Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 668
Filter
1.
J Gastrointest Oncol ; 15(3): 1348-1354, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38989414

ABSTRACT

Background: Treatment of advanced liver tumors remains challenging. Although immune checkpoint inhibition has revolutionized treatment for many cancers, responses in colorectal liver metastases and biliary tract cancers remain suboptimal. Investigation into additional immunomodulatory therapies for these cancers is needed. Interleukin-12 (IL-12) is a pro-inflammatory cytokine with robust anti-tumor activity, but systemic adverse effects largely terminated therapeutic development of recombinant human IL-12 (rhIL-12). PDS01ADC is a novel human monoclonal antibody (NHS76) conjugated to two IL-12 heterodimers with established safety in phase I trials. The NHS76 antibody specifically targets histone/DNA complexes which are accessible only in regions of cell death and this antibody has been shown to accumulate locally in tumors. Methods: Patients with unresectable metastatic colorectal cancer (mCRC) or unresectable intrahepatic cholangiocarcinoma (ICC) will receive synchronization of subcutaneous PDS01ADC with floxuridine delivered via a hepatic artery infusion pump (HAIP). The primary outcome measured in this study will be overall response rate as measured by Response Evaluation Criteria in Solid Tumors (RECIST) criteria. Secondary outcomes measured in this study will include hepatic and non-hepatic progression-free survival (PFS), overall survival, and safety of PDS01ADC combination therapy with HAIP. Discussion: Poor clinical response of these liver tumors to immunotherapy is likely due to various factors, including poor immune infiltrate into the tumor and immunosuppression by the tumor microenvironment. By exploiting the tumor cell death induced by HAIP locoregional therapy in combination with systemic chemotherapy, PDS01ADC is poised to modulate the tumor immune microenvironment to improve outcomes for patients undergoing HAIP therapy. Trial Registration: ClinicalTrials.gov (ID NCT05286814 version 2023-10-18); https://clinicaltrials.gov/study/NCT05286814?term=NCT05286814&rank=1.

2.
bioRxiv ; 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-39005274

ABSTRACT

Immunotherapies such as checkpoint inhibitors (CPI) are effective in treating several advanced cancers, but these treatments have had limited success in metastatic ovarian cancer (OC). Here, we engineered liposomal nanoparticles (NPs) carrying a layer-by-layer (LbL) polymer coating that promotes their binding to the surface of OC cells. Covalent anchoring of the potent immunostimulatory cytokine interleukin-12 (IL-12) to phospholipid headgroups of the liposome core enabled the LbL particles to concentrate IL-12 in disseminated OC tumors following intraperitoneal administration. Shedding of the LbL coating and serum protein-mediated extraction of IL-12-conjugated lipids from the liposomal core over time enabled IL-12 to disseminate in the tumor bed following rapid NP localization in tumor nodules. Optimized IL-12 LbL-NPs promoted robust T cell accumulation in ascites and tumors in mouse models, extending survival compared to free IL-12 and remarkedly sensitizing tumors to CPI, leading to curative treatments and immune memory.

3.
J Cancer ; 15(14): 4534-4550, 2024.
Article in English | MEDLINE | ID: mdl-39006083

ABSTRACT

The objective of this study was to investigate the role of IL-12 in enhancing the anti-tumor efficacy of the small molecule targeted drug osimertinib in resistant tumor models and reversing resistance mechanisms. We utilized paired non-small cell lung cancer H1975 tumor tissues, establishing mouse tumor models with diverse tumor immune microenvironments. Analytical methods including immunohistochemistry and immunofluorescence were employed to compare immune cell infiltration, cytokines, effector molecules, and protein changes in resistant signaling pathways in tumor tissues, shedding light on IL-12's mechanism of action in enhancing osimertinib efficacy and reversing resistance. Results showed that osimertinib monotherapy had limited tumor suppression, whereas IL-12 exhibited more significant anti-tumor effects. Combination therapy groups demonstrated even greater tumor suppression with increased immune cell infiltration, elevated immune-related factor secretion, reduced immunosuppressive MDSCs, and decreased resistance-related signaling pathway markers. In conclusion, IL-12 enhances anti-tumor efficacy and reverses osimertinib resistance through various mechanisms, including increased immune cell infiltration, reduced immunosuppressive MDSCs, enhanced immune cell granzyme and IFN-γ release, decreased PDL-1 expression, improved tumor microenvironment, restored immune surveillance, and heightened cancer cell sensitivity to osimertinib.

