Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
Plant Sci ; 345: 112132, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38788903

ABSTRACT

In this study, the whole HD-Zip family members of G. hirsutum were identified, and GhHDZ76 was classified into the HD-Zip IV subgroup. GhHDZ76 was predominantly expressed in the 0-5 DPA of fiber development stage and localized in the nucleus. Overexpression of GhHDZ76 significantly increased the length and density of trichomes in Arabidopsis thaliana. The fiber length of GhHDZ76 knockout lines by CRISPR/Cas9 was significantly shorter than WT at the early elongation and mature stage, indicating that GhHDZ76 positively regulate the fiber elongation. Scanning electron microscopy showed that the number of ovule surface protrusion of 0 DPA of GhHDZ76 knockout lines was significantly lower than WT, suggesting that GhHDZ76 can also promote the initiation of fiber development. The transcript level of GhWRKY16, GhRDL1, GhEXPA1 and GhMYB25 genes related to fiber initiation and elongation in GhHDZ76 knockout lines were significantly decreased. Yeast two-hybrid and Luciferase complementation imaging (LCI) assays showed that GhHDZ76 can interact with GhWRKY16 directly. As a transcription factor, GhHDZ76 has transcriptional activation activity, which could bind to L1-box elements of the promoters of GhRDL1 and GhEXPA1. Double luciferase reporter assay showed that the GhWRKY16 could enhance the transcriptional activity of GhHDZ76 to pGhRDL1, but it did not promote the transcriptional activity of GhHDZ76 to pGhEXPA1. GhHDZ76 protein may also promote the transcriptional activity of GhWRKY16 to the downstream target gene GhMYB25. Our results provided a new gene resource for fiber development and a theoretical basis for the genetic improvement of cotton fiber quality.


Subject(s)
Cotton Fiber , Gene Expression Regulation, Plant , Gossypium , Plant Proteins , Transcription Factors , Gossypium/genetics , Gossypium/growth & development , Gossypium/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis/growth & development , CRISPR-Cas Systems
2.
BMC Biol ; 22(1): 3, 2024 01 02.
Article in English | MEDLINE | ID: mdl-38166858

ABSTRACT

Intrinsically disordered proteins and regions (IDPs/IDRs) are functionally important proteins and regions that exist as highly dynamic conformations under natural physiological conditions. IDPs/IDRs exhibit a broad range of molecular functions, and their functions involve binding interactions with partners and remaining native structural flexibility. The rapid increase in the number of proteins in sequence databases and the diversity of disordered functions challenge existing computational methods for predicting protein intrinsic disorder and disordered functions. A disordered region interacts with different partners to perform multiple functions, and these disordered functions exhibit different dependencies and correlations. In this study, we introduce DisoFLAG, a computational method that leverages a graph-based interaction protein language model (GiPLM) for jointly predicting disorder and its multiple potential functions. GiPLM integrates protein semantic information based on pre-trained protein language models into graph-based interaction units to enhance the correlation of the semantic representation of multiple disordered functions. The DisoFLAG predictor takes amino acid sequences as the only inputs and provides predictions of intrinsic disorder and six disordered functions for proteins, including protein-binding, DNA-binding, RNA-binding, ion-binding, lipid-binding, and flexible linker. We evaluated the predictive performance of DisoFLAG following the Critical Assessment of protein Intrinsic Disorder (CAID) experiments, and the results demonstrated that DisoFLAG offers accurate and comprehensive predictions of disordered functions, extending the current coverage of computationally predicted disordered function categories. The standalone package and web server of DisoFLAG have been established to provide accurate prediction tools for intrinsic disorders and their associated functions.


