Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 347
Filter
Add more filters











Publication year range
1.
J Colloid Interface Sci ; 678(Pt B): 955-969, 2024 Sep 07.
Article in English | MEDLINE | ID: mdl-39270395

ABSTRACT

Constructing photocatalysts for the stable and efficient production of NH3 is of excellent research significance and challenging. In this paper, the electron acceptor 5-amino-1,10-phenanthroline (AP) is introduced into the electron-donor graphitic carbon nitride (CN) framework by a simple heated copolymerization method to construct a donor-acceptor (D-A) structure. Subsequently, the phenanthroline unit is coordinated with transition metal Fe3+ ions to obtain the photocatalyst Fe(III)-0.5-AP-CN with better nitrogen fixation performance, and the average NH3 yield can reach 825.3 µmol g-1 h-1. Comprehensive experimental results and theoretical calculations show that the presence of the D-A structure can induce intramolecular charge transfer, effectively separating photogenerated electrons and holes. The Fe active sites can improve the chemisorption energy for N2, enhance the N-Fe bonding, and better activate the N2 molecule. Therefore, the synergistic effect between the construction of the D-A structure and the stably dispersed Fe active sites can enable CN to achieve high-performance N2 reduction to produce NH3.

2.
Molecules ; 29(18)2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39339442

ABSTRACT

Developing red fluorescence emitters with simple structures via convenient synthetic routes is highly desirable yet challenging. Herein, two novel donor-acceptor-type red emitters, DCFOPV-TPA and SCFOPV-TPA, featuring the intramolecular charge transfer effect were designed by integrating triphenylamine and trifluoromethyl into a CN-substituted oligo(p-phenylene vinylene) backbone. Both chromophores exhibited aggregation-induced enhanced emission and solvatochromic behavior. Moreover, DCFOPV-TPA also displayed reversible mechanofluorochromic properties under external force.

3.
ACS Appl Bio Mater ; 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39291866

ABSTRACT

Oligomers and amyloid fibrils formed at different stages of protein aggregation are important biomarkers for a variety of neurodegenerative diseases including Alzheimer's and Parkinson's diseases. The development of probes for the sensitive detection of oligomeric species is important for early stage diagnosis of amyloidogenic diseases. Many small molecular dyes have been developed to probe the dynamic growth of amyloid fibrils. However, there is a lack of discriminatory detection strategies to monitor the dynamics of both oligomers and amyloid fibrils based on the differential modulation of the photophysical properties of a single dye. Here we report a pyrene-based intramolecular charge transfer (ICT) dye with large Stokes shifted red-emitting aggregation induced emission (AIE) for monitoring the dynamic populations of both oligomers and fibrils during the aggregation of hen egg white lysozyme (HEWL) protein. At the early stage of protein aggregation, the accumulation of HEWL oligomers results in a rapid and substantial increase in the red AIE intensity at 660 nm. Later, as the oligomers transform into mature fibrils, the dye exhibits a distinct photophysical change. Binding of the dye to HEWL fibrils strongly suppresses the red AIE and enhances ICT emission. This is evidenced by a gradual decrease in the AIE intensity (∼660 nm) and an increase in LE (∼490 nm) and ICT (∼540 nm) emission intensities during the later stages of protein aggregation. Thus, the dye provides simultaneous measurements of the population dynamics of both HEWL oligomers and fibrils during protein aggregation based on the discriminatory modulation of AIE and ICT of the dye. The dye also enables imaging of both HEWL oligomers and fibrils simultaneously using different emission channels in super-resolution confocal fluorescence microscopy.