4.
Cureus ; 16(6): e62396, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39006736

ABSTRACT

Deficiency in interleukin-12 (IL-12) can result in susceptibility to opportunistic infection, with IL-12 deficiency being a rare genetic cause. Nocardia farcinica is a gram-positive aerobic actinomycete that can cause disseminated and potentially lethal nocardiosis in immunocompromised patients. This report describes a 16-year-old male adolescent with IL-12 deficiency presenting with generalized lymphadenopathy due to disseminated Nocardia farcinica. The subject of our study is a male adolescent who exhibited clinical manifestations consistent with cholestasis. He underwent extensive workup for malignancy, suspecting cholangiocarcinoma initially. The workup turned out unremarkable, and later during his hospital stay, he deteriorated and required intensive care unit (ICU) admission, as he developed superior vena cava (SVC) syndrome from massive enlargement of mediastinal and cervical lymph nodes. During the patient's admission, it was found that he had a deficiency of interleukin-12 (IL-12). Later on, a blood culture revealed the presence of Nocardia farcinica species. Subsequently, the patient was initiated and improved drastically on an empirical antibiotic regimen consisting of amikacin, co-trimoxazole, meropenem, and moxifloxacin. Following that, the susceptibility results came out, and he was switched to oral co-trimoxazole and oral moxifloxacin as he no longer required inpatient care. This report highlights the importance of accurate diagnosis of causes of immunosuppression and early investigation, diagnosis, and management of potentially fatal opportunistic infections such as disseminated Nocardia farcinica.

5.
World J Gastroenterol ; 30(22): 2902-2919, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38947290

ABSTRACT

BACKGROUND: Remarkable progress over the last decade has equipped clinicians with many options in the treatment of inflammatory bowel disease. Clinicians now have the unique opportunity to provide individualized treatment that can achieve and sustain remission in many patients. However, issues of primary non-response (PNR) and secondary loss of response (SLOR) to non-tumour necrosis factor inhibitor (TNFi) therapies remains a common problem. Specific issues include the choice of optimization of therapy, identifying when dose optimization will recapture response, establishing optimal dose for escalation and when to switch therapy. AIM: To explores the issues of PNR and SLOR to non-TNFi therapies. METHODS: This review explores the current evidence and literature to elucidate management options in cases of PNR/SLOR. It will also explore potential predictors for response following SLOR/PNR to therapies including the role of therapeutic drug monitoring (TDM). RESULTS: In the setting of PNR and loss of response to alpha-beta7-integrin inhibitors and interleukin (IL)-12 and IL-23 inhibitors dose optimization is a reasonable option to capture response. For Janus kinase inhibitors dose optimization can be utilized to recapture response with loss of response. CONCLUSION: The role of TDM in the setting of advanced non-TNFi therapies to identify patients who require dose optimization and as a predictor for clinical remission is not yet established and this remains an area that should be addressed in the future.


Subject(s)
Drug Monitoring , Inflammatory Bowel Diseases , Humans , Inflammatory Bowel Diseases/drug therapy , Inflammatory Bowel Diseases/immunology , Drug Monitoring/methods , Gastrointestinal Agents/therapeutic use , Gastrointestinal Agents/administration & dosage , Janus Kinase Inhibitors/therapeutic use , Janus Kinase Inhibitors/administration & dosage , Treatment Failure , Remission Induction/methods , Treatment Outcome , Drug Substitution
6.
Int J Mol Sci ; 25(13)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-39000195

ABSTRACT

Ovarian cancer (OC) poses a significant global health challenge with high mortality rates, emphasizing the need for improved treatment strategies. The immune system's role in OC progression and treatment response is increasingly recognized, particularly regarding peripheral blood mononuclear cells (PBMCs) and cytokine production. This study aimed to investigate PBMC subpopulations (T and B lymphocytes, natural killer cells, monocytes) and cytokine production, specifically interleukin-1 beta (IL-1ß), interleukin-4 (IL-4), interleukin-6 (IL-6), interleukin-10 (IL-10), interleukin-12 (IL-12), and tumor necrosis factor alpha (TNFα), in monocytes of OC patients both preoperatively and during the early postoperative period. Thirteen OC patients and 23 controls were enrolled. Preoperatively, OC patients exhibited changes in PBMC subpopulations, including decreased cytotoxic T cells, increased M2 monocytes, and the disbalance of monocyte cytokine production. These alterations persisted after surgery with subtle additional changes observed in PBMC subpopulations and cytokine expression in monocytes. Considering the pivotal role of these altered cells and cytokines in OC progression, our findings suggest that OC patients experience an enhanced pro-tumorigenic environment, which persists into the early postoperative period. These findings highlight the impact of surgery on the complex interaction between the immune system and OC progression. Further investigation is needed to clarify the underlying mechanisms during this early postoperative period, which may hold potential for interventions aimed at improving OC management.


