Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters











Publication year range
1.
Tree Physiol ; 44(9)2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39163264

ABSTRACT

Understanding covariation patterns of drought resistance, post-drought recovery and phenotypic plasticity, and their variability at the intra-population level are crucial for predicting forest vulnerability to increasing aridity. This knowledge is particularly urgent at the trailing range edge since, in these areas, tree species are proximal to their ecological niche boundaries. While this proximity increases their susceptibility, these populations are recognized as valuable genetic reservoirs against environmental stressors. The conservation of this genetic variability is critical for the adaptive capacity of the species in the current context of climate change. Here we examined intra-population patterns of stem basal growth, gas exchange and other leaf functional traits in response to an experimental drought in seedlings of 16 open-pollinated families within a marginal population of European beech (Fagus sylvatica L.) from its southern range edge. We found a high degree of intra-population variation in leaf functional traits, photosynthetic performance, growth patterns and phenotypic plasticity in response to water availability. Low phenotypic plasticity was associated with higher resistance to drought. Both drought resistance and post-drought recovery of photosynthetic performance varied between maternal lines. However, drought resistance and post-drought recovery exhibited independent variation. We also found intra-population variation in stomatal sensitivity to soil drying, but it was not associated with either drought resistance or post-drought recovery. We conclude that an inverse relationship between phenotypic plasticity and drought resistance is not necessarily a sign of maladaptive plasticity, but rather it may reflect stability of functional performance and hence adaptation to withstand drought. The independent variation found between drought resistance and post-drought recovery should facilitate to some extent microevolution and adaption to increasing aridity. The observed variability in stomatal sensitivity to soil drying was consistent with previous findings at other scales (e.g., inter-specific variation, inter-population variation) that challenge the iso-anisohydric concept as a reliable surrogate of drought tolerance.


Subject(s)
Droughts , Fagus , Phenotype , Fagus/physiology , Fagus/genetics , Plant Leaves/physiology , Adaptation, Physiological , Photosynthesis/physiology , Climate Change , Drought Resistance
2.
Ecol Evol ; 14(6): e11326, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38895579

ABSTRACT

Feeding habits of herbivorous fishes play an important role in shaping the form and function of coastal marine ecosystems. Rabbitfishes (Siganidae) are important consumers of macroalgae on Indo-West Pacific coral reefs. However, it is unclear how their diet varies among and within species at biogeographical scales, casting doubt on their precise functional roles across different regions. The present study assessed the inter- and intra-specific diet variation of four rabbitfishes (Siganus trispilos, Siganus corallinus, Siganus virgatus and Siganus doliatus) factored by morphological relatedness among populations from Ningaloo Reef (western Australia), the Great Barrier Reef (GBR, eastern Australia) and the Yaeyama Islands (Okinawa Prefecture, Japan). Results showed that the region had a strong effect on diet, effectively reducing the expected effect of morphologic similitude. While intra-specific differences were only significant when populations inhabited different regions; interspecific differences were not as predicted, with different morphotypes having similar diets when populations inhabited the same regions. Rabbitfishes consumed more corticated and filamentous macroalgae on the GBR, more foliose and membranous macroalgae at the Yaeyama Islands, and more leathery macroalgae at Ningaloo Reef. The findings indicate that rabbitfishes have high diet plasticity, and hence their functional role as mediators of competition between macroalgae and corals can change across biogeographic regions. Local context is therefore important when assessing the diet and functional role of herbivorous fishes. As climate change unfolds, shifts in the distribution, trophic behaviour and function of species are expected, making the study of trophic plasticity more important.

3.
Fungal Biol ; 128(3): 1800-1805, 2024 May.
Article in English | MEDLINE | ID: mdl-38796264

ABSTRACT

It has been the aim of this study to molecular-taxonomically identify 15 Beauveria isolates collected from different geographical regions and insect hosts in Argentina and to investigate the levels of inter- and intra-specific diversity across this set of isolates. Based on phylogenetic analyses of EF1A-RPB1-RPB2 concatenated genes and BLOC markers, all Beauveria strains were identify as Beauveria bassiana. Within the B. bassiana clades of both phylogenies, isolates from Argentina were not clustered according to geographic origin or host. The 15 fungal isolates were further analyzed by PCR amplification of the intron insertion hot spot region of the nuclear 28S rRNA encoding sequence. By intron sequence and position, seven different group-I intron combinations termed variants A, B1, B2, C, D, E and F were found in the 15 isolates under study. Variants B1/B2 consisting of a single 28Si2 intron were found in ten isolates, whereas variant A occurred twice and variants C through F were unique across the set of isolates under study. The determination of the different introns and intron combinations in the 28S rRNA gene is a powerful tool for achieving infraspecific differentiation of B. bassiana isolates from Argentina.