4.
Chem Pharm Bull (Tokyo) ; 72(9): 810-816, 2024.
Article in English | MEDLINE | ID: mdl-39313385

ABSTRACT

Twisted intramolecular charge transfer (TICT) is a phenomenon involving intramolecular charge transfer together with intramolecular rotation upon photoexcitation, and in general this excited state of fluorescent dyes undergoes non-radiative decay (producing no fluorescence). We recently discovered that the magnitude of TICT in rhodamine derivatives could be regulated by altering the size of the substituents on the xanthene moiety, generating differing degrees of intramolecular steric repulsion. To further illustrate the usefulness and generality of this strategy, we describe here an application of quinone methide chemistry, which is widely used as a fluorescence off/on switching reaction for fluorescence probes detecting enzymatic activity, to construct a steric repulsion-induced (sr)-TICT-based fluorescence probe targeting nitroreductase (NTR) activity. The developed probe was almost non-fluorescent in phosphate-buffered saline (PBS) due to strong induction of the TICT state. On the other hand, when the probe was incubated with NTR and nicotinamide adenine dinucleotide (NADH), a large fluorescence increase was observed over time. We confirmed that the enzymatic reaction proceeded as expected, i.e., the nitro group of the probe was reduced to the corresponding amino group, followed by spontaneous elimination of iminoquinone methide. These results suggest that our simple design strategy based on the sr-TICT mechanism, i.e., controlling intramolecular steric repulsion, would be applicable to the development of fluorescence probes for a variety of enzymes.


Subject(s)
Fluorescent Dyes , Nitroreductases , Nitroreductases/metabolism , Nitroreductases/chemistry , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Molecular Structure , Spectrometry, Fluorescence
5.
J Comput Chem ; 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39212065

ABSTRACT

Fourteen substituted diketopyrrolopyrrole (DPP) molecules in a donor (D)-acceptor (DPP)-donor (D) arrangement were designed. We employed density functional theory, time-dependent DFT, DFT-MRCI and the ab initio wave function second-order algebraic diagrammatic construction (ADC(2)) methods to investigate theoretically these systems. The examined aromatic substituents have one, two, or three hetero- and non-hetero rings. We comprehensively investigated their optical, electronic, and charge transport properties to evaluate potential applications in organic electronic devices. We found that the donor substituents based on one, two, or three aromatic rings bonded to the DPP core can improve the efficiency of an organic solar cell by fine-tuning the highest occupied molecular orbital/lowest unoccupied molecular orbital levels to match acceptors in typical bulk heterojunctions acceptors. Several properties of interest for organic photovoltaic devices were computed. We show that the investigated molecules are promising for applications as donor materials when combined with typical acceptors in bulk heterojunctions because they have appreciable energy conversion efficiencies resulting from their low ionization potentials and high electron affinities. This scenario allows a more effective charge separation and reduces the recombination rates. A comprehensive charge transfer analysis shows that D-A (DDP)-D systems have significant intramolecular charge transfer, further confirming their promise as candidates for donor materials in solar cells. The significant photophysical properties of DPP derivatives, including the high fluorescence emission, also allow these materials to be used in organic light-emitting diodes.

6.
J Comput Chem ; 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39212073

ABSTRACT

Intramolecular charge transfer (ICT) effects of para-nitroaniline (pNA) in eight solvents (cyclohexane, toluene, acetic acid, dichloroethane, acetone, acetonitrile, dimethylsulfoxide, and water) are investigated extensively. The second-order algebraic diagrammatic construction, ADC(2), ab initio wave function is employed with the COSMO implicit and discrete multiscale solvation methods. We found a decreasing amine group torsion angle with increased solvent polarity and a linear correlation between the polarity and ADC(2) transition energies. The first absorption band involves π → π* transitions with ICT from the amine and the benzene ring to the nitro group, increased by 4%-11% for different solvation models of water compared to the vacuum. A second band of pNA is characterized for the first time. This band is primarily a local excitation on the nitro group, including some ICT from the amine group to the benzene ring that decreases with the solvent polarity. For cyclohexane, the COSMO implicit solvent model shows the best agreement with the experiment, while the explicit model has the best agreement for water.

