Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 177
Filter
1.
Front Immunol ; 15: 1395921, 2024.
Article in English | MEDLINE | ID: mdl-38966644

ABSTRACT

IL-27, a member of the IL-6/IL-12 cytokine superfamily, is primarily secreted by antigen presenting cells, specifically by dendric cells, macrophages and B cells. IL-27 has antiviral activities and modulates both innate and adaptive immune responses against viruses. The role of IL-27 in the setting of viral infections is not well defined and both pro-inflammatory and anti-inflammatory functions have been described. Here, we discuss the latest advancements in the role of IL-27 in several viral infection models of human disease. We highlight important aspects of IL-27 expression regulation, the critical cell sources at different stages of the infection and their impact in cell mediated immunity. Lastly, we discuss the need to better define the antiviral and modulatory (pro-inflammatory vs anti-inflammatory) properties of IL-27 in the context of human chronic viral infections.


Subject(s)
Adaptive Immunity , Virus Diseases , Humans , Virus Diseases/immunology , Animals , Gene Expression Regulation , Interleukin-27/metabolism , Viruses/immunology , Interleukins/immunology , Interleukins/metabolism
2.
Viruses ; 16(6)2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38932287

ABSTRACT

BACKGROUND: The Tripartite motif (TRIM) family includes more than 80 distinct human genes. Their function has been implicated in regulating important cellular processes, including intracellular signaling, transcription, autophagy, and innate immunity. During viral infections, macrophages are key components of innate immunity that produce interferons (IFNs) and IL27. We recently published that IL27 and IFNs induce transcriptional changes in various genes, including those involved in JAK-STAT signaling. Furthermore, IL27 and IFNs share proinflammatory and antiviral pathways in monocyte-derived macrophages (MDMs), resulting in both common and unique expression of inflammatory factors and IFN-stimulated genes (ISGs) encoding antiviral proteins. Interestingly, many TRIM proteins have been recognized as ISGs in recent years. Although it is already very well described that TRIM expression is induced by IFNs, it is not fully understood whether TRIM genes are induced in macrophages by IL27. Therefore, in this study, we examined the effect of stimulation with IL27 and type I, II, and III IFNs on the mRNA expression profiles of TRIM genes in MDMs. METHODS: We used bulk RNA-seq to examine the TRIM expression profile of MDMs treated with IFNs or IL27. Initially, we characterized the expression patterns of different TRIM subfamilies using a heatmap. Subsequently, a volcano plot was employed to identify commonly differentially expressed TRIM genes. Additionally, we conducted gene ontology analysis with ClueGO to explore the biological processes of the regulated TRIMs, created a gene-gene interaction network using GeneMANIA, and examined protein-protein interactions with the STRING database. Finally, RNA-seq data was validated using RT-qPCR. Furthermore, the effect of IL27 on Mayaro virus replication was also evaluated. RESULTS: We found that IL27, similar to IFNs, upregulates several TRIM genes' expression in human macrophages. Specifically, we identified three common TRIM genes (TRIM19, 21, and 22) induced by IL27 and all types of human IFNs. Additionally, we performed the first report of transcriptional regulation of TRIM19, 21, 22, and 69 genes in response to IL27. The TRIMs involved a broad range of biological processes, including defense response to viruses, viral life cycle regulation, and negative regulation of viral processes. In addition, we observed a decrease in Mayaro virus replication in MDMs previously treated with IL27. CONCLUSIONS: Our results show that IL27, like IFNs, modulates the transcriptional expression of different TRIM-family members involved in the induction of innate immunity and an antiviral response. In addition, the functional analysis demonstrated that, like IFN, IL27 reduced Mayaro virus replication in MDMs. This implies that IL27 and IFNs share many similarities at a functional level. Moreover, identifying distinct TRIM groups and their differential expressions in response to IL27 provides new insights into the regulatory mechanisms underlying the antiviral response in human macrophages.