Subject(s)
Cytokines , Leukocytes, Mononuclear , Ovarian Neoplasms , Humans , Female , Ovarian Neoplasms/immunology , Ovarian Neoplasms/surgery , Ovarian Neoplasms/pathology , Middle Aged , Cytokines/metabolism , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Postoperative Period , Preoperative Period , Monocytes/immunology , Monocytes/metabolism , Aged , Adult , Case-Control Studies
7.
Transl Oncol ; 46: 102020, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38843659

ABSTRACT

This study investigated the synergistic potential of an oncolytic herpes simplex virus armed with interleukin 12 (VT1092M) in combination with immune checkpoint inhibitors for enhancing antitumor responses. The potential of this combination treatment to induce systemic antitumor immunity was assessed using bilateral subcutaneous tumor and tumor re-challenge mouse models. The antitumor efficacy of various OV and ICI treatment combinations and the underlying mechanisms were explored through diverse analytical techniques, including flow cytometry and RNA sequencing. Using VT1092M, either alone or in combination with an anti-PD-L1 antibody, significantly reduced the sizes of both the injected and untreated abscopal tumors in a bilateral tumor mouse model. The combination therapy demonstrated superior antitumor efficacy to the other treatment conditions tested, which was accompanied by an increase in T cell numbers and CD8+T cell activation. Results from the survival and tumor re-challenge experiments showed that the combination therapy elicited long-term, tumor-specific immune responses, which were associated with tumor clearance and prolonged survival. Immune cell depletion assays identified CD8+T cells as the crucial mediators of systemic antitumor immunity during combination therapy. In conclusion, the combination of VT1092M and PD-L1 blockade emerged as a potent inducer of antitumor immune responses, surpassing the efficacy of each monotherapy. This synergistic approach holds promise for achieving robust and sustained antitumor immunity, with potential implications for preventing tumor metastasis in patients with cancer.

8.
Article in English | MEDLINE | ID: mdl-38910194

ABSTRACT

PURPOSE: Interleukin-8 (IL8), Interleukin-12 (IL12) and Interleukin-13 (IL13) are cytokines that play regulatory role in cancer pathogenesis. We analysed their expression profile to evaluate as molecular biomarkers of esophageal squamous cell carcinoma (ESCC) and their association with different parameters and patient survival. METHODS: Expression analysis was performed by Real time quantitative polymerase chain reaction and receiver operating characteristic (ROC) curve analysis was done. The expression profiles were associated with different clinicopathological and dietary factors. Survival and hazard analysis were also performed. RESULTS: IL8 expression showed upregulation in tissue (p = 0.000) and blood samples (p = 0.481), IL12 expression showed downregulation in tissue samples (p = 0.064) and upregulation in blood samples (p = 0.689) and IL13 expression showed upregulation in tissue (p = 0.000) and blood samples (p = 0.006). IL13 expression in tissue showed the highest area under the curve (AUC) value (0.773) for ESCC diagnosis, followed by IL8 expression in tissue (0.704) and IL13 expression in blood (0.643). This study also reveals the correlation of studied cytokines in tissue and blood level. Different clinicopathological and dietary factors showed significant association (p < 0.05) with IL8, IL12 and IL13 expression and with survival of ESCC patients. IL8 expression in blood and IL12 expression in tissue and blood showed significant association (p < 0.05) with patient survival. CONCLUSION: Altered expression of IL8, IL12 and IL13 may be associated with ESCC progression. Overexpression of IL8 and IL13 in tissue samples may be potential biomarkers for ESCC screening. Additionally, both survival and hazard analysis data indicate the effects of different parameters on the prognosis of ESCC patients.