Subject(s)
Beauveria , Genetic Variation , Phylogeny , RNA, Ribosomal, 28S , Beauveria/genetics , Beauveria/classification , Beauveria/isolation & purification , Argentina , RNA, Ribosomal, 28S/genetics , Animals , DNA, Fungal/genetics , Insecta/microbiology , Sequence Analysis, DNA , Molecular Sequence Data , Introns , DNA, Ribosomal/genetics , Cluster Analysis
4.
Front Plant Sci ; 15: 1223351, 2024.
Article in English | MEDLINE | ID: mdl-38716340

ABSTRACT

Introduction: Intra-speciic variation is the main source of functional trait diversity and has similar ecological effects as inter-speciic variation. Methods: We studied 79 species and 3546 individuals from 50 ixed monitoring plots in subtropical evergreen broad - leaved secondary forests in Zhejiang Province, China. Using trait gradient analysis, we examined nine traits (speciic leaf area, leaf dry matter content, wood density, leaf area, chlorophyll content, leaf nitrogen content, leaf phosphorus content, leaf potassium content, and nitrogen-phosphorus ratio) by decomposing species functional traits into alpha (within-community) and beta (among-communities) measure the impact of environmental gradients and the presence of other species on the variation of traits. Result: All nine functional traits showed some degree of differentiation in the forest communities, with a greater range of variation in alpha values than in beta values . Correlations were signiicantly different between the trait differences in the communities. The alpha values of each trait showed a higher correlation with other components than the beta values. The factors affecting intra-speciic trait variation were relatively complex. The alpha component had a more signiicant and stronger effect on intra-speciic trait variation compared to the beta component. Abiotic factors, such as soil nutrient content, soil nitrogen-phosphorus content, directly affected the beta component. In contrast, biotic factors, such as tree height variation, had a direct and stronger effect on the alpha component. Discussion: Our results demonstrate that alpha and beta components, as independent differentiation axes among coexisting species, have different sensitivities to different environmental factors and traits in different ecological strategies and spatial scales. Trait gradient analysis can more clearly reveal the variation patterns of species traits in communities, which will help to understand the scale effects and potential mechanisms of trait relationships.

5.
J Exp Bot ; 75(13): 4005-4023, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38636949

ABSTRACT

The thermal tolerance of symbiodiniacean photo-endosymbionts largely underpins the thermal bleaching resilience of their cnidarian hosts such as corals and the coral model Exaiptasia diaphana. While variation in thermal tolerance between species is well documented, variation between conspecific strains is understudied. We compared the thermal tolerance of three closely related strains of Breviolum minutum represented by two internal transcribed spacer region 2 profiles (one strain B1-B1o-B1g-B1p and the other two strains B1-B1a-B1b-B1g) and differences in photochemical and non-photochemical quenching, de-epoxidation state of photopigments, and accumulation of reactive oxygen species under rapid short-term cumulative temperature stress (26-40 °C). We found that B. minutum strains employ distinct photoprotective strategies, resulting in different upper thermal tolerances. We provide evidence for previously unknown interdependencies between thermal tolerance traits and photoprotective mechanisms that include a delicate balancing of excitation energy and its dissipation through fast relaxing and state transition components of non-photochemical quenching. The more thermally tolerant B. minutum strain (B1-B1o-B1g-B1p) exhibited an enhanced de-epoxidation that is strongly linked to the thylakoid membrane melting point and possibly membrane rigidification minimizing oxidative damage. This study provides an in-depth understanding of photoprotective mechanisms underpinning thermal tolerance in closely related strains of B. minutum.