7.
Spectrochim Acta A Mol Biomol Spectrosc ; 325: 125045, 2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39216142

ABSTRACT

Organic light-emitting diodes (OLEDs) for low energy transfer and double emission, but the current methods for regulating ESIPT processes are mostly solvent and substituent effects. Here, utilizing the density theory functional (DFT) and time-dependent density functional theory (TD-DFT) methods, the ESIPT process controlled by an external electric field (EEF) is proposed, and the changes in photophysical properties of 2-(benzo[d]thiazol-2-yl)-4-(pyren-1-yl)phenol (PyHBT) are investigated. Structural parameter variations and IR vibrational spectra measure the prerequisite for the ESIPT process, namely, intramolecular hydrogen bond (IHB) strength, and the scanned potential energy curves (PECs) demonstrate that the ESIPT process of PyHBT is harder to execute as the positive EEF increases, and the opposite is true for the negative EEF. The absorption and fluorescence spectra show shifts under the distinct EEFs, and even the emission wavelength reaches the short-wave near-infrared (SW-NIR) region (780-1100 nm), such as 815.2 nm for a positive EEF of + 30 × 10-4 a.u. in the keto form. Additionally, the fluorescence intensity of PyHBT is strongly influenced by the positive EEF, especially in the enol form, and the investigation of the mechanism by hole-electron analysis demonstrates that under the positive EEF, the twisted intramolecular charge transfer (TICT) process is induced, which triggers the weakening of the fluorescence intensity. In summary, our work not only complements the theoretical approach to modulate the ESIPT process, but also reveals that the photophysical properties of materials affected by the external electric field are even expected to reach the NIR region.

8.
Spectrochim Acta A Mol Biomol Spectrosc ; 323: 124901, 2024 Dec 15.
Article in English | MEDLINE | ID: mdl-39094268

ABSTRACT

Fluorescent solvatochromic dyes that are sensitive to the nature of local microenvironmental, have been explored as probes in applications ranging from the imaging biomolecules to understanding of basic biomolecule functions. To expand the scope of fluorescent solvatochromic dyes for G-quadruplex (G4) DNA structures, and to illustrate the relationship between structure and properties, three newly designed D-π-A type fluorescent dyes were synthesized by introducing diarylimidazole to carbazole skeleton linked to benzene, furan or thiophene π-conjugated bridge and connected with pyridinium acceptor, respectively. Their structural characteristics, optical properties, and G4 DNA binding properties were discussed in detail. In general, the incorporation of furan and thiophene as π-conjugated bridges leads the better conjugation and molecular coplanarity with more efficient intramolecular charge transfer (ICT) effect compared with benzene bridge. The fluorescence intensities induced upon interaction were found that TP-6 with thiophene π-conjugated bridge had the strongest response toward G4 DNAs. In addition, the application of this dye as a fluorescent agent for living cell imaging was also demonstrated.


Subject(s)
DNA , Fluorescent Dyes , G-Quadruplexes , Spectrometry, Fluorescence , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , DNA/chemistry , DNA/metabolism , Humans
9.
ACS Appl Mater Interfaces ; 16(34): 45788-45797, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39160677

ABSTRACT

A fluorescent dye, a dithiophene-conjugated benzothiazole derivative (DTBz), was prepared to have high fluorescence emission quantum yields (ΦF) across various organic solvents. Its emission color modulation, from bright blue to deep red, was achieved through intramolecular charge transfer (ICT), acid-base equilibrium, and host-guest chemistry. Although it exhibits a weak solvatochromic effect, DTBz exhibited a bright fluorescence emission around 480 nm upon excitation at 390 nm in most solvents. In polar solvents, such as MeOH (methanol), EtOH (ethanol), DMF (N,N-dimethylforamide), and DMSO (dimethyl sulfoxide), an additional ICT emission band emerged around 640 nm, notably intense in DMSO, resulting in a bright greenish-white emission (ΦF = 0.67). The addition of 1,8-diazabicyclo[5,4.0]undec-7-ene (DBU) altered emission characteristics, reducing emission from the local excited (LE) state and enhancing ICT state emission. The degree of emission spectral change saturation with DBU addition varied with the solvent nature. Polar solvents with high dielectric constants, like DMSO and DMF, saw a complete disappearance of LE state emission with 5 equiv of DBU, resulting in a deep red emission (ΦFs of 0.53 and 0.48, respectively). Femtosecond transient absorption spectroscopy and time-resolved photoluminescence measurements elucidated the excited-state dynamics, revealing a long-lived excited state (τ-H = 10.3 ns) at a lower energy emission (640 nm), identified as DTBz-*, supported by transient absorption spectra analysis. Further analysis, including time-resolved fluorescence decay measurements and time-dependent density-functional theory (TD-DFT) calculations, underscored the role of deprotonation of DTBz's hydroxyl group in promoting the ICT process. The CIE coordination plot demonstrated wide linear emission color changes upon successive DBU additions in all solvents, while emission color precision was achieved through host-guest chemistry. Emission changes induced by DBU were reverted to the original state upon beta-cyclodextrin (ß-CD) addition, with the 1H NMR study revealing the competition between acid-base equilibrium and host-guest complex formation as the cause of emission color change.