9.
Exp Mol Pathol ; 137: 104898, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729059

ABSTRACT

INTRODUCTION: NK cells are an untapped resource for cancer therapy. Sarcomas transduced with lentiviruses to express human IL-12 are only cleared in mice bearing mature human NK cells. However, systemic inflammation limits IL-12 utilization. Fate control a.k.a. "suicide mechanisms" regulate unchecked systemic inflammation caused by cellular immunotherapies. Despite increasing utilization, there remains limited data on immune consequences or tumor-directed effects of fate control. OBJECTIVES: We sought to engage the mutant thymidylate kinase (mTMPK) metabolic fate control system to regulate systemic inflammation and assess the impact on NK cell effector functions. METHODS: Primary human sarcoma short-passage samples and cell lines were transduced with LV/hu-IL-12_mTMPK engineering expression of IL-12 and an AZT-associated fate control enzyme. We assessed transduced sarcoma responses to AZT engagement and subsequent modulation of NK cell functions as measured by inflammatory cytokine production and cytotoxicity. RESULTS: AZT administration to transduced (LV/hu-IL-12_mTMPK) short-passage primary human sarcomas and human Ewing sarcoma, osteosarcoma, and rhabdomyosarcoma cell lines, abrogated the robust expression of human IL-12. Fate control activation elicited a specific dose-dependent cytotoxic effect measured by metabolic activity (WST-1) and cell death (Incucyte). NK effector functions of IFN-γ and cytotoxic granule release were significantly augmented despite IL-12 abrogation. This correlated with preferentially induced expression of NK cell activation ligands. CONCLUSIONS: mTMPK fate control engagement terminates transduced sarcoma IL-12 production and triggers cell death, but also augments an NK cell-mediated response coinciding with metabolic stress activating surface ligand induction. Fate control engagement could offer a novel immune activation method for NK cell-mediated cancer clearance.


Subject(s)
Interleukin-12 , Killer Cells, Natural , Lentivirus , Sarcoma , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Humans , Interleukin-12/genetics , Interleukin-12/metabolism , Lentivirus/genetics , Sarcoma/immunology , Sarcoma/genetics , Sarcoma/pathology , Cell Line, Tumor , Transduction, Genetic , Animals , Mice
10.
Clin Cosmet Investig Dermatol ; 17: 1107-1110, 2024.
Article in English | MEDLINE | ID: mdl-38765193

ABSTRACT

Although the use of biologics has led to great improvement in psoriasis patients, the treatment of psoriasis during pregnancy still faces many challenges. We herein report on a 29-year-old pregnant woman treated with ustekinumab for generalized pustular psoriasis. Upon becoming pregnant, the woman underwent continued treatment with ustekinumab in the first trimester. We also considered the need for neonatal vaccination. The patient discontinued ustekinumab therapy in the second trimester, and during the period of drug discontinuation we noted a slight rash recurrence. The patient was treated with ultraviolet B phototherapy and topical corticosteroids, and the rash was localized to the abdomen. However, in the 27th week of pregnancy, the patient was infected with COVID-19, which made the condition worse. The rash erupted rapidly and spread throughout her body, and she experienced a high fever with her blood count showing augmented numbers of white blood cells. The patients self-administered 0.3 g of acetaminophen three times per day, and after four days her core body temperature was 38.0°C; the rash, however, did not diminish. We diagnosed an outbreak of generalized pustular psoriasis and treated the patient with ustekinumab. The rash resolved quickly, and a healthy newborn was delivered by caesarean section at 39 weeks.

11.
Ir J Med Sci ; 2024 May 03.
Article in English | MEDLINE | ID: mdl-38698250

ABSTRACT

BACKGROUND: Cytokines, including interleukin-12 (IL-12), are proteins that regulate cell survival, proliferation, differentiation, and function. IL-12 is a heterodimeric proinflammatory cytokine. It possesses tumoricidal properties and promotes M1 macrophage polarization and IFN-γ production by T helper (Th1) cells, which in turn stimulates the antitumor cytotoxic cluster of eight positive (CD8+) and natural killer cells, therefore activating an effector immune response against tumor cells. MATERIALS AND METHODS: Herein, the IL-2 levels of 60 patients with generalized chronic periodontitis (GCP) were assessed. Plaque index, gingival index, pocket probing depth, bleeding on probing percentage (BOP %), and clinical attachment loss were the clinical indicators reported. RESULTS: Patients with GCP in the pretreatment group had substantially lower mean IL-12 levels than those in the post-treatment group. Short-term, nonsurgical treatment (NST) considerably improved periodontal indices and increased IL-12 levels, thereby reducing oral cancer risk. CONCLUSION: NST is a cost-effective and accessible cancer prevention procedure for general dentists.