Subject(s)
Interferons , Macrophages , Tripartite Motif Proteins , Virus Replication , Humans , Macrophages/virology , Macrophages/immunology , Tripartite Motif Proteins/genetics , Interferons/immunology , Gene Expression Regulation , Immunity, Innate , Interleukins/genetics , Interleukins/immunology , Interleukins/metabolism , Signal Transduction
3.
Front Immunol ; 15: 1385473, 2024.
Article in English | MEDLINE | ID: mdl-38720890

ABSTRACT

Interferons (IFNs) are a family of cytokines that activate the JAK-STAT signaling pathway to induce an antiviral state in cells. Interleukin 27 (IL-27) is a member of the IL-6 and/or IL-12 family that elicits both pro- and anti-inflammatory responses. Recent studies have reported that IL-27 also induces a robust antiviral response against diverse viruses, both in vitro and in vivo, suggesting that IFNs and IL-27 share many similarities at the functional level. However, it is still unknown how similar or different IFN- and IL-27-dependent signaling pathways are. To address this question, we conducted a comparative analysis of the transcriptomic profiles of human monocyte-derived macrophages (MDMs) exposed to IL-27 and those exposed to recombinant human IFN-α, IFN-γ, and IFN-λ. We utilized bioinformatics approaches to identify common differentially expressed genes between the different transcriptomes. To verify the accuracy of this approach, we used RT-qPCR, ELISA, flow cytometry, and microarrays data. We found that IFNs and IL-27 induce transcriptional changes in several genes, including those involved in JAK-STAT signaling, and induce shared pro-inflammatory and antiviral pathways in MDMs, leading to the common and unique expression of inflammatory factors and IFN-stimulated genes (ISGs)Importantly, the ability of IL-27 to induce those responses is independent of IFN induction and cellular lineage. Additionally, functional analysis demonstrated that like IFNs, IL-27-mediated response reduced chikungunya and dengue viruses replication in MDMs. In summary, IL-27 exhibits properties similar to those of all three types of human IFN, including the ability to stimulate a protective antiviral response. Given this similarity, we propose that IL-27 could be classified as a distinct type of IFN, possibly categorized as IFN-pi (IFN-π), the type V IFN (IFN-V).


Subject(s)
Chikungunya Fever , Dengue , Interleukin-27 , Janus Kinases , Macrophages , Signal Transduction , Humans , Cells, Cultured , Chikungunya Fever/immunology , Chikungunya Fever/virology , Chikungunya virus/immunology , Dengue/immunology , Dengue/virology , Dengue Virus/physiology , Dengue Virus/immunology , Interferons/metabolism , Interleukin-27/metabolism , Interleukins/immunology , Interleukins/pharmacology , Janus Kinases/metabolism , Macrophages/immunology , Macrophages/virology , Signal Transduction/genetics , STAT Transcription Factors/metabolism , Transcriptome , Virus Replication
4.
Obes Res Clin Pract ; 18(3): 171-180, 2024.
Article in English | MEDLINE | ID: mdl-38796383

ABSTRACT

OBJECTIVE: Interleukin-27 (IL-27), a potential mediator linking obesity to inflammatory diseases, is considered an important candidate for regulating obesity. The present study evaluated the relationship of IL-27 with obesity and insulin resistance (IR) and further investigated the changes in IL-27 levels after weight loss. METHODS: The study analyzed 405 participants, of whom 62 with overweight or obesity completed one year of lifestyle intervention. The body compositions, including percent of body fat (PBF), visceral fat area (VFA), skeletal muscle mass (SMM), and visceral fat area to skeletal muscle mass ratio (VSR), were assessed using the bioelectrical impedance analysis method. Serum IL-27 levels were measured using the enzyme-linked immunosorbent assay (ELISA). RESULTS: IL-27 levels increased significantly with the increase in body mass index (BMI) (P < 0.001). Moreover, IL-27 levels were positively correlated with PBF, VFA, and VSR. Homeostatic model assessment for insulin resistance (HOMA-IR), the inverse of hepatic insulin sensitivity (1/HISI), adipose tissue insulin resistance (Adipo-IR), and homeostasis model assessment-adiponectin (HOMA-AD) increased significantly with each quartile of IL-27 levels (all P < 0.001). IL-27 levels significantly decreased after weight loss (P < 0.001). CONCLUSIONS: IL-27 was positively correlated with obesity, HOMA-IR, 1/HISI, Adipo-IR, and HOMA-AD. IL-27 levels significantly decreased after weight loss.