Subject(s)
Intrinsically Disordered Proteins , Amino Acid Sequence , Intrinsically Disordered Proteins/chemistry , Protein Conformation , Protein Binding , Language
3.
Zhen Ci Yan Jiu ; 48(10): 1041-1047, 2023 Oct 25.
Article in English, Chinese | MEDLINE | ID: mdl-37879955

ABSTRACT

OBJECTIVES: To observe the effects of electroacupuncture (EA) at "Fengfu" (GV16), "Taichong" (LR3) and "Zusanli" (ST36) on α-synuclein (α-syn), Occludin, Claudin-1, thioredoxin interaction protein (TXNIP) and Nod-like receptor 3 (NLRP3) in Parkinson's disease (PD) mice, so as to investigate the mechanisms of EA on intestinal barrier function and inflammation in PD mice. METHODS: Thirty six C57BL/6 mice were randomly divided into control, model and EA groups, with 12 mice in each group. PD mice model was induced by rotenone intragastric administration for 28 days. Mice in the EA group were treated with EA (2 Hz, 1 mA) at GV16, LR3 and ST36 for 30 min, once a day for 14 days. The behavioral scores were observed. The total distance of autonomic movement was measured by open field test. The expression level of α-syn in substantia nigra and colon tissue was determined by immunohistochemistry. The colonic morphology and goblet cell distribution were observed by Alcian blue staining. The expression levels of Occludin, Claudin-1, TXNIP and NLRP3 mRNA in colon tissue were detected by real-time fluorescence quantitative PCR. RESULTS: Compared with the control group, the behavioral scores of rats were increased (P<0.01);the total distance of autonomous movement was decreased (P<0.01);the positive expression level of α-syn in the substantia nigra and colon was increased (P<0.01);the goblet cells and crypts in colon tissue were reduced, and the muscular layer was thinner;the expression levels of Occludin and Claudin-1 mRNAs in colon tissue were decreased (P<0.01) while TXNIP and NLRP3 mRNAs were increased (P<0.01) in the model group. Compared with the model group, the surface villi of colon tissue was more complete, the goblet cells and crypts were increased, and the muscular layer was thickened;the other indexes were reversed (P<0.01, P<0.05) in the EA group. CONCLUSIONS: EA at GV16, LR3 and ST36 can reduce the abnormal accumulation of α-syn in the substania nigra and colon tissue of PD mice, alleviate the damage of intestinal barrier, regulate TXNIP/NLRP3 signaling pathway, so as to delay the occurrence and development of PD.


Subject(s)
Electroacupuncture , Parkinson Disease , Animals , Mice , Rats , Cell Cycle Proteins/metabolism , Claudin-1 , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein , Occludin , Parkinson Disease/genetics , Parkinson Disease/therapy , Rats, Sprague-Dawley , RNA, Messenger , Signal Transduction , Thioredoxins
4.
Biomolecules ; 13(4)2023 03 25.
Article in English | MEDLINE | ID: mdl-37189340

ABSTRACT

The study of interaction proteins of the pathogen A. phaeospermum effector protein is an important means to analyze the disease-resistance mechanism of Bambusa pervariabilis × Dendrocalamopsis grandis shoot blight. To obtain the proteins interacting with the effector ApCE22 of A. phaeospermum, 27 proteins interacting with the effector ApCE22 were initially identified via a yeast two-hybrid assay, of which four interaction proteins were obtained after one-to-one validation. The B2 protein and the chaperone protein DnaJ chloroplast protein were then verified to interact with the ApCE22 effector protein by bimolecular fluorescence complementation and GST pull-down methods. Advanced structure prediction showed that the B2 protein contained the DCD functional domain related to plant development and cell death, and the DnaJ protein contained the DnaJ domain related to stress resistance. The results showed that both the B2 protein and DnaJ protein in B. pervariabilis × D. grandis were the target interaction proteins of the ApCE22 effector of A. phaeospermum and related to the stress resistance of the host B. pervariabilis × D. grandis. The successful identification of the pathogen effector interaction target protein in B. pervariabilis × D. grandis plays an important role in the mechanism of pathogen-host interaction, thus providing a theoretical basis for the control of B. pervariabilis × D. grandis shoot blight.


