Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Publication year range
1.
Cell Microbiol ; 23(3): e13283, 2021 03.
Article in English | MEDLINE | ID: mdl-33108050

ABSTRACT

Toxoplasma gondii shows high dissemination and migration properties across biological barriers infecting immunologically privileged organs. Toxoplasma uses different routes for dissemination; however, the mechanisms are not fully understood. Herein, we studied the effects of proteases present in excretion/secretion products (ESPs) of Toxoplasma on MDCK cell monolayers. Ultrastructural analysis showed that ESPs of Toxoplasma disrupt the intercellular junctions (IJ) of adjacent cells. The tight junction (TJ) proteins ZO-1, occludin, and claudin-1 suffered a progressive decrease in protein levels upon ESPs treatment. In addition, ESPs induced mislocalization of such TJ proteins, along with the adherent junction protein E-cadherin, and this was prevented by pre-treating the ESPs with protease inhibitors. Reorganisation of cytoskeleton proteins was also observed. Endocytosis inhibitors, Dyngo®-4a and Dynasore, impeded the modifications, suggesting that TJ proteins internalisation is triggered by the ESPs proteases hence contributing to the loss of IJ. The observed disruption in TJ proteins went in line with a decrease in the transepithelial electrical resistance of the monolayers, which was significantly blocked by pre-treating ESPs with metalloprotease and serine protease inhibitors. Moreover, exposure of cell monolayers to ESPs facilitated paracellular migration of tachyzoites. Our results demonstrate that Toxoplasma ESPs contain proteases that can disrupt the IJ of epithelial monolayers and this could facilitate the paracellular route for Toxoplasma tissue dissemination and migration.


Subject(s)
Intercellular Junctions/metabolism , Peptide Hydrolases/metabolism , Protozoan Proteins/metabolism , Tight Junction Proteins/metabolism , Toxoplasma/physiology , Animals , Cadherins/metabolism , Claudin-1/metabolism , Cytoskeletal Proteins/metabolism , Dogs , Epithelial Cells/metabolism , Epithelial Cells/parasitology , Hydrazones/pharmacology , Intercellular Junctions/ultrastructure , Madin Darby Canine Kidney Cells , Metalloproteases/metabolism , Movement , Naphthols/pharmacology , Occludin/metabolism , Toxoplasma/enzymology , Toxoplasma/pathogenicity , Zonula Occludens-1 Protein/metabolism
2.
Toxins (Basel) ; 10(10)2018 10 07.
Article in English | MEDLINE | ID: mdl-30301260

ABSTRACT

Endothelial dysfunction in uremia can result in cell-to-cell junction loss and increased permeability, contributing to cardiovascular diseases (CVD) development. This study evaluated the impact of the uremic milieu on endothelial morphology and cell junction's proteins. We evaluated (i) serum levels of inflammatory biomarkers in a cohort of chronic kidney disease (CKD) patients and the expression of VE-cadherin and Zonula Occludens-1 (ZO-1) junction proteins on endothelial cells (ECs) of arteries removed from CKD patients during renal transplant; (ii) ECs morphology in vitro under different uremic conditions, and (iii) the impact of uremic toxins p-cresyl sulfate (PCS), indoxyl sulfate (IS), and inorganic phosphate (Pi) as well as of total uremic serum on VE-cadherin and ZO-1 gene and protein expression in cultured ECs. We found that the uremic arteries had lost their intact and continuous endothelial morphology, with a reduction in VE-cadherin and ZO-1 expression. In cultured ECs, both VE-cadherin and ZO-1 protein expression decreased, mainly after exposure to Pi and uremic serum groups. VE-cadherin mRNA expression was reduced while ZO-1 was increased after exposure to PCS, IS, Pi, and uremic serum. Our findings show that uremia alters cell-to-cell junctions leading to an increased endothelial damage. This gives a new perspective regarding the pathophysiological role of uremia in intercellular junctions and opens new avenues to improve cardiovascular outcomes in CKD patients.


Subject(s)
Antigens, CD/metabolism , Cadherins/metabolism , Endothelial Cells/physiology , Intercellular Junctions/physiology , Renal Artery/physiopathology , Renal Insufficiency, Chronic/physiopathology , Uremia/physiopathology , Zonula Occludens-1 Protein/metabolism , Cell Line , Cresols/pharmacology , Endothelial Cells/drug effects , Female , Humans , Indican/pharmacology , Male , Middle Aged , Phosphates/pharmacology , Renal Artery/metabolism , Renal Insufficiency, Chronic/blood , Sulfuric Acid Esters/pharmacology , Toxins, Biological/pharmacology , Uremia/blood
3.
Article in English | MEDLINE | ID: mdl-30324093