Subject(s)
Body Mass Index , Insulin Resistance , Obesity , Weight Loss , Humans , Male , Weight Loss/physiology , Female , Obesity/blood , Obesity/physiopathology , Adult , Middle Aged , Interleukins/blood , Body Composition , Intra-Abdominal Fat/metabolism , Interleukin-27/blood
5.
Front Immunol ; 15: 1217098, 2024.
Article in English | MEDLINE | ID: mdl-38390338

ABSTRACT

Background: Efforts to control tuberculosis (TB), caused by the pathogen Mycobacterium tuberculosis (Mtb), have been hampered by the immense variability in protection from BCG vaccination. While BCG protects young children from some forms of TB disease, long-term protection against pulmonary disease is more limited, suggesting a poor memory response. New vaccines or vaccination strategies are required to have a realistic chance of eliminating TB disease. In TB endemic areas, routine immunization occurs during the neonatal period and as such, we hypothesized that inadequate protective immunity elicited by BCG vaccination could be the result of the unique early-life immune landscape. Interleukin (IL)-27 is a heterodimeric cytokine with immune suppressive activity that is elevated in the neonatal period. Objective: We investigated the impact of IL-27 on regulation of immune responses during neonatal BCG vaccination and protection against Mtb. Methods: Here, we used a novel model of neonatal vaccination and adult aerosol challenge that models the human timeline of vaccine delivery and disease transmission. Results: Overall, we observed improved control of Mtb in mice unresponsive to IL-27 (IL-27Rα-/-) that was consistent with altered expression patterns of IFN-γ and IL-17 in the lungs. The balance of these cytokines with TNF-α expression may be key to effective bacterial clearance. Conclusions: Our findings suggest the importance of evaluating new vaccines and approaches to combat TB in the neonatal population most likely to receive them as part of global vaccination campaigns. They further indicate that temporal strategies to antagonize IL-27 during early life vaccination may improve protection.


Subject(s)
Interleukin-27 , Mycobacterium tuberculosis , Tuberculosis , Animals , Child , Child, Preschool , Humans , Mice , BCG Vaccine , Cytokines/metabolism , Interleukins , Tuberculosis/prevention & control , Vaccination
6.
Int Immunopharmacol ; 128: 111464, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38224627

ABSTRACT

Colorectal cancer (CRC) is a leading cause of cancer-related deaths worldwide, characterized by molecular and clinical heterogeneity. Interleukin (IL)-27, a heterodimeric cytokine composed of p28 and EBI3 subunits, has been reported to exert potent antitumor activity in several cancer models. However, the precise role of IL-27 in the pathogenesis of CRC remains unclear. Here, we show that during the azoxymethane (AOM)/dextran sodium sulfate (DSS)-induced CRC development, IL-27p28 levels are dramatically increased in peripheral blood and tumor tissues, and the cytokine is mainly produced by tumor-infiltrating myeloid cells. IL-27p28 deficient mice display tumor resistances in both inflammation-associated CRC model and syngeneic MC38 colon cancer model. Administration with IL-27p28 neutralizing antibody also reduces the tumor formation in AOM/DSS-treated mice. Mechanically, CD8+ T cells in IL-27p28-/- mice exhibit enhanced tumor infiltration and cytotoxicity, which can be largely attributed to activation of the Akt/mTOR signaling pathway. Furthermore, selective depletion of CD8+ T cells in IL-27p28-/- mice markedly accelerate tumor growth and almost abrogate the protective effects of IL-27p28 deficiency. Most interestingly, the expression of IL-27p28 is also upregulated in tumor tissues of CRC patients and those with high expression of IL-27p28 tend to have a poorer overall survival. Our results suggest that loss of IL-27p28 suppresses colorectal tumorigenesis by augmenting CD8+ T cell-mediated anti-tumor immunity. Targeting IL-27p28 could be developed as a novel strategy for the treatment of colorectal cancers.


Subject(s)
Colitis , Colonic Neoplasms , Colorectal Neoplasms , Animals , Humans , Mice , Azoxymethane , Carcinogenesis , CD8-Positive T-Lymphocytes/metabolism , Colitis/chemically induced , Colorectal Neoplasms/pathology , Cytokines/metabolism , Dextran Sulfate/pharmacology , Mice, Inbred C57BL , Signal Transduction
7.
Inflamm Bowel Dis ; 30(2): 303-310, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-37540894

ABSTRACT

Inflammatory bowel disease (IBD) can be identified as an inflammatory disorder in the intestine, being characterized by maladjusted immune responses and chronic inflammation of the intestinal tract. However, as the etiology and pathogenesis are still unclear, more effective therapeutic approaches are needed. Recent studies have discovered a new cytokine, interleukin-27 (IL-27), which belongs to the superfamily of IL-6 and IL-12, demonstrating multiple functions in many infectious diseases, autoimmune diseases, and cancers. Interleukin-27 is mainly produced by antigen presentation cells (APCs) such as dendritic cells and mononuclear macrophages, playing a dual regulatory role in immunological response. Therefore, this updated review aims to summarize the new progress of the regulatory role of IL-27 in IBD and focus more on the interaction between IL-27 and immune cells, hoping to provide more evidence for the potential IBD treatment mediated by IL-27.