Subject(s)
Ascomycota , Bambusa , Bambusa/metabolism , HSP40 Heat-Shock Proteins/metabolism , Host-Pathogen Interactions
5.
Medicina (Kaunas) ; 59(1)2023 Jan 02.
Article in English | MEDLINE | ID: mdl-36676725

ABSTRACT

Background: Mowat-Wilson syndrome (MWS) is extremely rare multisystemic autosomal dominant disorder caused by mutations in the Zinc Finger E-Box Binding Homeobox 2 (ZEB2) gene. Ocular pathologies are one of the symptoms that appear in the clinical picture of MWS individuals, but not many have been described so far. Pathologies such as optic nerve or retinal epithelium atrophy, iris or optic disc coloboma as well as congenital cataracts have been most frequently described until now. Therefore, we would like to report the first case of bilateral developmental cataract in a 9-year-old girl with MWS who underwent successful cataract surgery with intraocular lens implantation. Case Presentation: A 9-year-old girl, diagnosed with p.Gln694Ter mutation in ZEB2 gene and suspicion of MWS was referred to the Children's Outpatient Ophthalmology Clinic for ophthalmological evaluation. Her previous assessments revealed abnormalities of the optic nerve discs. The patient was diagnosed with atrophy of the optic nerves, convergent strabismus, and with-the-rule astigmatism. One year later, during the follow-up visit, the patient was presented with decreased visual acuity (VA), developmental total cataract in the right eye and a developmental partial cataract in the left eye. This resulted in decreased VA confirmed by deteriorated responses in visual evoked potential (VEP) test. The girl underwent a two-stage procedure of cataract removal, first of one eye and then of the other eye with artificial lens implants. In the 2 years following the operation, no complications were observed and, most remarkably, VA improved significantly. Conclusions: The ZEB2 gene is primarily responsible for encoding the Smad interaction protein 1 (SIP1), which is involved in the proper development of various eye components. When mutated, it results in multilevel abnormalities, also in the proper lens formation, that prevent the child from normal vision development. This typically results in the formation of congenital cataracts in children with MWS syndrome, however, our case shows that it also leads to the formation of developmental cataracts. This is presumably due to the effect of the lack of SIP1 on other genes, altering their downstream expression and is a novel insight into the importance of the SIP1 in the occurrence of ocular pathologies. To the best of our knowledge, this is the first case of bilateral developmental cataract in the context of MWS. Moreover, a novel mutation (p.Gln694Ter) in the ZEB2 gene was found corresponding to this syndrome entity. This report allows us to gain a more comprehensive insight into the genetic spectrum and the corresponding phenotypic features in MWS syndrome patients.


Subject(s)
Cataract , Repressor Proteins , Humans , Child , Female , Homeodomain Proteins/genetics , Evoked Potentials, Visual , Cataract/complications , Cataract/genetics , Mutation/genetics , Atrophy , Zinc Finger E-box Binding Homeobox 2/genetics
6.
Plant Physiol Biochem ; 194: 281-301, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36442360

ABSTRACT

The heavy metal-binding domain is involved in heavy metal transporting and plays a significant role in plant detoxification. However, the functions of HMAs are less well known in cotton. In this study, a total of 143 GhHMAs (heavy metal-binding domain) were detected by genome-wide identification in G. hirsutum L. All the GhHMAs were classified into four groups via phylogenetic analysis. The exon/intron structure and protein motifs indicated that each branch of the GhHMA genes was highly conserved. 212 paralogous GhHMA gene pairs were identified, and the segmental duplications were the main role to the expansion of GhHMAs. The Ka/Ks values suggested that the GhHMA gene family has undergone purifying selection during the long-term evolutionary process. GhHMA3 and GhHMA75 were located in the plasma membrane, while GhHMA26, GhHMA117 and GhHMA121 were located in the nucleus, respectively. Transcriptomic data and qRT-PCR showed that GhHMA26 exhibited different expression patterns in each tissue and during fiber development or under different abiotic stresses. Overexpressing GhHMA26 significantly promoted the elongation of leaf trichomes and also improved the tolerance to salt stress. Therefore, GhHMA26 may positively regulate fiber elongation and abiotic stress. Yeast two-hybrid assays indicated that GhHMA26 and GhHMA75 participated in multiple biological functions. Our results suggest some genes in the GhHMAs might be associated with fiber development and the abiotic stress response, which could promote further research involving functional analysis of GhHMA genes in cotton.


