scale phoxonic cavity using quasi-static homogenization theory, leading to the interaction about 2.1 times that in the conventional cavity.

18.
Ophthalmic Physiol Opt ; 44(5): 954-962, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38557968

ABSTRACT

PURPOSE: To determine whether visible light is needed to elicit axial eye shortening by exposure to long wavelength light. METHODS: Incoherent narrow-band red (620 ± 10 nm) or near-infrared (NIR, 875 ± 30 nm) light was generated by an array of light-emitting diodes (LEDs) and projected monocularly in 17 myopic and 13 non-myopic subjects for 10 min. The fellow eye was occluded. Light sources were positioned 50 cm from the eye in a dark room. Axial length (AL) was measured before and after the exposure using low-coherence interferometry. RESULTS: Non-myopic subjects responded to red light with significant eye shortening, while NIR light induced minor axial elongation (-13.3 ± 17.3 µm vs. +6.5 ± 11.6 µm, respectively, p = 0.005). Only 41% of the myopic subjects responded to red light exposure with a decrease in AL and changes were therefore, on average, not significantly different from those observed with NIR light (+0.2 ± 12.1 µm vs. +1.1 ± 11.2 µm, respectively, p = 0.83). Interestingly, there was a significant correlation between refractive error and induced changes in AL after exposure to NIR light in myopic eyes (r(15) = -0.52, p = 0.03) and induced changes in AL after exposure to red light in non-myopic eyes (r(11) = 0.62, p = 0.02), with more induced axial elongation with increasing refractive error. CONCLUSIONS: Incoherent narrow-band red light at 620 nm induced axial shortening in 77% of non-myopic and 41% of myopic eyes. NIR light did not induce any significant changes in AL in either refractive group, suggesting that the beneficial effect of red laser light therapy on myopia progression requires visible stimulation and not simply thermal energy.


Subject(s)
Axial Length, Eye , Infrared Rays , Myopia , Humans , Axial Length, Eye/diagnostic imaging , Myopia/physiopathology , Male , Female , Infrared Rays/adverse effects , Adult , Young Adult , Interferometry/methods , Refraction, Ocular/physiology , Light/adverse effects , Adolescent
19.
J Dent ; 145: 104994, 2024 06.
Article in English | MEDLINE | ID: mdl-38614206

ABSTRACT

OBJECTIVES: This study aimed to evaluate the diagnostic performance of near-infrared imaging (NIRI) and unaided visual examination (UVE) in detecting proximal caries in permanent dentition in comparison with cone-beam computed tomography (CBCT). METHODS: Patients who underwent NIRI, UVE, and CBCT imaging within 1 week were enrolled. Using CBCT as the reference test, the positive percent agreement (PPA), negative percent agreement (NPA), and overall percent agreement (OPA) of NIRI, UVE, and a combination of the two for detecting proximal caries at different depths and in different tooth locations were assessed. Additionally, the consistency of these diagnostic methods with CBCT was evaluated. RESULTS: We evaluated 6,084 proximal surfaces and identified 177 CBCT-positive sites. NIRI had a PPA, NPA, and OPA of 68.93 %, 99.09 %, and 98.21 %, respectively, with a substantial agreement with CBCT. When combined with UVE, the PPA increased by approximately 50 % compared with that of UVE alone. Regarding caries at different depths, NIRI outperformed UVE in detecting initial caries (ICDAS 1-2) over moderate-to-advanced caries (ICDAS 3-6). However, the combined use of NIRI and UVE improved the detection of moderate-to-advanced caries. In the anterior teeth region, NIRI exhibited excellent agreement with CBCT, surpassing its performance in the posterior region. CONCLUSIONS: Although NIRI cannot fully replace radiographic methods, the substantial agreement of NIRI with CBCT in detecting proximal caries highlights its potential as a complementary tool in routine caries screening, especially when combined with UVE. CLINICAL SIGNIFICANCE: This study highlights the potential of NIRI as a radiation-free method for detecting proximal caries in permanent teeth. Early detection through regular NIRI scanning can lead to timely intervention, improved patient outcomes, and reduced overall disease burden.


Subject(s)
Cone-Beam Computed Tomography , Dental Caries , Dentition, Permanent , Humans , Dental Caries/diagnostic imaging , Cone-Beam Computed Tomography/methods , Female , Male , Adult , Young Adult , Adolescent , Middle Aged , Spectroscopy, Near-Infrared/methods
20.
Small ; : e2311557, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38553810

ABSTRACT

A liquescent salt consisting of a 7,7,8,8-tetracyanquinodimethane (TCNQ) radical anion and a tetra-n-decylammonium ion, 1+•TCNQ•-, exhibits rapid changes in the short-wave infrared (SWIR) light transparency at 1000-1400 nm upon the application of a one-shot needlestick-stimulus. Radical anion salt 1+•TCNQ•- transforms from a blue solid to a green liquid at 90 °C without decomposition under aerated conditions, and remains in the liquid state upon cooling to 70 °C. After applying pressure with a needlestick on a cover glass at 70 °C, the liquid transforms rapidly into the solid state over a timescale of seconds across a centimeter scale of area. Along with the liquid-solid transition, the SWIR-light transparency at 1200 nm completely switches from the "on" to the "off" states. Experimental results, such as electronic spectra and crystal structure analysis, indicates that the SWIR-light absorption in the solid state is due to the existence of a slipped-stacking π-dimer structure for TCNQ•-. The rapid rearrangement is induced by the formation of the π-dimer structures from the monomers of TCNQ•- and the subsequent generations of the solid-state seed.

SELECTION OF CITATIONS
SEARCH DETAIL
...