ABSTRACT
Ultrasound-assisted extraction (UAE) and pressurized liquid extraction (PLE) techniques were evaluated and compared with conventional extraction for obtaining spent coffee ground oil (SCGO). The use of absolute ethanol (ET0) and hydrated ethanol (ET6) as solvents, two levels of SCG mass ratio:solvent, 1:4 (U4) and 1:15 (U15), and ultrasound powers of 0, 200, 400, and 600 W were tested. ET0 and U15 resulted in higher extraction yields of SCGO (YSCGO, 82%). A positive effect of sonication on YSCGO was observed only for condition U4. UAE resulted in defatted solids (DS) with higher apparent density values, corroborating the increase in the amount of smaller diameter particles due to sonication. The micrographs showed changes in the surfaces of the solids from the UAE and PLE, although the crystalline structures of the DS were not altered. UAE and PLE, compared to conventional extraction, did not allow significant gains in terms of YSCGO and, consequently, in the number of contact stages in an extractor configured in cross-currents.
ABSTRACT
This study presents an experimental approach to study the kinetics and fast release of volatile organic compounds (VOCs) upon reconstitution of instant coffee products. A sampling setup coupled to PTR-ToF-MS (Proton Transfer Reaction Time-of-Flight Mass Spectrometry) for the automated and reproducible reconstitution of instant coffee products was developed to monitor the dynamic release of VOCs. A rapid release of aroma compounds was observed in the first seconds upon hot water addition ("aroma burst"), followed by subsequent decrease in headspace (HS) intensities over the course of analysis. Differences in time-intensity release profiles of individual VOCs were correlated to their Henry's Law constant, vapor pressure and water solubility. The setup and approach proposed here have shown to be sensitive and to respond to fast dynamic changes in aroma release. It allows studying VOCs release upon reconstitution and supports the development of novel technologies and formulations for instant products with improved aroma release properties.
Subject(s)
Coffee/chemistry , Food Analysis/methods , Odorants/analysis , Volatile Organic Compounds/analysis , Food Analysis/instrumentation , Kinetics , Mass Spectrometry/instrumentation , Mass Spectrometry/methods , Protons , Solubility , WaterABSTRACT
The present non-targeted 1H NMR-based fingerprinting approach along with multivariate analysis established differences between representative aqueous extracts of commercial ground roasted coffee (GRC) and instant (soluble) coffee (IC) samples. The latter were prepared either by spray drying or freeze drying. When comparing a total of 33 compounds between GRC and IC, the latter product contained a remarkable increase in 5-(hydroxymethyl)furfural and carbohydrates, as well as a clear decrease in trigonelline, N-methylpyridinium, caffeine, caffeoylquinic acids and 2-furylmethanol. Furthermore, the current protocol was able to detect the subtle chemical differences between spray-dried and freeze-dried IC. The aforementioned metabolites could serve as target molecules in the attempt to preserve, as much as possible, the organoleptic and nutraceutical properties of GRC during the industrial drying processes used in the production of the two commercial types of IC.
Subject(s)
Coffea/chemistry , Coffee/chemistry , Food Handling/methods , Magnetic Resonance Spectroscopy/methods , Metabolomics/methods , Seeds/chemistry , Alkaloids/analysis , Caffeine/analysis , Carbohydrates/analysis , Desiccation/methods , Freeze Drying , Furaldehyde/analogs & derivatives , Furaldehyde/analysis , Hot Temperature , Quinic Acid/analogs & derivatives , Quinic Acid/analysisABSTRACT
Coffee is the main source of chlorogenic acid in the human diet, and it contains several chlorogenic acid isomers, of which the 5-caffeoylquinic acid (5-CQA) is the predominant isomer. Because there are no available data about the action of chlorogenic acids from instant coffee on hepatic glucose-6-phosphatase (G-6-Pase) activity and blood glucose levels, these effects were investigated in rats. The changes on G-6-Pase activity and liver glucose output induced by 5-CQA were also investigated. Instant coffee extract with high chlorogenic acids content (37.8%) inhibited (p < 0.05) the G-6-Pase activity of the hepatocyte microsomal fraction in a dose-dependent way (up to 53), but IV administration of this extract did not change the glycaemia (p > 0.05). Similarly, 5-CQA (1 mM) reduced (p < 0.05) the activity of microsomal G-6-Pase by about 40%, but had no effect (p > 0.05) on glucose output arising from glycogenolysis in liver perfusion. It was concluded that instant coffee extract with high content of chlorogenic acids inhibited hepatic G-6-Pase in vitro, but failed to reduce the glycaemia probably because the coffee chlorogenic acids did not reach enough levels within the hepatocytes to inhibit the G-6-Pase and reduce the liver glucose output.