Subject(s)
Metals, Heavy , Stress, Physiological , Phylogeny , Stress, Physiological/genetics , Introns , Exons , Metals, Heavy/metabolism , Gossypium/genetics , Gossypium/metabolism , Gene Expression Regulation, Plant , Multigene Family , Plant Proteins/genetics , Plant Proteins/metabolism , Genome, Plant/genetics , Cotton Fiber
7.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1003577

ABSTRACT

@#Thioredoxin-interacting protein (TXNIP), which mainly regulates glucose homeostasis in pancreatic β cells, is a novel target in the treatment of diabetes.In this study, 4-hydroxybenzopyrimidine was used as the raw material, four nitrogen-containing rings (imidazole, methylpiperazine, pyrazole, morpholine) were introduced, benzopyrimidine skeleton with nitrogen-containing rings derivatives targeting TXNIP was designed and synthesized, and the protective effect of compounds on palmitic acid-stimulated islet β cells was investigated.A total of 20 benzopyrimidine derivatives were designed and synthesized, and the structures were confirmed by 1H NMR and ESI-MS.Pharmacological studies showed that most of the compounds exhibited protective effects on islet β cells, with better axtivity for compounds C-1, C-2, C-4 and D-2 (cell survival rate > 70%) compared with PA model group (38.3%), Among the four compounds, D-2 had the highest activity of 87.2%, so it could become a potential new anti-diabetic chemical entity.

8.
Front Plant Sci ; 13: 991077, 2022.
Article in English | MEDLINE | ID: mdl-36186076

ABSTRACT

Arthrinium phaeospermum is the main pathogen that causes Bambusa pervariabilis × Dendrocalamopsis grandis blight. It secretes the cutinase transcription factor ApCtf1ß, which has been shown to play an important role in B. pervariabilis × D. grandis virulence. However, knowledge about the interaction target genes of ApCtf1ß in B. pervariabilis × D. grandis remains limited. A cDNA library for the yeast two-hybrid system was constructed from B. pervariabilis × D. grandis shoots after 168 h treatment with A. phaeospermum. The library was identified as 1.20 × 107 cfu, with an average insert >1,000 bp in size and a 100% positive rate, providing a database for the subsequent molecular study of the interaction between A. phaeospermum and B. pervariabilis × D. grandis. The yeast two-hybrid (Y2H), bimolecular fluorescence complementation (BiFC), and glutathione-S-transferase (GST) pull-down assays were used to screen for and identify two ApCtf1ß interacting target proteins, BDUbc and BDSKL1, providing a reliable theoretical basis to study the molecular mechanism underlying B. pervariabilis × D. grandis resistance in response to A. phaeospermum, which would, in turn, establish a platform to develop new strategies for the sustainable and effective control of the blight diseases of forest trees.

9.
J Biol Chem ; 298(2): 101565, 2022 02.
Article in English | MEDLINE | ID: mdl-34999119

ABSTRACT

Trehalose is the major "blood sugar" of insects and it plays a crucial role in energy supply and as a stress protectant. The hydrolysis of trehalose occurs only under the enzymatic control of trehalase (Treh), which plays important roles in growth and development, energy supply, chitin biosynthesis, and abiotic stress responses. Previous reports have revealed that the vital hormone 20-hydroxyecdysone (20E) regulates Treh, but the detailed mechanism underlying 20E regulating Treh remains unclear. In this study, we investigated the function of HaTreh1 in Helicoverpa armigera larvae. The results showed that the transcript levels and enzymatic activity of HaTreh1 were elevated during molting and metamorphosis stages in the epidermis, midgut, and fat body, and that 20E upregulated the transcript levels of HaTreh1 through the classical nuclear receptor complex EcR-B1/USP1. HaTreh1 is a mitochondria protein. We also found that knockdown of HaTreh1 in the fifth- or sixth-instar larvae resulted in weight loss and increased mortality. Yeast two-hybrid, coimmunoprecipitation, and glutathione-S-transferase (GST) pull-down experiments demonstrated that HaTreh1 bound with ATP synthase subunit alpha (HaATPs-α) and that this binding increased under 20E treatment. In addition, 20E enhanced the transcript level of HaATPs-α and ATP content. Finally, the knockdown of HaTreh1 or HaATPs-α decreased the induction effect of 20E on ATP content. Altogether, these findings demonstrate that 20E controls ATP production by up-regulating the binding of HaTreh1 to HaATPs-α in H. armigera.