Subject(s)
Photosynthesis , Dinoflagellida/physiology , Heat-Shock Response , Hot Temperature
6.
Curr Biol ; 34(6): 1234-1246.e7, 2024 03 25.
Article in English | MEDLINE | ID: mdl-38417444

ABSTRACT

High intra-specific genetic diversity is associated with adaptive potential, which is key for resilience to global change. However, high variation may also support deleterious alleles through genetic load, thereby increasing the risk of inbreeding depression if population sizes decrease. Purging of deleterious variation has been demonstrated in some threatened species. However, less is known about the costs of declines and inbreeding in species with large population sizes and high genetic diversity even though this encompasses many species globally that are expected to undergo population declines. Caribou is a species of ecological and cultural significance in North America with a wide distribution supporting extensive phenotypic variation but with some populations undergoing significant declines resulting in their at-risk status in Canada. We assessed intra-specific genetic variation, adaptive divergence, inbreeding, and genetic load across populations with different demographic histories using an annotated chromosome-scale reference genome and 66 whole-genome sequences. We found high genetic diversity and nine phylogenomic lineages across the continent with adaptive diversification of genes, but also high genetic load among lineages. We found highly divergent levels of inbreeding across individuals, including the loss of alleles by drift but not increased purging in inbred individuals, which had more homozygous deleterious alleles. We also found comparable frequencies of homozygous deleterious alleles between lineages regardless of nucleotide diversity. Thus, further inbreeding may need to be mitigated through conservation efforts. Our results highlight the "double-edged sword" of genetic diversity that may be representative of other species atrisk affected by anthropogenic activities.


Subject(s)
Genetics, Population , Reindeer , Humans , Animals , Genetic Load , Inbreeding , Population Dynamics , Genetic Variation
7.
J Chem Ecol ; 50(5-6): 250-261, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38270732

ABSTRACT

To what extent particular plant defences against herbivorous insects are constitutive or inducible will depend on the costs and benefits in their neighbourhood. Some defensive chemicals in leaves are thought to be costly and hard to produce rapidly, while others, including volatile organic compounds that attract natural enemies, might be cheaper and can be released rapidly. When surrounding tree species are more closely related, trees can face an increased abundance of both specialist herbivores and their parasitoids, potentially increasing the benefits of constitutive and inducible defences. To test if oaks (Quercus robur) respond more to herbivore attacks with volatile emission than with changes in leaf phenolic chemistry and carbon to nitrogen ratio (C: N), and whether oaks respond to the neighbouring tree species, we performed an experiment in a forest in Poland. Oak saplings were placed in neighbourhoods dominated by oak, beech, or pine trees, and half of them were treated with the phytohormone methyl jasmonate (elicitor of anti-herbivore responses). Oaks responded to the treatment by emitting a different volatile blend within 24 h, while leaf phenolic chemistry and C: N remained largely unaffected after 16 days and multiple treatments. Leaf phenolics were subtly affected by the neighbouring trees with elevated flavan-3-ols concentrations in pine-dominated plots. Our results suggest that these oaks rely on phenols as a constitutive defence and when attacked emit volatiles to attract natural enemies. Further studies might determine if the small effect of the neighbourhood on leaf phenolics is a response to different levels of shading, or if oaks use volatile cues to assess the composition of their neighbourhood.


Subject(s)
Flavonoids , Herbivory , Plant Leaves , Quercus , Volatile Organic Compounds , Quercus/chemistry , Quercus/metabolism , Plant Leaves/chemistry , Plant Leaves/metabolism , Volatile Organic Compounds/metabolism , Volatile Organic Compounds/chemistry , Volatile Organic Compounds/analysis , Flavonoids/metabolism , Flavonoids/analysis , Flavonoids/chemistry , Animals , Acetates , Oxylipins/metabolism , Oxylipins/chemistry , Cyclopentanes/metabolism , Cyclopentanes/chemistry , Nitrogen/metabolism , Carbon/metabolism , Carbon/chemistry
8.
Proc Natl Acad Sci U S A ; 120(48): e2306723120, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-37956437