12.
Avicenna J Med Biotechnol ; 16(1): 16-28, 2024.
Article in English | MEDLINE | ID: mdl-38605741

ABSTRACT

Background: Repeated Ovum Pick Up (OPU) could have a detrimental effect on ovarian function, reducing In Vitro Embryo Production (IVEP). The present study examined the therapeutic effect of adipose-derived Mesenchymal Stem Cells (MSCs) or its Conditioned Medium (ConM) on ovarian trauma following repeated OPU. Resolvin E1 (RvE1) and Interleukin-12 (IL-12) were investigated as biomarkers. Methods: Jersey heifers (n=8) experienced 11 OPU sessions including 5 pre-treatment and 6 treatment sessions. Heifers received intra-ovarian administration of MSCs or ConM (right ovary) and Dulbecco's Modified Phosphate Buffer Saline (DMPBS; left ovary) after OPU in sessions 5 and 8 and 2 weeks after session 11. The concentrations of RvE1 and IL-12 in follicular fluid was evaluated on sessions 1, 5, 6, 9, and 4 weeks after session 11. Following each OPU session, the IVEP parameters were recorded. Results: Intra-ovarian administration of MSCs, ConM, and DMPBS did not affect IVEP parameters (p>0.05). The concentration of IL-12 in follicular fluid increased at the last session of pre-treatment (Session 5; p<0.05) and remained elevated throughout the treatment period. There was no correlation between IL-12 and IVEP parameters (p>0.05). However, RvE1 remained relatively high during the pre-treatment and decreased toward the end of treatment period (p<0.05). This in turn was associated with decline in some IVEP parameters (p<0.05). Conclusion: Intra-ovarian administration of MSCs or ConM during repeated OPU did not enhance IVEP outcomes in Bos taurus heifers. The positive association between RvE1 and some of IVEP parameters could nominate RvE1 as a promising biomarker to predict IVEP parameters following repeated OPU.

13.
Cell Rep ; 43(4): 114086, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38598335

ABSTRACT

Immune checkpoint blockade (ICB) has revolutionized cancer therapy but only works in a subset of patients due to the insufficient infiltration, persistent exhaustion, and inactivation of T cells within a tumor. Herein, we develop an engineered probiotic (interleukin [IL]-12 nanoparticle Escherichia coli Nissle 1917 [INP-EcN]) acting as a living drug factory to biosynthesize anti-PD-1 and release IL-12 for initiating systemic antitumor immunity through T cell cascade regulation. Mechanistically, INP-EcN not only continuously biosynthesizes anti-PD-1 for relieving immunosuppression but also effectively cascade promote T cell activation, proliferation, and infiltration via responsive release of IL-12, thus reaching a sufficient activation threshold to ICB. Tumor targeting and colonization of INP-EcNs dramatically increase local drug accumulations, significantly inhibiting tumor growth and metastasis compared to commercial inhibitors. Furthermore, immune profiling reveals that anti-PD-1/IL-12 efficiently cascade promote antitumor effects in a CD8+ T cell-dependent manner, clarifying the immune interaction of ICB and cytokine activation. Ultimately, such engineered probiotics achieve a potential paradigm shift from T cell exhaustion to activation and show considerable promise for antitumor bio-immunotherapy.


Subject(s)
Interleukin-12 , Probiotics , Programmed Cell Death 1 Receptor , Animals , Interleukin-12/metabolism , Probiotics/pharmacology , Mice , Programmed Cell Death 1 Receptor/metabolism , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Humans , Mice, Inbred C57BL , Cell Line, Tumor , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Escherichia coli/metabolism , Neoplasms/immunology , Neoplasms/therapy , Neoplasms/drug therapy , Nanoparticles , Female , Lymphocyte Activation/drug effects , Lymphocyte Activation/immunology
14.
Eur J Pharmacol ; 974: 176602, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38677538

ABSTRACT

BACKGROUND: The interleukin (IL) -12 p40 subunit is the common subunit of IL-12 and IL-23. It affects the immune inflammatory response, which may be closely related to cardiac remodeling. In this study, the regulatory effect of IL-12p40 knockout (KO) on cardiac remodeling was investigated, and the underlying mechanism was explored. METHODS AND RESULTS: Mice were subjected to transverse aortic constriction (TAC) to establish a model of cardiac remodeling. First, IL-12p40 was deleted to observe its effects on cardiac remodeling and cardiac inflammation, and the results showed that IL-12p40 deletion reduced both T helper 17 (Th17) and γδT17 cell differentiation, decreased proinflammatory macrophage differentiation, alleviated cardiac remodeling, and relieved cardiac dysfunction in TAC mice. Next, we explored whether IL-17 regulated TAC-induced cardiac remodeling, and the results showed that IL-17 neutralization alleviated proinflammatory macrophage differentiation and cardiac remodeling in IL-12p40 knockout mice and WT mice. Neutralization with cluster of differentiation 4 receptor (CD4) and γδ T-cell receptor (γδTCR) antibodies inhibited pro-inflammatory macrophage polarization and improved cardiac remodeling, and CD4 neutralizing antibody (NAb) had more significant effects. Finally, adoptive transfer of Th17 cells aggravated proinflammatory macrophage differentiation and cardiac remodeling in TAC-treated CD4 KO mice, while neutralization with the IL-12p40 antibody alleviated these pathological changes. CONCLUSION: Mainly Th17 cells but not γδT17 cells secrete IL-17, which mediates IL-12p40, promotes the polarization of proinflammatory macrophages, and exacerbates cardiac remodeling in TAC mice. IL-12p40 may be a potential target for the prevention and treatment of cardiac remodeling.