Subject(s)
Blood Glucose/metabolism , Chlorogenic Acid/pharmacology , Coffee/chemistry , Glucose-6-Phosphatase/antagonists & inhibitors , Microsomes, Liver/enzymology , Plant Extracts/chemistry , Quinic Acid/analogs & derivatives , Animals , Chlorogenic Acid/chemistry , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Glycemic Index/drug effects , Humans , Liver/drug effects , Liver/metabolism , Male , Microsomes, Liver/drug effects , Quinic Acid/chemistry , Quinic Acid/pharmacology , Rats , Rats, WistarABSTRACT
The water-insolubility of some coffee extract components is one of the major limitations in the production of instant coffee. In this work, fractions from coffee extracts and sediments were prepared, and their chemical composition determined. Based on the carbohydrate analysis, galactomannan was found to be the main polysaccharide component of the insoluble fractions and probably responsible for sediment formation. The suitability of twelve commercial enzymes for the hydrolysis of the insoluble fractions was investigated. Pectinase 444L was the most effective enzyme in releasing sugars, mainly mannose and galactose, from these substrates. Biopectinase CCM, Rohapect B1L, Pectinase 444L and Galactomannanase ACH were found to be the most effective enzymes for reducing the sediment of coffee extracts. The highest sediment reduction was obtained using Rohapect B1L and Galactomannanase ACH, at enzyme concentrations of 0.3 and 0.1mg protein/g substrate, respectively.
ABSTRACT
The aim of this study was to determine the ochratoxin A (OTA) contamination of instant coffee samples collected in the market of the city of São Paulo, Brazil from August to December, 2004. The EN 14133/2003 method, originally developed to quantify OTA in wine, grape juice and beer samples, was evaluated and approved for analyzing OTA in instant coffee samples. OTA was isolated in an immunoaffinity column and quantified by HPLC with fluorescence detection. The established detection and quantification limits were 0.16 and 0.52 ng/g, respectively. The recoveries from spiked samples were 92.6 ± 1.7, 83.7 ± 0.8, and 91.0 ± 1.2 % at levels of 3.0, 5.0, and 8.0 ng/g, respectively. Of a total of 82 samples analised, 81 (98.8%) contained OTA at levels ranging from 0.17 to 6.29 ng/g. The high frequency of OTA occurrence in the instant coffee samples demonstrates the importance of an effective control of this product by governmental authorities and industries. The rapid methodology for OTA analysis in instant coffee used in this study was defined and validated, permitting it´s use for quality control of this product.
O objetivo do presente estudo foi determinar a contaminação por OTA em amostras de café solúvel comercializadas na cidade de São Paulo, Brasil no período de agosto a dezembro de 2004. O método EN 14133/2003, originalmente desenvolvido para quantificar OTA em amostras de vinho, suco de uva e cerveja, foi avaliado e aprovado para análise de OTA em amostras de café solúvel. OTA foi isolada em coluna de imunoafinidade e quantificada por CLAE com detecção em fluorescência. Os limites de detecção e quantificação do método foram 0,16 e 0,52 ng/g, respectivamente. Os percentuais médios de recuperação foram de 92,6% (3 ng/g), 83,7% (5 ng/g) e 91,0% (8 ng/g), com coeficientes de variação de 1,7 (3 ng/g), 0,8 (5 ng/g) e 1,2 (8 ng/g). A análise das 82 amostras de café solúvel revelou a presença de ocratoxina A em 81 amostras (98,8%), com concentrações variando de 0,17 a 6,29 ng/g. A elevada ocorrência de OTA nas amostras analisadas indica a importância de um controle efetivo desse produto por parte das autoridades governamentais e das indústrias alimentícias. A metodologia rápida utilizada nesse estudo para análise de OTA em amostras de café solúvel foi definida e validada, podendo ser utilizada no controle de qualidade deste produto.