ABSTRACT

Anthropogenic climate change has significantly altered the flowering times (i.e., phenology) of plants worldwide, affecting their reproduction, survival, and interactions. Recent studies utilizing herbarium specimens have uncovered significant intra- and inter-specific variation in flowering phenology and its response to changes in climate but have mostly been limited to animal-pollinated species. Thus, despite their economic and ecological importance, variation in phenological responses to climate remain largely unexplored among and within wind-pollinated dioecious species and across their sexes. Using both herbarium specimens and volunteer observations of cottonwood (Populus) species, we examined how phenological sensitivity to climate varies across species, their ranges, sexes, and phenophases. The timing of flowering varied significantly across and within species, as did their sensitivity to spring temperature. In particular, male flowering generally happened earlier in the season and was more sensitive to warming than female flowering. Further, the onset of flowering was more sensitive to changes in temperature than leaf out. Increased temporal gaps between male and female flowering time and between the first open flower date and leaf out date were predicted for the future under two climate change scenarios. These shifts will impact the efficacy of sexual reproduction and gene flow among species. Our study demonstrates significant inter- and intra-specific variation in phenology and its responses to environmental cues, across species' ranges, phenophases, and sex, in wind-pollinated species. These variations need to be considered to predict accurately the effects of climate change and assess their ecological and evolutionary consequences.


Subject(s)
Flowers , Reproduction , Humans , Animals , Flowers/physiology , Plant Leaves , Sex , Plants , Climate Change , Seasons , Temperature
9.
Parasitol Res ; 122(10): 2301-2315, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37610451

ABSTRACT

Phyllodistomum is the large digenean group of fish parasites, with 25 species described so far in the Indian subcontinent. Here, we redescribed two adult species of Phyllodistomum (P. srivastava Rai 1964 and P. parorchium Jaiswal 1957) collected from freshwater fish Heteropneustes fossilis Bloch, 1974 and Glossogobius giuris Ham, 1822, respectively, and an unknown Phyllodistomum metacercaria from shrimp (Macrobrachium dayanum Henderson, 1893). These parasites were genetically characterized using 28S and first and second internal transcribed spacers (ITS1 and ITS2) regions of the nuclear ribosomal DNA and CoxI region of the mitochondrial (mt) DNA to establish the link between metacercaria and adult. Morphologically, both the unknown metacercaria in shrimp and adult Phyllodistomum srivastava in fish, resembled in terms of crenulated margin of hind body, arrangement of diagonal testes, bipartite seminal vesicle, and compact paired vitelline masses. The two adult parasite species, P. srivastava from P. parorchium, were different in terms of shape and size of the body, ratio of suckers, the absence of crenulated margin of hind body, a single chambered seminal vesicle, and deeply lobed paired vitelline masses, in the former species. Comparison of the 28S, ITS, and mtCoxI sequence data suggested P. srivastava and Phyllodistomum metacercaria belong to the same species, and supported the distinction between P. srivastava and P. parorchium. Exploring the potential impact of Phyllodistomum infection on host behaviour and health would be prospective areas for future research.


Subject(s)
Catfishes , Parasites , Animals , Phylogeny , Crustacea , DNA, Mitochondrial , Fresh Water
10.
Methods Mol Biol ; 2703: 123-129, 2023.
Article in English | MEDLINE | ID: mdl-37646942

ABSTRACT

For decades, plant biologists have been interested in the determination and documentation of chromosome numbers for extant taxa. This central cytological character has been used as an important phylogenetic marker and as an indicator for major genomic events such as polyploidy and dysploidy. Due to their significance and the relative ease by which chromosome numbers can be obtained, chromosome numbers have been extensively recorded across the plant kingdom and documented in a wide variety of resources. This makes the collection process a wearing task, often leading to partial data retrieval. In 2015, the Chromosome Counts Database (CCDB) was assembled, being an online unified community resource. This database compiles dozens of different chromosome counts sources, of which a significant portion had been unavailable before in a digitized, searchable format. The vast amount of data assembled in CCDB has already enabled a large number of analyses to examine the evolution of different plant hierarchies, as well as the application of various follow-up analyses, such as ploidy-level inference using chromEvol. CCDB ( http://ccdb.tau.ac.il/ ) encourages data sharing among the botanical community and is expected to continue expanding as additional chromosome numbers are recorded.