Subject(s)
Ecdysterone , Insect Proteins , Moths , Trehalase , Adenosine Triphosphate/metabolism , Animals , Ecdysterone/metabolism , Insect Proteins/metabolism , Larva/metabolism , Mitochondrial Proton-Translocating ATPases/metabolism , Moths/enzymology , Moths/genetics , Trehalase/metabolism , Trehalose/metabolism
10.
Front Plant Sci ; 13: 1103235, 2022.
Article in English | MEDLINE | ID: mdl-36618640

ABSTRACT

Potassium (K) is an essential nutrient for plant physiological processes. Members of the HAK/KUP/KT gene family act as potassium transporters, and the family plays an important role in potassium uptake and utilization in plants. In this study, the TaHAK13 gene was cloned from wheat and its function characterized. Real-time quantitative PCR (RT-qPCR) revealed that TaHAK13 expression was induced by environmental stress and up-regulated under drought (PEG6000), low potassium (LK), and salt (NaCl) stress. GUS staining indicated that TaHAK13 was mainly expressed in the leaf veins, stems, and root tips in Arabidopsis thaliana, and expression varied with developmental stage. TaHAK13 mediated K+ absorption when heterologously expressed in yeast CY162 strains, and its activity was slightly stronger than that of a TaHAK1 positive control. Subcellular localization analysis illustrated that TaHAK13 was located to the plasma membrane. When c(K+) ≤0.01 mM, the root length and fresh weight of TaHAK13 transgenic lines (athak5/TaHAK13, Col/TaHAK13) were significantly higher than those of non-transgenic lines (athak5, Col). Non-invasive micro-test technology (NMT) indicated that the net K influx of the transgenic lines was also higher than that of the non-transgenic lines. This suggests that TaHAK13 promotes K+ absorption, especially in low potassium media. Membrane-based yeast two-hybrid (MbY2H) and luciferase complementation assays (LCA) showed that TaHAK13 interacted with TaNPF5.10 and TaNPF6.3. Our findings have helped to clarify the biological functions of TaHAK13 and established a theoretical framework to dissect its function in wheat.

11.
Front Genet ; 13: 1057160, 2022.
Article in English | MEDLINE | ID: mdl-36704331

ABSTRACT

Acyl-CoA-binding proteins (ACBPs), members of a vital housekeeping protein family, are present in various animal and plant species. They are divided into four classes: small ACBPs (class I), ankyrin-repeat ACBPs (class II), large ACBPs (class III), and kelch-ACBPs (class IV). Plant ACBPs play a pivotal role in intracellular transport, protection, and pool formation of acyl-CoA esters, promoting plant development and stress response. Even though legume crops are important for vegetable oils, proteins, vegetables and green manure, legume ACBPs are not well investigated. To comprehensively explore the functions of ACBPs in nine legumes (Lotus japonicus, Medicago truncatula, Glycine max, Vigna angularis, Vigna radiata, Phaseolus vulgaris, Arachis hypogaea, Arachis duranensis, and Arachis ipaensis), we conducted genome-wide identification of the ACBP gene family. Our evolutionary analyses included phylogenetics, gene structure, the conserved motif, chromosomal distribution and homology, subcellular localization, cis-elements, and interacting proteins. The results revealed that ACBP Orthologs of nine legumes had a high identity in gene structure and conserved motif. However, subcellular localization, cis-acting elements, and interaction protein analyses revealed potentially different functions from previously reported. The predicted results were also partially verified in Arachis hypogaea. We believe that our findings will help researchers understand the roles of ACBPs in legumes and encourage them to conduct additional research.