Subject(s)
Cell Differentiation , Interleukin-12 Subunit p40 , Macrophages , Mice, Inbred C57BL , Mice, Knockout , Th17 Cells , Ventricular Remodeling , Animals , Male , Mice , Cell Polarity/drug effects , Gene Deletion , Interleukin-12 Subunit p40/metabolism , Interleukin-12 Subunit p40/genetics , Interleukin-17/metabolism , Macrophages/immunology , Macrophages/metabolism , Receptors, Antigen, T-Cell, gamma-delta/metabolism , Receptors, Antigen, T-Cell, gamma-delta/genetics , Th17 Cells/immunology
15.
Int J Mol Sci ; 25(6)2024 Mar 09.
Article in English | MEDLINE | ID: mdl-38542122

ABSTRACT

Gene electrotransfer (GET) of plasmids encoding interleukin 12 (IL-12) has already been used for the treatment of various types of tumors in human oncology and as an adjuvant in DNA vaccines. In recent years, we have developed a plasmid encoding human IL-12 (phIL12) that is currently in a phase I clinical study. The aim was to confirm the results of a non-clinical study in mice on pharmacokinetic characteristics and safety in a porcine model that better resembled human skin. The GET of phIL12 in the skin was performed on nine pigs using different concentrations of plasmid phIL12 and invasive (needle) or noninvasive (plate) types of electrodes. The results of our study demonstrate that the GET of phIL-12 with needle electrodes induced the highest expression of IL-12 at the protein level on day 7 after the procedure. The plasmid was distributed to all tested organs; however, its amount decreased over time and was at a minimum 28 days after GET. Based on plasmid copy number and expression results, together with blood analysis, we showed that IL-12 GET is safe in a porcine animal model. Furthermore, we demonstrated that pigs are a valuable model for human gene therapy safety studies.


Subject(s)
Gene Transfer Techniques , Interleukin-12 , Humans , Animals , Mice , Swine , Interleukin-12/genetics , Interleukin-12/metabolism , Transfection , Genetic Therapy/methods , DNA/metabolism , Plasmids/genetics , Vaccination , Electroporation/methods
16.
Int J Nanomedicine ; 19: 2755-2772, 2024.
Article in English | MEDLINE | ID: mdl-38525008

ABSTRACT

Purpose: The drug resistance and low response rates of immunotherapy limit its application. This study aimed to construct a new nanoparticle (CaCO3-polydopamine-polyethylenimine, CPP) to effectively deliver interleukin-12 (IL-12) and suppress cancer progress through immunotherapy. Methods: The size distribution of CPP and its zeta potential were measured using a Malvern Zetasizer Nano-ZS90. The morphology and electrophoresis tentative delay of CPP were analyzed using a JEM-1400 transmission electron microscope and an ultraviolet spectrophotometer, respectively. Cell proliferation was analyzed by MTT assay. Proteins were analyzed by Western blot. IL-12 and HMGB1 levels were estimated by ELISA kits. Live/dead staining assay was performed using a Calcein-AM/PI kit. ATP production was detected using an ATP assay kit. The xenografts in vivo were estimated in C57BL/6 mice. The levels of CD80+/CD86+, CD3+/CD4+ and CD3+/CD8+ were analyzed by flow cytometry. Results: CPP could effectively express EGFP or IL-12 and increase ROS levels. Laser treatment promoted CPP-IL-12 induced the number of dead or apoptotic cell. CPP-IL-12 and laser could further enhance CALR levels and extracellular HMGB1 levels and decrease intracellular HMGB1 and ATP levels, indicating that it may induce immunogenic cell death (ICD). The tumors and weights of xenografts in CPP-IL-12 or laser-treated mice were significantly reduced than in controls. The IL-12 expression, the CD80+/CD86+ expression of DC from lymph glands, and the number of CD3+/CD8+T or CD3+/CD4+T cells from the spleen increased in CPP-IL-12-treated or laser-treated xenografts compared with controls. The levels of granzyme B, IFN-γ, and TNF-α in the serum of CPP-IL-12-treated mice increased. Interestingly, CPP-IL-12 treatment in local xenografts in the back of mice could effectively inhibit the growth of the distant untreated tumor. Conclusion: The novel CPP-IL-12 could overexpress IL-12 in melanoma cells and achieve immunotherapy to melanoma through inducing ICD, activating CD4+ T cell, and enhancing the function of tumor-reactive CD8+ T cells.