Subject(s)
Documentation , Information Storage and Retrieval , Phylogeny , Databases, Factual , Genomics
11.
BMC Plant Biol ; 23(1): 394, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37580656

ABSTRACT

BACKGROUND: Quantifying intra-specific variation in leaf functional traits along environmental gradients is important for understanding species' responses to climate change. In this study, we assessed the degree of among and within populations variation in leaf functional traits and explored leaf response to geographic and climate change using Caryopteris mongholica as material, which has a wide range of distribution environments. RESULTS: We selected 40 natural populations of C. mongholica, measured 8 leaf functional traits, analyzed the extent of trait variation among and within populations, and developed geographic and climatic models to explain trait variation between populations. Our results showed that the variation in leaf functional traits of C. mongholica was primarily lower within populations compared to among populations. Specifically, the leaf area (LA) exhibited higher variability both among and within populations, whereas leaf carbon content (LC) exhibited lower variation within populations but greater variation among populations. We observed a specific covariation pattern among traits and a strong linkage between morphological, economic, and mechanical traits. Increasing minimum temperature, precipitation of month, and seasonal precipitation differences all limited the growth and development of C. mongholica. However, it was observed that an increase in mean annual precipitation positively influenced the morphological development of its leaf. CONCLUSIONS: These results demonstrate the response of intra-specific trait variation to the environment and provide valuable insights into the adaptation of intra-specific leaf functional traits under changing climatic conditions.


Subject(s)
Acclimatization , Plant Leaves , Plant Leaves/physiology , Phenotype , Geography , Adaptation, Physiological
12.
Proc Biol Sci ; 290(2002): 20230511, 2023 07 12.
Article in English | MEDLINE | ID: mdl-37403509

ABSTRACT

The slow-fast continuum is a commonly used framework to describe variation in life-history strategies across species. Individual life histories have also been assumed to follow a similar pattern, especially in the pace-of-life syndrome literature. However, whether a slow-fast continuum commonly explains life-history variation among individuals within a population remains unclear. Here, we formally tested for the presence of a slow-fast continuum of life histories both within populations and across species using detailed long-term individual-based demographic data for 17 bird and mammal species with markedly different life histories. We estimated adult lifespan, age at first reproduction, annual breeding frequency, and annual fecundity, and identified the main axes of life-history variation using principal component analyses. Across species, we retrieved the slow-fast continuum as the main axis of life-history variation. However, within populations, the patterns of individual life-history variation did not align with a slow-fast continuum in any species. Thus, a continuum ranking individuals from slow to fast living is unlikely to shape individual differences in life histories within populations. Rather, individual life-history variation is likely idiosyncratic across species, potentially because of processes such as stochasticity, density dependence, and individual differences in resource acquisition that affect species differently and generate non-generalizable patterns across species.


Subject(s)
Life History Traits , Reproduction , Humans , Animals , Mammals , Birds
13.
Front Psychol ; 14: 1192731, 2023.
Article in English | MEDLINE | ID: mdl-37205091

ABSTRACT

[This corrects the article DOI: 10.3389/fpsyg.2021.666166.].

14.
New Phytol ; 235(3): 923-938, 2022 08.
Article in English | MEDLINE | ID: mdl-35510798

ABSTRACT

Concurrent measurement of multiple foliar traits to assess the full range of trade-offs among and within taxa and across broad environmental gradients is limited. Leaf spectroscopy can quantify a wide range of foliar functional traits, enabling assessment of interrelationships among traits and with the environment. We analyzed leaf trait measurements from 32 sites along the wide eco-climatic gradient encompassed by the US National Ecological Observatory Network (NEON). We explored the relationships among 14 foliar traits of 1103 individuals across and within species, and with environmental factors. Across all species pooled, the relationships between leaf economic traits (leaf mass per area, nitrogen) and traits indicative of defense and stress tolerance (phenolics, nonstructural carbohydrates) were weak, but became strong within certain species. Elevation, mean annual temperature and precipitation weakly predicted trait variation across species, although some traits exhibited species-specific significant relationships with environmental factors. Foliar functional traits vary idiosyncratically and species express diverse combinations of leaf traits to achieve fitness. Leaf spectroscopy offers an effective approach to quantify intra-species trait variation and covariation, and potentially could be used to improve the characterization of vegetation in Earth system models.