Subject(s)
Inflammatory Bowel Diseases , Interleukin-27 , Humans , Cytokines , Inflammatory Bowel Diseases/drug therapy , Interleukin-23 , Intestinal Mucosa/pathology , Intestines/pathology , Macrophages/pathology
8.
J Theor Biol ; 579: 111704, 2024 02 21.
Article in English | MEDLINE | ID: mdl-38104658

ABSTRACT

Interleukin-27 (IL-27) is known to play opposing roles in immunology. The present paper considers, specifically, the role IL-27 plays in cancer immunotherapy when combined with immune checkpoint inhibitor anti-PD-1. We first develop a mathematical model for this combination therapy, by a system of Partial Differential Equations, and show agreement with experimental results in mice injected with melanoma cells. We then proceed to simulate tumor volume with IL-27 injection at a variable dose F and anti-PD-1 at a variable dose g. We show that in some range of "small" values of g, as f increases tumor volume decreases as long as fFc(g), where Fc(g) is a monotone increasing function of g. This demonstrates that IL-27 can be both anti-cancer and pro-cancer, depending on the ranges of both anti-PD-1 and IL-27.


Subject(s)
Interleukin-27 , Melanoma , Animals , Mice , Interleukin-27/therapeutic use , Melanoma/pathology , Combined Modality Therapy , Models, Theoretical , Immunotherapy/methods
9.
Open Med (Wars) ; 18(1): 20230859, 2023.
Article in English | MEDLINE | ID: mdl-38152329

ABSTRACT

Intensive care units (ICUs) are expert hospital areas that provide treatment and 24 h care for people who are very sick. Sepsis represents a serious, severe condition and it can lead to septic shock and multiple organ dysfunction syndromes and is one of the most common reasons for patients' hospitalization in ICUs. We wanted to explore the prognostic values of interleukin (IL) 33, soluble suppression of tumorigenicity 2 (sST2), IL 27, and galectin 3 in critically-ill patients. We assumed that these parameters in combination or alone could predict mortality in ICU patients. This research represents a clinical non-randomized prospective study, performed at the Medical Military Academy, a tertiary care hospital in Belgrade, Serbia. The patients were divided in four groups: patients with sepsis (peritonitis, pancreatitis, trauma) and patients without sepsis (trauma). Total number of patients enrolled in the study was 151 and average years of patients were 56.48. The values greater than the cut-off were the predictors of mortality. The IL-33, IL-27 as well as galectin-3 can successfully predict the outcome of critically-ill patients in ICUs. The sST2, cannot predict death in critically-ill patients as a single prognostic factor. However, the combination of at least two biomarkers: IL-33, sST2, IL-27, and galectin-3, gives very significant results in predicting the outcome in patients admitted to ICUs.

10.
Front Mol Biosci ; 10: 1259336, 2023.
Article in English | MEDLINE | ID: mdl-37842640

ABSTRACT

Introduction: Prostate cancer is the second leading cause of cancer-related death among American men. Prostate tumor cells exhibit significant tropism for the bone and once metastasis occurs, survival rates fall significantly. Current treatment options are not curative and focus on symptom management. Immunotherapies are rapidly emerging as a possible therapeutic option for a variety of cancers including prostate cancer, however, variable patient response remains a concern. Chemotherapies, like cabozantinib, can have immune-priming effects which sensitize tumors to immunotherapies. Additionally, lower doses of chemotherapy can be used in this context which can reduce patient side effects. We hypothesized that a combination of chemotherapy (cabozantinib) and immunotherapy [Interleukin-27 (IL-27)] could be used to treat bone-metastatic prostate cancer and exert pro-osteogenic effects. IL-27 is a multi-functional cytokine, which promotes immune cell recruitment to tumors, while also promoting bone repair. Methods: To test this hypothesis, in vivo experiments were performed where syngeneic C57BL/6J mice were implanted intratibially with TRAMP-C2ras-Luc cells that are able to form tumors in bone. Immunotherapy was administered in the form of intramuscular gene therapy, delivering plasmid DNA encoding a reporter gene (Lucia), and/or a therapeutic gene (IL-27). Sonoporation was used to aid gene delivery. Following immunotherapy, the animals received either cabozantinib or a vehicle control by oral gavage. Bioluminescence imaging was used to monitor tumor size over time. Results: Combinatorial therapy inhibited tumor growth and improved survival. Further, RNA sequencing was used to investigate the mechanisms involved. Microcomputed tomography and differentiation assays indicated that the combination therapy improved bone quality by enhancing osteoblast differentiation and inhibiting osteoclast differentiation. Discussion: Our conclusion is that a chemo-immunotherapy approach such as the one examined in this work has potential to emerge as a novel therapeutic strategy for treating bone-metastatic prostate cancer. This approach will enable a significant reduction in chemotherapy-associated toxicity, enhance sensitivity to immunotherapy, and improve bone quality.