12.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-907152

ABSTRACT

Objective To explore the effect of circadian rhythm genes on flavonoids biosynthesis in safflower and its molecular mechanism. Methods Based on the transcriptome and metabolomic database of safflower corolla, we screened the circadian rhythm genes that correlate with biosynthesis of flavonoids in safflower. qPCR was used to quantify the expressions of circadian rhythm genes in different flowering stages at different time points in a single day. LC-MS was performed to determine the accumulation of flavonoids. The correlation between them was analyzed as well. Yeast Two-Hybrid experiment was used to verify the interactive proteins of these genes. Results Seven circadian rhythm genes PRR1, PRR2, ELF3, FT, PHYB, GI and ZTL were obtained. PRR1 gene was positively correlated with flavonoids accumulation (r≥0.7). The full length of PRR1 is 3 201 bp, encoding 421 amino acids, which is highly homologous with rice OsPRR73 gene and named as CtPRR1 (GenBank accession number: MW492035). CtPRR1 was mainly expressed in flowers, and the expression level increased in the daytime and declined in the evening gradually. Correspondingly, the content of flavonoids showed an opposite variation. Both of them displayed a circadian rhythm with a negative correlation (r≥−0.7). In addition, 2 heat shock proteins along with 3 AP2 transcription factors interacting with CtPRR1 protein were obtained via Yeast Two-Hybrid experiment. Conclusion CtPRR1 negatively regulated the safflower flavonoids accumulation in a circadian rhythm way, which may be affected by these interacting proteins.

13.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1015675

ABSTRACT

Thioredoxin⁃interacting protein (TXNIP), also known as vitamin D3 up⁃regulation protein 1, is named for its ability to bind to thioredoxin (TRX) and inhibit its activity and expression. This article summarizes the discovery and structure of TXNIP, and its effect on the development of prediabetes by regulating the metabolism of glucose and lipid. On this basis, two main pathways of TXNIP participating in the development of diabetes are summarized: TXNIP induces apoptosis of islet cells by antagonizing the anti⁃apoptosis effect of TRX; Over⁃expression of TXNIP promotes the phosphorylation of islet cells and increases the expression of tumor suppressor⁃related protein, which leads to the senescence of islet cells. The role of TXNIP in diabetic complications such as diabetic cardiomyopathy, diabetic diabetic nephropathy and diabetic retinopathy is emphasized. TXNIP can further participate in physiological and biochemical processes such as oxidative stress, autophagy, apoptosis, glucose and lipid metabolism and activation of inflammation through various indirect pathways. Therefore, it is important to understand the mechanism of TXNIP in diabetes mellitus and its complications. Finally, the potential application of TXNIP in diabetes was discussed. Methylation of single TXNIP gene cannot fully reveal the molecular mechanism of diabetes and its complications. In the future, we can study how TXNIP gene interacts with other genes or risk factors, and participates in the occurrence and development of diabetes and its complications. These in⁃depth studies will lay a foundation for the application of target molecules in the diagnosis and treatment of diabetes and its complications.

14.
Front Pharmacol ; 12: 785732, 2021.
Article in English | MEDLINE | ID: mdl-34744754

ABSTRACT

[This corrects the article DOI: 10.3389/fphar.2021.748852.].

15.
Front Pharmacol ; 12: 748852, 2021.
Article in English | MEDLINE | ID: mdl-34658888

ABSTRACT

MYC, as a well-known oncogene, plays essential roles in promoting tumor occurrence, development, invasion and metastasis in many kinds of solid tumors and hematologic neoplasms. In tumors, the low expression and the short half-life of Myc are reversed, cause tumorigenesis. And proteins that directly interact with different Myc domains have exerted a significant impact in the process of Myc-driven carcinogenesis. Apart from affecting the transcription of Myc target genes, Myc interaction proteins also regulate the stability of Myc through acetylation, methylation, phosphorylation and other post-translational modifications, as well as competitive combination with Myc. In this review, we summarize a series of Myc interacting proteins and recent advances in the related inhibitors, hoping that can provide new opportunities for Myc-driven cancer treatment.