ABSTRACT

In Entamoeba histolytica, the EhADH adhesin together with the EhCP112 cysteine protease, form a 124 kDa complex named EhCPADH. This complex participates in trophozoite adherence, phagocytosis and cytolysis of target cells. EhCPADH and EhCP112 are both involved on epithelium damage, by opening tight junctions (TJ) and reaching other intercellular junctions. EhADH is a scaffold protein belonging to the ALIX family that contains a Bro1 domain, expresses at plasma membrane, endosomes and cytoplasm of trophozoites, and is also secreted to the medium. Contribution of EhADH to TJ opening still remains unknown. In this paper, to elucidate the role of EhADH on epithelium injury, we followed two strategies: producing a recombinant protein (rEhADH) and transfecting the ehadh gene in MDCK cells. Results from the first strategy revealed that rEhADH reached the intercellular space of epithelial cells and co-localized with claudin-1 and occludin at TJ region; later, rEhADH was mainly internalized by clathrin-coated vesicles. In the second strategy, MDCK cells expressing EhADH (MDCK-EhADH) showed the adhesin at plasma membrane. In addition, MDCK-EHADH cells exhibited adhesive features, producing epithelial aggregation and adherence to erythrocytes, as described in trophozoites. Surprisingly, the adhesin expression produced an increase of claudin-1, occludin, ZO-1 and ZO-2 at TJ, and also the transepithelial electric resistance (TEER), which is a measure of TJ gate function. Moreover, MDCK-EhADH cells resulted more susceptible to trophozoites attack, as showed by TEER and cytopathic experiments. Overall, our results indicated that EhADH disturbed TJ from the extracellular space and also intracellularly, suggesting that EhADH affects by itself TJ proteins, and possibly synergizes the action of other parasite molecules during epithelial invasion.


Subject(s)
Entamoeba histolytica/pathogenicity , Epithelial Cells/parasitology , Host-Pathogen Interactions , Lectins/metabolism , Membrane Glycoproteins/metabolism , Protozoan Proteins/metabolism , Tight Junction Proteins/biosynthesis , Animals , Cell Adhesion , Dogs , Lectins/genetics , Madin Darby Canine Kidney Cells , Membrane Glycoproteins/genetics , Protozoan Proteins/genetics
4.
J Eukaryot Microbiol ; 65(6): 804-819, 2018 11.
Article in English | MEDLINE | ID: mdl-29655298

ABSTRACT

Naegleria fowleri causes a fatal disease known as primary amoebic meningoencephalitis. This condition is characterized by an acute inflammation that originates from the free passage of peripheral blood cells to the central nervous system through the alteration of the blood-brain barrier. In this work, we established models of the infection in rats and in a primary culture of endothelial cells from rat brains with the aim of evaluating the activation and the alterations of these cells by N. fowleri. We proved that the rat develops the infection similar to the mouse model. We also found that amoebic cysteine proteases produced by the trophozoites and the conditioned medium induced cytopathic effect in the endothelial cells. In addition, N. fowleri can decrease the transendothelial electrical resistance by triggering the destabilization of the tight junction proteins claudin-5, occludin, and ZO-1 in a time-dependent manner. Furthermore, N. fowleri induced the expression of VCAM-1 and ICAM-1 and the production of IL-8, IL-1ß, TNF-α, and IL-6 as well as nitric oxide. We conclude that N. fowleri damaged the blood-brain barrier model by disrupting the intercellular junctions and induced the presence of inflammatory mediators by allowing the access of inflammatory cells to the olfactory bulbs.


Subject(s)
Blood-Brain Barrier/parasitology , Central Nervous System Protozoal Infections/metabolism , Endothelial Cells/metabolism , Naegleria fowleri/metabolism , Naegleria fowleri/pathogenicity , Tight Junction Proteins/metabolism , Animals , Central Nervous System Protozoal Infections/parasitology , Central Nervous System Protozoal Infections/pathology , Claudin-5/metabolism , Cysteine Proteases/metabolism , Cytokines/metabolism , Disease Models, Animal , Inflammation , Intercellular Adhesion Molecule-1/metabolism , Interleukin-1beta/metabolism , Interleukin-8/metabolism , Male , Meningoencephalitis/parasitology , Meningoencephalitis/pathology , Mice , Mucous Membrane/parasitology , Mucous Membrane/pathology , Occludin/metabolism , Rats , Rats, Wistar , Trophozoites/metabolism , Tumor Necrosis Factor-alpha/metabolism , Turbinates/pathology , Vascular Cell Adhesion Molecule-1/metabolism , Zonula Occludens-1 Protein/metabolism
5.
Reprod. clim ; 31(2): 93-104, Maio - Ago. 2016. ilus, tab
Article in Portuguese | LILACS | ID: biblio-834108