Subject(s)
Nitrogen , Plant Leaves , Neon , Phenotype , Spectrum Analysis
15.
Front Psychol ; 12: 666166, 2021.
Article in English | MEDLINE | ID: mdl-34721132

ABSTRACT

Non-human primates show an impressive behavioral diversity, both across and within species. However, the factors explaining intra-specific behavioral variation across groups and individuals are yet understudied. Here, we aimed to assess how group size and living conditions (i.e., captive, semi-free-ranging, wild) are linked to behavioral variation in 5 groups of Barbary macaques (N=137 individuals). In each group, we collected observational data on the time individuals spent in social interactions and on the group dominance style, along with experimental data on social tolerance over food and neophobia. Our results showed that differences in group size predicted differences in the time spent in social interactions, with smaller groups spending a higher proportion of time in close spatial proximity, but a lower proportion of time grooming. Moreover, group size predicted variation in dominance style, with smaller groups being more despotic. Social tolerance was affected by both group size and living conditions, being higher in smaller groups and in groups living in less natural conditions. Finally, individual characteristics also explained variation in social tolerance and neophobia, with socially integrated individuals having higher access to food sources, and higher-ranking ones being more neophobic. Overall, our results support the view that intra-specific variation is a crucial aspect in primate social behavior and call for more comparative studies to better understand the sources of within-species variation.

16.
Sci Total Environ ; 780: 146516, 2021 Aug 01.
Article in English | MEDLINE | ID: mdl-33765469

ABSTRACT

In plant communities, genetic diversity among dominant species can not only affect the fitness of the population, but also interactions with concomitant species. Soil salinity is a common factor that influences plant growth in estuarine wetlands. However, few studies have tested whether their high genetic diversity will be beneficial for the resistance of plant populations to salinity and the presence of concomitant plants. Four different genotypes of Phragmites australis, a dominant species of the Yellow River Delta in China, were selected to construct populations with three different genotypic levels. These populations were planted either with or without concomitant species and were subjected to control or salinity treatments. At the end of treatments, growth variables of P. australis populations were measured. In response to soil salinity, the total biomass of 1-, 2-, and 4-genotype populations decreased by 35%, 24%, and 13%, respectively, indicating higher resistance of P. australis populations with high genetic diversity. Correspondingly, 2-, and 4-genotype populations showed higher biomass allocation to roots, which can maintain adequate water uptake for plants. The biomass accumulation of 1-genotype populations with concomitant plants was significantly lower compared with populations without concomitant plants; however, no significant difference was found for 4-genotype populations between both control and salinity treatments, suggesting their higher capacities when coexisting with concomitant species. However, the genotypic level of populations did not significantly affect their biomass accumulation. High genetic diversity is greatly beneficial for the resistance of P. australis populations to salinity and coexistence with other plants. This information should be considered in the construction or restoration of this species in estuarine wetlands.


Subject(s)
Poaceae , Salinity , China , Genetic Variation , Poaceae/genetics , Soil , Wetlands
17.
New Phytol ; 229(3): 1363-1374, 2021 02.
Article in English | MEDLINE | ID: mdl-32981040

ABSTRACT

Plant traits are increasingly being used to improve prediction of plant function, including plant demography. However, the capability of plant traits to predict demographic rates remains uncertain, particularly in the context of trees experiencing a changing climate. Here we present data combining 17 plant traits associated with plant structure, metabolism and hydraulic status, with measurements of long-term mean, maximum and relative growth rates for 176 trees from the world's longest running tropical forest drought experiment. We demonstrate that plant traits can predict mean annual tree growth rates with moderate explanatory power. However, only combinations of traits associated more directly with plant functional processes, rather than more commonly employed traits like wood density or leaf mass per area, yield the power to predict growth. Critically, we observe a shift from growth being controlled by traits related to carbon cycling (assimilation and respiration) in well-watered trees, to traits relating to plant hydraulic stress in drought-stressed trees. We also demonstrate that even with a very comprehensive set of plant traits and growth data on large numbers of tropical trees, considerable uncertainty remains in directly interpreting the mechanisms through which traits influence performance in tropical forests.


Subject(s)
Trees , Tropical Climate , Climate Change , Droughts , Forests , Plant Leaves
18.
Ann Bot ; 127(4): 413-423, 2021 03 24.
Article in English | MEDLINE | ID: mdl-32421780