16.
Acta Pharm Sin B ; 11(6): 1446-1468, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34221862

ABSTRACT

The 90-kiloDalton (kD) heat shock protein (Hsp90) is a ubiquitous, ATP-dependent molecular chaperone whose primary function is to ensure the proper folding of several hundred client protein substrates. Because many of these clients are overexpressed or become mutated during cancer progression, Hsp90 inhibition has been pursued as a potential strategy for cancer as one can target multiple oncoproteins and signaling pathways simultaneously. The first discovered Hsp90 inhibitors, geldanamycin and radicicol, function by competitively binding to Hsp90's N-terminal binding site and inhibiting its ATPase activity. However, most of these N-terminal inhibitors exhibited detrimental activities during clinical evaluation due to induction of the pro-survival heat shock response as well as poor selectivity amongst the four isoforms. Consequently, alternative approaches to Hsp90 inhibition have been pursued and include C-terminal inhibition, isoform-selective inhibition, and the disruption of Hsp90 protein-protein interactions. Since the Hsp90 protein folding cycle requires the assembly of Hsp90 into a large heteroprotein complex, along with various co-chaperones and immunophilins, the development of small molecules that prevent assembly of the complex offers an alternative method of Hsp90 inhibition.

17.
Front Plant Sci ; 12: 652337, 2021.
Article in English | MEDLINE | ID: mdl-34305961

ABSTRACT

EXO70 belongs to the exocyst complex subunit that plays a critical role in regulating plant cell polarity establishment and defense response. A previous study proved that the E3 ligase CMPG1-V from Haynaldia villosa, a diploid wheat relative, positively regulates the resistance to wheat powdery mildew (Pm), caused by fungus Blumeria graminis f.sp tritici (Bgt). In this study, a member of EXO70 superfamily named EXO70E1-V was isolated from H. villosa, and EXO70E1-V interacted with CMPG1-V were shown by yeast two-hybrid (Y2H), pull-down assay, bimolecular fluorescence complementation (BiFC) assay, and luciferase complementation imaging (LCI) assay. It is localized in various subcellular organs, i.e., plasma membrane (PM) and endoplasmic reticulum. Co-expression of EXO70E1-V and CMPG1-V showed dot-like structure fluorescence signals that were mainly in PM and nucleus. Expression of EXO70E1-V was relatively higher in leaf and was significantly induced by Bgt infection and exogenous application of hormones such as salicylic acid. Transient or stable overexpression of EXO70E1-V could not enhance/decrease the Pm resistance level, suggesting overexpression of EXO70E1-V alone has no impact on Pm resistance in wheat.

18.
J Cachexia Sarcopenia Muscle ; 12(3): 665-676, 2021 06.
Article in English | MEDLINE | ID: mdl-33773096

ABSTRACT

BACKGROUND: Nuclear receptor interaction protein (NRIP) co-localizes with acetylcholine receptor (AChR) at the neuromuscular junction (NMJ), and NRIP deficiency causes aberrant NMJ architecture. However, the normal physiological and pathophysiological roles of NRIP in NMJ are still unclear. METHODS: We investigated the co-localization and interaction of NRIP with AChR-associated proteins using immunofluorescence and immunoprecipitation assay, respectively. The binding affinity of AChR-associated proteins was analysed in muscle-restricted NRIP knockout mice and NRIP knockout muscle cells (C2C12). We further collected the sera from 43 patients with myasthenia gravis (MG), an NMJ disorder. The existence and features of anti-NRIP autoantibody in sera were studied using Western blot and epitope mapping. RESULTS: NRIP co-localized with AChR, rapsyn and α-actinin 2 (ACTN2) in gastrocnemius muscles of mice; and α-bungarotoxin (BTX) pull-down assay revealed NRIP with rapsyn and ACTN2 in complexes from muscle tissues and cells. NRIP directly binds with α subunit of AChR (AChRα) in vitro and in vivo to affect the binding affinity of AChR with rapsyn and rapsyn with ACTN2. In 43 patients with MG (age, 58.4 ± 14.5 years; female, 55.8%), we detected six of them (14.0%) having anti-NRIP autoantibody. The presence of anti-NRIP autoantibody correlated with a more severe type of MG when AChR autoantibody existed (P = 0.011). The higher the titre of anti-NRIP autoantibody, the more severe MG severity (P = 0.032). The main immunogenic region is likely on the IQ motif of NRIP. We also showed the IgG subclass of anti-NRIP autoantibody mainly to be IgG1. CONCLUSIONS: NRIP is a novel AChRα binding protein and involves structural NMJ formation, which acts as a scaffold to stabilize AChR-rapsyn-ACTN2 complexes. Anti-NRIP autoantibody is a novel autoantibody in MG and plays a detrimental role in MG with the coexistence of anti-AChR autoantibody.