11.
Int Immunol ; 35(11): 531-542, 2023 Nov 07.
Article in English | MEDLINE | ID: mdl-37756640

ABSTRACT

Excessive NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome activation has an important function in the pathogenesis of Sjögren's syndrome (SS). Increased and dysfunctional myeloid-derived suppressor cells (MDSCs) promoted SS. However, NLRP3 inflammasome activation of MDSCs in SS and its regulated components are unclear. Splenic MDSCs were purified by immunomagnetic beads and cultured. Western blot was used to assess NLRP3 inflammasomes. Interleukin-1ß (IL-1ß) and IL-18 were measured using enzyme-linked immunosorbent assay. Here we showed that the NLRP3 inflammasome was activated in non-obese diabetic (NOD) mice with SS-like manifestations. We found that NLRP3 inflammasome activation was augmented in MDSCs of SS mice and NLRP3 inflammasome activation was suppressed in IL-27-deficient NOD mice. Consistent with findings of SS mice in vivo, we observed that NLRP3 inflammasome activation by adenosine triphosphate and lipopolysaccharide was remarkably intensified in MDSCs with IL-27 treatment in vitro. Collectively, our data highlighted that IL-27 regulates NLRP3 inflammasome activation of MDSCs in experimental SS.


Subject(s)
Interleukin-27 , Myeloid-Derived Suppressor Cells , Sjogren's Syndrome , Animals , Mice , Inflammasomes/metabolism , Interleukin-1beta/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
12.
Front Immunol ; 14: 1212190, 2023.
Article in English | MEDLINE | ID: mdl-37559725

ABSTRACT

Infection-induced T cell responses must be properly tempered and terminated to prevent immuno-pathology. Using transgenic mice, we demonstrate that T cell intrinsic STAT1 signaling is required to curb inflammation during acute infection with Toxoplasma gondii. Specifically, we report that mice lacking STAT1 selectively in T cells expel parasites but ultimately succumb to lethal immuno-pathology characterized by aberrant Th1-type responses with reduced IL-10 and increased IL-13 production. We also find that, unlike STAT1, STAT3 is not required for induction of IL-10 or suppression of IL-13 during acute toxoplasmosis. Each of these findings was confirmed in vitro and ChIP-seq data mining showed that STAT1 and STAT3 co-localize at the Il10 locus, as well as loci encoding other transcription factors that regulate IL-10 production, most notably Maf and Irf4. These data advance basic understanding of how infection-induced T cell responses are managed to prevent immuno-pathology and provide specific insights on the anti-inflammatory properties of STAT1, highlighting its role in shaping the character of Th1-type responses.

13.
Heliyon ; 9(6): e17427, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37484355

ABSTRACT

Background: interleukin 23 (IL-23) is an important factor involved in the survival and proliferation of T helper 17 cells (Th17), known for their implication in multiple sclerosis (MS). By contrast, IL-27 regulates and modulates the function of T lymphocytes, in particular as a suppressor of Th17 differentiation. The aims of the study were i) to test the association of cytokines with the clinical and genetic characteristics in each of the multiple sclerosis groups (CIS - clinically isolated syndrome, RRMS - relapsing-remitting MS and SPMS - Secondary progressive MS) and ii) to evaluate the association between serum levels of IL-23 and IL-27 with T4730C (IL-27), A964G (IL-27) and R381Q (IL-23) gene polymorphisms in RRMS patients. Methods: Blood samples were obtained from 82 patients diagnosed with MS under treatment with glatiramer acetate (GA), interferon beta (IFN) 1 A and 1 B. IL-23 and IL-27 serum concentrations were measured by enzyme-linked immunosorbant assay (ELISA). Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) was used in order to determine the genotypes for R381Q (IL-23) polymorphisms, T4730C (IL-27) and A964G (IL-27). Results: Patients with SPMS, RRMS and CIS respectively differed significantly regarding age distribution (p = 0.003) but the studied MS groups were similar regarding age at disease onset (p = 0.528) and treatment type (p = 0.479). A significant increase of mean serum IL-27 was noticed in cases with early onset (age at disease onset <28 years) of RRMS (mean difference: 4.2 pg/ml, 95% CI: 0.8-5.3 pg/ml), compared to cases with later onset of RRMS (age at disease onset ≥28 years). RRMS patients with wild GG genotype of R381Q (IL-23) showed a significant increase of mean serum IL-23 than patients with variant AG genotype (mean difference: 115.1 pg/ml, 95% CI: 8.6-221.6 pg/ml). A trend for a higher increase in means of serum IL-23 (p = 0.086) was observed in RRMS patients carriers of AA genotype of A964G (IL-27) polymorphism in comparison with patients with AG or GG genotypes. We found no significant monotonic correlation of IL-27, IL-23 serum levels with age at disease onset (years) and duration of disease (p > 0.05) in the CIS and SPMS group respectively but a significant correlation between IL-23 and the duration of disease-modifying treatment was noticed only in the SPMS group. Conclusions: The results of the current study suggest an association between IL-23 levels and the R381Q gene polymorphism and also a relationship between IL-27 serum levels and early age at disease onset in RRMS patients.