Subject(s)
HMGB1 Protein , Melanoma , Humans , Mice , Animals , Interleukin-12 , CD8-Positive T-Lymphocytes , Melanoma/therapy , Melanoma/metabolism , HMGB1 Protein/metabolism , Immunogenic Cell Death , Mice, Inbred C57BL , Cell Proliferation , CD4-Positive T-Lymphocytes , Adenosine Triphosphate/metabolism
17.
J Zhejiang Univ Sci B ; 25(3): 254-270, 2024 Mar 15.
Article in English, Chinese | MEDLINE | ID: mdl-38453639

ABSTRACT

As a potential vectored vaccine, Newcastle disease virus (NDV) has been subject to various studies for vaccine development, while relatively little research has outlined the immunomodulatory effect of the virus in antigen presentation. To elucidate the key inhibitory factor in regulating the interaction of infected dendritic cells (DCs) and T cells, DCs were pretreated with the NDV vaccine strain LaSota as an inhibitor and stimulated with lipopolysaccharide (LPS) for further detection by enzyme-linked immunosorbent assay (ELISA), flow cytometry, immunoblotting, and quantitative real-time polymerase chain reaction (qRT-PCR). The results revealed that NDV infection resulted in the inhibition of interleukin (IL)-12p40 in DCs through a p38 mitogen-activated protein kinase (MAPK)|-dependent manner, thus inhibiting the synthesis of IL-12p70, leading to the reduction in T cell proliferation and the secretion of interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α), and IL-6 induced by DCs. Consequently, downregulated cytokines accelerated the infection and viral transmission from DCs to T cells. Furthermore, several other strains of NDV also exhibited inhibitory activity. The current study reveals that NDV can modulate the intensity of the innate|‒|adaptive immune cell crosstalk critically toward viral invasion improvement, highlighting a novel mechanism of virus-induced immunosuppression and providing new perspectives on the improvement of NDV-vectored vaccine.


Subject(s)
Newcastle disease virus , Vaccines , Animals , Newcastle disease virus/physiology , Interleukin-12/pharmacology , Antigen Presentation , Vaccines/pharmacology , Dendritic Cells
18.
J Pak Med Assoc ; 74(2): 310-314, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38419232

ABSTRACT

Objective: To determine the association of serum interleukin-12 levels with disease progression in active rheumatoid arthritis patients on oral conventional synthetic disease-modifying anti-rheumatic drugs. METHODS: The case-control study was conducted at the Army Medical College, Rawalpindi, in collaboration with the Pak Emirates Military Hospital, Rawalpindi, Pakistan, from January to December 2022, and comprised rheumatoid arthritis patients or either gender aged 18-75 years who were placed in group I, while group II comprised healthy controls. Demographic and clinical data was noted, and 2ml blood samples were drawn from each subject. The serum was separated and analysed using sandwich enzyme-linked immunosorbent assay to quantify serum interleukin-12 levels. Data was analysed using SPSS 22. RESULTS: Of the 150 subjects, 75(50%) were in group I; 27(36%) males and 48(64%) females with overall mean age 45.70±11.70 years. There were 75(50%) subjects in group II; 37(49.3%) males and 38(50.7%) females with overall mean age 31.70±7.70 years. Serum interleukin-12, erythrocyte sedimentation rate and C-reactive proteinquantitative levels were significantly higher in group I compared to group II (p<0.05). Smoking, positive family history of rheumatoid arthritis in a first-degree relative and history of consanguinity were identified as risk factors though they were not statistically significant (p>0.05). In group I (n=75), out of total study subjects, only 55(73.3%) cases belonged to the predominant castes, namely Awan, Rajput, Pathan, Araeen, Bhatti, Malik, Mughal, Sudhan, Chaudary, and Jutt. These individuals showed significantly higher mean serum interleukin-12 levels compared to patients of other castes in the same group. Conclusion: Mean serum interleukin-12 levels were higher in rheumatoid arthritis patients despite being on oral conventional synthetic disease-modifying anti-rheumatic drugs.