Subject(s)
Acetylcholine , Myasthenia Gravis , Animals , Female , Humans , Mice , Muscle, Skeletal , Neuromuscular Junction , Receptors, Cholinergic
19.
Toxins (Basel) ; 13(2)2021 02 12.
Article in English | MEDLINE | ID: mdl-33673184

ABSTRACT

Latroeggtoxin-VI (LETX-VI) is a peptide neurotoxin newly found from the eggs of spider L. tredecimguttatus. To explore the mechanism of action of the LETX-VI on nerve cells, the effects of LETX-VI on PC12 cells, a commonly used neuron model, were analyzed using a pull-down assay-guided strategy. LETX-VI was shown to interact with 164 PC12 cell proteins that have diverse molecular functions such as binding, catalysis, regulation, structural activity, etc., thereby extensively affecting the biological processes in the PC12 cells, particularly protein metabolism, response to stimulus, substance transport, and nucleic acid metabolism, with 56.71%, 42.07%, 29.88% and 28.66% of the identified proteins being involved in these biological processes, respectively. By interacting with the relevant proteins, LETX-VI enhanced the synthesis of dopamine; positively regulated cell division and proliferation; and negatively regulated cell cycle arrest, cell death, and apoptotic processes, and therefore has limited cytotoxicity against the PC12 cells, which were further experimentally confirmed. In general, the effects of LETX-VI on PC12 cells are more regulatory than cytotoxic. These findings have deepened our understanding of the action mechanism of LETX-VI on nerve cells and provided valuable clues for further related researches including those on Parkinson's disease.


Subject(s)
Arthropod Proteins/toxicity , Dopaminergic Neurons/drug effects , Protein Interaction Mapping , Proteome , Proteomics , Animals , Apoptosis/drug effects , Apoptosis Regulatory Proteins/metabolism , Arthropod Proteins/genetics , Arthropod Proteins/metabolism , Cell Cycle/drug effects , Cell Cycle Proteins/metabolism , Dopamine/metabolism , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/pathology , PC12 Cells , Protein Binding , Rats , Signal Transduction
20.
Virol Sin ; 36(4): 608-622, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33400090

ABSTRACT

Receptors interaction protein 2 (RIP2) is a specific adaptor molecule in the downstream of NOD2. The role of RIP2 during foot-and-mouth disease virus (FMDV) infection remains unknown. Here, our results showed that RIP2 inhibited FMDV replication and played an important role in the activation of IFN-ß and NF-ĸB signal pathways during FMDV infection. FMDV infection triggered RIP2 transcription, while it reduced the expression of RIP2 protein. Detailed analysis showed that FMDV 2B, 2C, 3Cpro, and Lpro proteins were responsible for inducing the reduction of RIP2 protein. 3Cpro and Lpro are viral proteinases that can induce the cleavage or reduction of many host proteins and block host protein synthesis. The carboxyl terminal 105-114 and 135-144 regions of 2B were essential for reduction of RIP2. Our results also showed that the N terminal 1-61 region of 2C were essential for the reduction of RIP2. The 2C-induced reduction of RIP2 was dependent on inducing the reduction of poly(A)-binding protein 1 (PABPC1). The interaction between RIP2 and 2C was observed in the context of viral infection, and the residues 1-61 were required for the interaction. These data clarify novel mechanisms of reduction of RIP2 mediated by FMDV.


Subject(s)
Foot-and-Mouth Disease Virus , Foot-and-Mouth Disease , Animals , Cell Line , Foot-and-Mouth Disease Virus/genetics , Viral Proteins/genetics , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL
...