14.
Int Immunopharmacol ; 121: 110532, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37354782

ABSTRACT

Our previous study found that increased serum IL-27 could promote rheumatoid arthritis (RA) B cell dysfunction via activating mTOR signaling pathway. This study aimed to explore the effects of IL-27 on B cell metabolism and clarify the mechanisms via which IL-27 enhancing glycolysis to induce B cells hyperactivation. Peripheral CD19+ B cells were purified from healthy controls (HC) and RA patients and then cultured with or without anti-CD40/CpG and glycolysis inhibitor 2-deoxy-D-glucose (2-DG) or mTOR inhibitor rapamycin. Furthermore, the isolated CD19+ B cells were treated by HC serum or RA serum in the presence and absence of recombinant human IL-27 or anti-IL-27 neutralizing antibodies or 2-DG or rapamycin. The B cell glycolysis level, proliferation, differentiation and inflammatory actions were detected by qPCR, flow cytometry or ELISA. We found that the glycolysis in RA B cells was increased significantly compared with HC B cells. Glycolysis inhibition downregulated the proliferation, differentiation, and inflammatory actions of RA B cells. RA serum and IL-27 promoted B cell glycolysis, which could be obviously rescued by anti-IL-27 antibodies or mTOR inhibitor rapamycin. Our results suggest that the enhanced cellular glycolysis of RA B cells induced by IL-27 may contribute to B cells hyperactivation through activating the mTOR signaling pathway.


Subject(s)
Arthritis, Rheumatoid , Interleukin-27 , Humans , Antigens, CD19/metabolism , Glycolysis , Interleukin-27/metabolism , Signal Transduction , TOR Serine-Threonine Kinases/metabolism
15.
Arch Virol ; 168(7): 178, 2023 Jun 13.
Article in English | MEDLINE | ID: mdl-37310504

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is associated with a high mortality rate. The clinical course is attributed to the severity of pneumonia and systemic complications. In COVID-19 patients and murine models of SARS-CoV-2 infection, the disease may be accompanied by excessive production of cytokines, leading to an accumulation of immune cells in affected organs such as lungs. Previous reports have shown that SARS-CoV-2 infection antagonizes interferon (IFN)-dependent antiviral response, thereby preventing the expression of IFN-stimulated genes (ISGs). Lower IFN levels have been linked to more-severe COVID-19. Interleukin 27 (IL27) is a heterodimeric cytokine composed of IL27p28 and EBI3 subunits, which induce both pro- and anti-inflammatory responses. Recently, we and others have reported that IL27 also induces a strong antiviral response in an IFN-independent manner. Here, we investigated transcription levels of both IL27 subunits in COVID-19 patients. The results show that SARS-CoV-2 infection modulates TLR1/2-MyD88 signaling in PBMCs and monocytes and induces NF-κB activation and expression of NF-κB-target genes that are dependent on a robust pro-inflammatory response, including EBI3; and activates IRF1 signaling which induces IL27p28 mRNA expression. The results suggest that IL27 induces a robust STAT1-dependent pro-inflammatory and antiviral response in an IFN-independent manner in COVID-derived PBMCs and monocytes as a function of a severe clinical course of COVID-19. Similar results were observed in macrophages stimulated with the SARS-CoV-2 spike protein. Thus, IL27 can trigger an antiviral response in the host, suggesting the possibility of novel therapeutics against SARS-CoV-2 infection in humans.