Subject(s)
Antirheumatic Agents , Arthritis, Rheumatoid , Male , Female , Humans , Adult , Middle Aged , Young Adult , Interleukin-12/therapeutic use , Case-Control Studies , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/diagnosis , Antirheumatic Agents/therapeutic use , Risk Factors
19.
Animals (Basel) ; 14(3)2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38338081

ABSTRACT

Electrochemotherapy (ECT) in combination with the gene electrotransfer of interleukin 12 (IL-12 GET) has been successfully used in veterinary medicine for the treatment of mast cell tumours (MCT), but the biomarkers that could predict response to this treatment have not yet been investigated. The aim of this study was to determine the plasma nucleosome and serum ferritin concentrations, as well as the lactate dehydrogenase (LDH) activity, in the serum of treated patients before and one and six months after treatment to evaluate their utility as potential biomarkers that could predict response to the combined treatment. The study was conducted in 48 patients with a total of 86 MCTs that we treated with the combined treatment. The blood samples used for analysing the potential predictive biomarkers were taken before treatment and one and six months after treatment, when the response to treatment was also assessed. The Nu. Q® Vet Cancer Test, the Canine Ferritin ELISA Kit, and the RX Daytona+ automated biochemical analyser were used to analyse the blood samples. The results showed that the plasma nucleosome concentration (before treatment (BT): 32.84 ng/mL (median); one month after treatment (1 M AT): 58.89 ng/mL (median); p = 0.010) and serum LDH activity (BT: 59.75 U/L (median); 1 M AT: 107.5 U/L (median); p = 0.012) increased significantly one month after treatment and that the increase correlated significantly with the presence of a more pronounced local reaction (necrosis, swelling, etc.) at that time point for both markers (nucleosome: BT (necrosis): 21.61 ng/mL (median); 1 M AT (necrosis): 69.92 ng/mL (median), p = 0.030; LDH: BT (necrosis): 54.75 U/L (median); 1 M AT (necrosis): 100.3 U/L (median), p = 0.048). Therefore, both the plasma nucleosome concentration and serum LDH activity could serve as early indicators of the effect of the treatment. In this context, the serum ferritin concentration showed no significant predictive potential for treatment response (p > 0.999 for all comparisons). In conclusion, this study provides some new and important observations on the use of predictive biomarkers in veterinary oncology. Furthermore, it emphasises the need for the continued identification and validation of potential predictive biomarkers in dogs with MCT and other malignancies undergoing ECT treatment in combination with IL-12 GET to ultimately improve treatment outcomes.

20.
Int J Mol Sci ; 25(4)2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38397126

ABSTRACT

Alterations in the microbiota composition, or ecological dysbiosis, have been implicated in the development of various diseases, including allergic diseases and asthma. Examining the relationship between microbiota alterations in the host and cough variant asthma (CVA) may facilitate the discovery of novel therapeutic strategies. To elucidate the diversity and difference of microbiota across three ecological niches, we performed 16S rDNA amplicon sequencing on lung, ileum, and colon samples. We assessed the levels of interleukin-12 (IL-12) and interleukin-13 (IL-13) in guinea pig bronchoalveolar lavage fluid using the enzyme-linked immunosorbent assay (ELISA). We applied Spearman's analytical method to evaluate the correlation between microbiota and cytokines. The results demonstrated that the relative abundance, α-diversity, and ß-diversity of the microbial composition of the lung, ileum, and colon varied considerably. The ELISA results indicated a substantial increase in the level of IL-13 and a decreasing trend in the level of IL-12 in the CVA guinea pigs. The Spearman analysis identified a correlation between Mycoplasma, Faecalibaculum, and Ruminococcus and the inflammatory factors in the CVA guinea pigs. Our guinea pig model showed that core microorganisms, such as Mycoplasma in the lung, Faecalibaculum in the ileum, and Ruminococcus in the colon, may play a crucial role in the pathogenesis of CVA. The most conspicuous changes in the ecological niche were observed in the guinea pig ileum, followed by the lung, while relatively minor changes were observed in the colon. Notably, the microbial structure of the ileum niche approximated that of the colon niche. Therefore, the results of this study suggest that CVA development is closely related to the dysregulation of ileal, lung, and colon microbiota and the ensuing inflammatory changes in the lung.


Subject(s)
Cough-Variant Asthma , Microbiota , Guinea Pigs , Animals , Interleukin-13 , Lung/pathology , Ileum , Colon , Interleukin-12
SELECTION OF CITATIONS
SEARCH DETAIL
...