ABSTRACT

Durante a foliculogênese em mamíferos, ocorre um longo e complexo processo no qual o oócito adquire a competência necessária para a fecundação. Nesse processo ocorre uma comunicação metabólica bidirecional entre os oócitos e as células somáticas dentro do folículo que garante substratos para o oócito em desenvolvimento. Essa comunicação é mediada pelas junções celulares (junções comunicantes e junções aderentes) presentes nas projeções transzonais. As junções celulares e moléculas de adesão são responsáveis principalmente por promover a adesão entre as células foliculares; mas podem atuar em vias de sinalização celular e na regulação da transcrição gênica nas células somáticas e oócitos. Além disso, as junções comunicantes (junções gap) são canais intermembranares que intermediam a comunicação entre essas células através da passagem de pequenas moléculas. Essas junções comunicantes são compostas por proteínas denominadas conexinas; as conexinas 37 e 43 são as predominantes nos folículos ovarianos. Dessa forma, o conhecimento acerca das junções celulares é de extrema importância para o estudo da foliculogênese. A presente revisão teve como objetivo abordar os principais tipos de junções celulares existentes entre as células foliculares, com destaque para as junções gap e as principais proteínas de membranas (conexinas) presentes nos diferentes estágios do desenvolvimento folicular.


During the mammalian folliculogenesis, a long and complex process occurs, which the oocyte acquires the necessary competence for fecundation. In this process there is a metabolic bidirectional communication among the oocyte and somatic cells inside the follicle, which provides substrates for the oocyte developmental competence. This communication is mediated by cellular junctions (occlusions, adherens and gap junctions) localized in the transzonal projections. Cellular junctions and adhesion mollecules are responsable mainly for promoving the adhesion among follicular cells, however they can act in cellular signaling pathways and in regulation of genic transcription in the follicular cells and oocyte. Moreover, the communication junctions (gap junctions) are intermembrane channels that intermediate the communication among these cells through the passage of small molecules. These gap junctions are composed by connexins, of which the connexins 37 and 43 are the most frequently found in the ovarian follicle. Thus, knowledge of these cellular junctions are of great importance for studying the folliculogenesis process. The aim of this review was to report the main types of cellular junctions localized among the follicular cells, especially the gap junctions and the main membrane proteins (connexins) found in different stages of the follicular development.


Subject(s)
Humans , Gap Junctions , Intercellular Junctions , Ovarian Follicle , Ovary
6.
Tissue Barriers ; 1(2): e24783, 2013 Apr 01.
Article in English | MEDLINE | ID: mdl-24665393

ABSTRACT

Epithelial tissues form a selective barrier that separates the external environment from the internal tissue milieu. Single epithelial cells are densely packed and associate via distinct intercellular junctions. Intercellular junction proteins not only control barrier properties of the epithelium but also play an important role in regulating epithelial homeostasis that encompasses cell proliferation, migration, differentiation and regulated shedding. Recent studies have revealed that several proteases target epithelial junction proteins during physiological maturation as well as in pathologic states such as inflammation and cancer. This review discusses mechanisms and biological consequences of transmembrane junction protein cleavage. The influence of junction protein cleavage products on pathogenesis of inflammation and cancer is discussed.

7.
Arq. bras. ciênc. saúde ; 36(1)maio 2011.
Article in Portuguese | LILACS | ID: lil-588536

ABSTRACT

A matriz extracelular foi considerada por muito tempo uma estrutura inerte constituída por várias proteínas e polissacarídeos sintetizados e secretados pelas células para o preenchimento do espaço extracelular. Atualmente sabe-se que, além de auxiliar na ligação das células para a formação dos tecidos, a matriz extracelular tem papel importante no controle do crescimento e na diferenciação celular e, nessa interação, moléculas como proteoglicanos, glicosaminoglicanos, proteases e glicosidases desencadeam eventos de sinalização celular. Os proteoglicanos presentes na matriz extracelular realizam importantes funções, dentre elas, regulação da atividade de moléculas sinalizadoras, controle do tráfego de células e moléculas, atuação como coreceptorese interação com proteínas fibrosas da matriz. Esta revisão tem enfoque nas características estruturais da matriz extracelular, de proteoglicanose do papel fundamental das interações celulares.


The extracellular matrix was considered for a long time as an inert structure consisting of various proteins and polysaccharides synthesized and secreted by cells to fill the extracellular space. Currently it is known that, in addition to helping cells connection for the tissue formation, theextracellular matrix has an important role in the growth control and in the cellular differentiation, and in this interaction, some molecules like theproteoglycans, glycosaminoglycans, proteases, and glycosidases may trigger cellular signaling events. Proteoglycans present in the extracellularmatrix perform important functions, such as: control of signaling molecules, the transit control of cells and molecules, co-receptors action and interaction with matrix fibrous proteins. This review is focused on the structural characteristics of extracellular matrix, of proteoglycans and of the fundamental role of cellular interactions.


Subject(s)
Humans , Male , Female , Extracellular Matrix , Intercellular Junctions , Proteoglycans
SELECTION OF CITATIONS
SEARCH DETAIL