Subject(s)
COVID-19 , Interleukin-27 , Humans , Antiviral Agents/therapeutic use , COVID-19/immunology , Cytokines , Disease Progression , Interleukin-27/immunology , NF-kappa B , SARS-CoV-2
16.
Clin Immunol ; 251: 109327, 2023 06.
Article in English | MEDLINE | ID: mdl-37037268

ABSTRACT

Interleukin 27 has both pro-inflammatory and anti-inflammatory properties in autoimmunity. The anti-inflammatory effects of IL-27 are linked with inhibition of Th17 differentiation but the IL-27 effect on myeloid cells is less studied. Herein we demonstrate that IL-27 inhibits IL-23-induced inflammation associated not only with Th17 cells but also with myeloid cell infiltration in the joints and splenic myeloid populations of CD11b+ GR1+ and CD3-CD11b+CD11c-GR1- cells. The IL-27 anti-inflammatory response was associated with reduced levels of myeloid cells in the spleen and bone marrow. Overall, our data demonstrate that IL-27 has an immunosuppressive role that affects IL-23-dependent myelopoiesis in the bone marrow and its progression to inflammatory arthritis and plays a crucial role in controlling IL-23 driven joint inflammation by negatively regulating the expansion of myeloid cell subsets.


Subject(s)
Arthritis, Experimental , Interleukin-27 , Animals , Cytokines , Inflammation , Interleukin-23 , Th17 Cells
17.
Biochem Pharmacol ; 210: 115469, 2023 04.
Article in English | MEDLINE | ID: mdl-36868324

ABSTRACT

BACKGROUND: Several interleukins (ILs) have been demonstrated to participate in cardiac injury. This study aimed to investigate whether IL-27p28 plays a regulatory role in doxorubicin (DOX)-induced cardiac injury by regulating inflammation and oxidative stress. METHODS: Dox was used to establish a mouse cardiac injury model, and IL-27p28 was knocked out to observe its role in cardiac injury. In addition, monocytes were adoptively transferred to clarify whether monocyte-macrophages mediate the regulatory role of IL-27p28 in DOX-induced cardiac injury. RESULTS: IL-27p28 knockout significantly aggravated DOX-induced cardiac injury and cardiac dysfunction. IL-27p28 knockout also upregulated the phosphorylation levels of p65 and STAT1 and promoted M1 macrophage polarization in DOX-treated mice, which increased cardiac inflammation and oxidative stress. Moreover, IL-27p28-knockout mice that were adoptively transferred WT monocytes exhibited worse cardiac injury and cardiac dysfunction and higher cardiac inflammation and oxidative stress. CONCLUSIONS: IL-27p28 knockdown aggravates DOX-induced cardiac injury by worsening the M1 macrophage/M2 macrophage imbalance and its associated inflammatory response and oxidative stress.


Subject(s)
Cardiotoxicity , Heart Diseases , Interleukins , Animals , Mice , Apoptosis , Cardiotoxicity/etiology , Cardiotoxicity/metabolism , Doxorubicin/adverse effects , Doxorubicin/metabolism , Heart Diseases/metabolism , Inflammation/metabolism , Macrophages , Myocytes, Cardiac/metabolism , Oxidative Stress , Interleukins/genetics , Interleukins/metabolism
18.
Front Immunol ; 14: 1124140, 2023.
Article in English | MEDLINE | ID: mdl-36891292

ABSTRACT

Human newborns exhibit increased vulnerability and risk of mortality from infection that is consistent with key differences in the innate and adaptive immune responses relative to those in adult cells. We have previously shown an increase in the immune suppressive cytokine, IL-27, in neonatal cells and tissues from mice and humans. In a murine model of neonatal sepsis, mice deficient in IL-27 signaling exhibit reduced mortality, increased weight gain, and better control of bacteria with reduced systemic inflammation. To explore a reprogramming of the host response in the absence of IL-27 signaling, we profiled the transcriptome of the neonatal spleen during Escherichia coli-induced sepsis in wild-type (WT) and IL-27Rα-deficient (KO) mice. We identified 634 genes that were differentially expressed, and those most upregulated in WT mice were associated with inflammation, cytokine signaling, and G protein coupled receptor ligand binding and signaling. These genes failed to increase in the IL-27Rα KO mice. We further isolated an innate myeloid population enriched in macrophages from the spleens of control and infected WT neonates and observed similar changes in gene expression aligned with changes in chromatin accessibility. This supports macrophages as an innate myeloid population contributing to the inflammatory profile in septic WT pups. Collectively, our findings highlight the first report of improved pathogen clearance amidst a less inflammatory environment in IL-27Rα KO. This suggests a direct relationship between IL-27 signaling and bacterial killing. An improved response to infection that is not reliant upon heightened levels of inflammation offers new promise to the potential of antagonizing IL-27 as a host-directed therapy for neonates.