ABSTRACT

BACKGROUND AND AIMS: It is widely accepted that changes in the environment affect mean trait expression, but little is known about how the environment shapes intra-individual and intra-population variance. Theory suggests that intra-individual variance might be plastic and under natural selection, rather than reflecting developmental noise, but evidence for this hypothesis is scarce. Here, we experimentally tested whether differences in intrinsic environmental predictability affect intra-individual and intra-population variability of different reproductive traits, and whether intra-individual variability is under selection. METHODS: Under field conditions, we subjected Onobrychis viciifolia to more and less predictable precipitation over 4 generations and 4 years. We analysed effects on the coefficient of intra-individual variation (CVi-i) and the coefficient of intra-population variation (CVi-p), assessed whether the coefficients of intra-individual variation (CsVi-i) are under natural selection and tested for transgenerational responses (ancestor environmental effects on offspring). KEY RESULTS: Less predictable precipitation led to higher CsVi-i and CsVi-p, consistent with plastic responses. The CsVi-i of all studied traits were under consistent stabilizing selection, and precipitation predictability affected the strength of selection and the location of the optimal CVi-i of a single trait. All CsVi-i differed from the optimal CVi-i and the maternal and offspring CsVi-i were positively correlated, showing that there was scope for change. Nevertheless, no consistent transgenerational effects were found in any of the three descendant generations, which contrasts with recent studies that detected rapid transgenerational responses in the trait means of different plant species. This suggests that changes in intra-individual variability take longer to evolve than changes in trait means, which may explain why high intra-individual variability is maintained, despite the stabilizing selection. CONCLUSIONS: The results indicate that plastic changes of intra-individual variability are an important determinant of whether plants will be able to cope with changes in environmental predictability induced by the currently observed climatic change.


Subject(s)
Biological Evolution , Plants , Climate Change , Phenotype , Reproduction
19.
Mitochondrial DNA B Resour ; 5(1): 517-519, 2020 Jan 14.
Article in English | MEDLINE | ID: mdl-33366628

ABSTRACT

Gastrodia elata is a non-photosynthetic saprophytic plant of medicinal use in the oriental countries. We report the second complete chloroplast (cp) genome of G. elata from a sample collected in Korea. The length of cp genome is only 35,180 bp: there is no inverted repeated region and many photosynthesis genes are missing compared to typical angiosperm cp genomes. It includes 20 protein-coding genes, 3 rRNAs, and 5 tRNAs. The overall GC content of the genome was 26.7%. Relatively, high intra-specific variation (457 SNPs and 670 indels) is detected in the species comparing it with other seed plants.

20.
Mov Ecol ; 8: 44, 2020.
Article in English | MEDLINE | ID: mdl-33133610

ABSTRACT

BACKGROUND: Long-distance seed dispersal (LDD) has strong impacts on the spatiotemporal dynamics of plants. Large animals are important LDD vectors because they regularly transport seeds of many plant species over long distances. While there is now ample evidence that behaviour varies considerably between individual animals, it is not clear to what extent inter-individual variation in behaviour alters seed dispersal by animals. METHODS: We study how inter-individual variation in the movement and feeding behaviour of one of Europe's largest herbivores (the red deer, Cervus elaphus) affects internal seed dispersal (endozoochory) of multiple plant species. We combine movement data of 21 individual deer with measurements of seed loads in the dung of the same individuals and with data on gut passage time. These data serve to parameterize a model of passive dispersal that predicts LDD in three orientations (horizontal as well as upward and downward in elevation).With this model we investigate to what extent per-seed probabilities of LDD and seed load vary between individuals and throughout the vegetation period (May-December). Subsequently, we test whether per-seed LDD probability and seed load are positively (or negatively) correlated so that more mobile animals disperse more (or less) seeds. Finally, we examine whether non-random associations between per-seed LDD probability and seed load affect the LDD of individual plant species. RESULTS: The studied deer dispersed viable seeds of at least 62 plant species. Deer individuals varied significantly in per-seed LDD probability and seed loads. However, more mobile animals did not disperse more or less seeds than less mobile ones. Plant species also did not differ significantly in the relationship between per-seed LDD probability and seed load. Yet plant species differed in how their seed load was distributed across deer individuals and in time, and this caused their LDD potential to differ more than twofold. For several plant species, we detected non-random associations between per-seed LDD probability and seed load that generally increased LDD potential. CONCLUSIONS: Inter-individual variation in movement and feeding behaviour means that certain deer are substantially more effective LDD vectors than others. This inter-individual variation reduces the reliability of LDD and increases the sensitivity of LDD to the decline of deer populations. Variation in the dispersal services of individual animals should thus be taken into account in models in order to improve LDD projections.

SELECTION OF CITATIONS
SEARCH DETAIL