Subject(s)
Escherichia coli Infections , Interleukin-27 , Neonatal Sepsis , Infant, Newborn , Humans , Animals , Mice , Transcriptome , Inflammation , Cytokines
19.
Fish Shellfish Immunol ; 133: 108530, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36632914

ABSTRACT

Interleukin (IL) 27 is a member of the IL-12 family and is a heterodimeric cytokine composed of IL-27A and Epstein-Barr virus-induced 3 (EBI3). It plays an important role in regulating inflammation and cancer progression. IL-27A not only functions by dimerizing with EBI3 but also acts alone. Here, we report that IL-27A and EBI3 suppress spring viremia of carp virus (SVCV) replication in zebrafish. Expression analysis reveals that il-27a and ebi3 were significantly upregulated in the ZF4 cells by SVCV and poly(I:C), and in the zebrafish caudal fin (ZFIN) cells overexpressed with SVCV genes. Interestingly, il-27a and ebi3 were not modulated by IFNφ1, indicating that they are not IFN stimulated genes (ISGs). Furthermore, overexpression of IL-27A and EBI3 alone inhibited SVCV replication in the EPC cells, but less potent than co-expression of IL-27A and EBI3. Intriguingly, IL-27A could not induce the expression of irf3, ifn, isg15 and mx1. Taken together, our results demonstrate that IL-27A and EBI3 activate innate antiviral response in an IFN independent manner in zebrafish.


Subject(s)
Fish Diseases , Interleukin-27 , Rhabdoviridae Infections , Rhabdoviridae , Zebrafish , Animals , Epstein-Barr Virus Infections , Fish Proteins/genetics , Fish Proteins/metabolism , Herpesvirus 4, Human/metabolism , Interleukin-27/genetics , Interleukins/genetics , Rhabdoviridae/physiology , Rhabdoviridae Infections/veterinary , Viremia , Virus Replication , Zebrafish/genetics , Zebrafish/metabolism
20.
Virus Res ; 325: 199040, 2023 02.
Article in English | MEDLINE | ID: mdl-36610657

ABSTRACT

Zika virus (ZIKV) is an arbovirus that belongs to the Flaviviridae family and inflammatory responses play a critical role in ZIKV pathogenesis. As a first-line defense, monocytes are key components of innate immunity and host response to viruses. Monocytes are considered the earliest blood cell type to be infected by ZIKV and have been shown to be associated with ZIKV pathogenesis. The first ZIKV epidemic was reported in Africa and Asia although, it is less well known whether African- and Asian- lineages of ZIKV have different impacts on host immune response. We studied the pro-inflammatory and antiviral response of ZIKV-infected monocytes using publicly available RNA-seq analysis (GSE103114). We compared the transcriptomic profiles of human monocytes infected with ZIKV Puerto Rico strain (PRVABC59), American-Asian lineage, and ZIKV Nigeria strain (IBH30656), African lineage. We validated RNA-seq results by ELISA or RT-qPCR, in human monocytes infected with a clinical isolate of ZIKV from Colombia (American-Asian lineage), or with ZIKV from Dakar (African lineage). The transcriptomic analysis showed that ZIKV Puerto Rico strain promotes a higher pro-inflammatory response through TLR2 signaling and NF-kB activation and induces a strong IL27-dependent antiviral activity than ZIKV Nigeria strain. Furthermore, human monocytes are more susceptible to infection with ZIKV from Colombia than ZIKV from Dakar. Likewise, Colombian ZIKV isolate activated IL27 signaling and induced a robust antiviral response in an IFN-independent manner. Moreover, we show that treatment of monocytes with IL27 results in decreased release of ZIKV particles in a dose-dependent manner with an EC50 =2.870 ng/mL for ZIKV from Colombia and EC50 =10.23 ng/mL to ZIKV from Dakar. These findings highlight the differential inflammatory response and antiviral activity of monocytes infected with different lineages of ZIKV and may help better management of ZIKV-infected patients.


Subject(s)
Interleukin-27 , Zika Virus Infection , Zika Virus , Humans , Zika Virus/physiology , Monocytes , Antiviral Agents , Senegal , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL
...