10.
Anal Chim Acta ; 1320: 342994, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39142778

ABSTRACT

Organic emitters with exceptional properties exhibit significant potential in the field of aggregation-induced electrochemiluminescence (AIECL); however, their practicality is impeded by limited ECL efficiency (ΦECL). This paper investigates a novel type of AIECL emitter (BDPPA NPs), where an efficient intramolecular charge transfer (ICT) effect and highly twisted conformation contribute to a remarkable enhancement of ECL. The ICT effect reduces the electron transfer path, while the twisted conformation effectively restricts π-π stacking and intramolecular motions. Intriguingly, compared to the standard system of [Ru(bpy)32+]/TPrA, bright emissions with up to 54 % ΦECL were achieved, enabling direct visual observation of ECL through the co-reactant route. The label-free immunosensor exhibited distinguished performance in detecting SARS-CoV-2 N protein across an exceptionally wide linear range of 0.001-500 ng mL-1, with a remarkably low detection limit of 0.28 pg mL-1. Furthermore, this developed ECL platform exhibited excellent sensitivity, specificity, and stability characteristics, providing an efficient avenue for constructing platforms for bioanalysis and clinical diagnosis analysis.


Subject(s)
Electrochemical Techniques , Luminescent Measurements , SARS-CoV-2 , Immunoassay/methods , Luminescent Measurements/methods , SARS-CoV-2/isolation & purification , SARS-CoV-2/immunology , Humans , Limit of Detection , COVID-19/diagnosis , COVID-19/virology , Molecular Conformation , Biosensing Techniques/methods
11.
Chemphyschem ; : e202400426, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39143037

ABSTRACT

Benzocarcogendiazole units have been frequently utilized for optoelectronics such as organic solar cells because of their robustness, rigidity, and band-gap tunability based on the strong electron-withdrawing properties. Focusing on the luminescent characteristics, these molecules have been utilized to demonstrate highly sensitive chromisms because of the potential of charge transfer. Here, we demonstrate deep red-emissions in bis(4-tert-butylphenyl)amine-appended benzocarcogendiazole-based donor-acceptor-donor (D-A-D) fluorophores, namely 1 and 2. Because benzocarcogendiazole and bis(4-tert-butylphenyl)amineserve as strong electron acceptor and donor, respectively, strong intramolecular charge transfer (ICT) enables long wavelength of photoluminescence (PL) even in the small molecular weight. Although photoluminescence (PL) in long wavelength tends to exhibit quite low PL quantum efficiency (ΦPL), the values of solutions 1 and 2 are quite high (up to 50 %). According to X-ray crystallographic characterizations and DFT calculations, these high ΦPL values are attributable to the segregated π-planes of benzocarcogendiazole units, which is induced by the bulky substituents of bis(4-tert-butylphenyl)amines.

12.
Chempluschem ; : e202400376, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39158125

ABSTRACT

In this study, two chemosensors, N5R1 and N5R2, based on 5-(4-nitrophenyl)-2-furaldehyde, with varying electron-withdrawing groups, were synthesized and effectively employed for the colorimetric selective detection of arsenite anions in a DMSO/H2O solvent mixture (8:2, v/v). Chemosensors N5R1 and N5R2 exhibited a distinct color change upon binding with arsenite, accompanied by a spectral shift toward the near-infrared region (Δλmax exceeding 200 nm). These chemosensors established stability between a pH range 6-12. Among them, N5R2 displayed the lowest detection limit of 17.63 ppb with a high binding constant of 2.6163×105 M⁻1 for arsenite. The binding mechanism involved initial hydrogen bonding between the NH binding site and the arsenite anion, followed by deprotonation and an intramolecular charge transfer (ICT) mechanism. The mechanism was confirmed through UV and 1H NMR titrations, cyclic voltammetric studies, and theoretical calculations. The interactions between the sensor and arsenite anions were further analyzed using global reactivity parameters (GRPs). Practical applications were demonstrated through the utilization of test strips and molecular logic gates. Real water samples, honey, and milk samples were successfully analyzed by both chemosensors for the sensing of arsenite.

13.
Sci Bull (Beijing) ; 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39168764

ABSTRACT

Uranium pollution has become a serious threat to human health and environmental safety, making the detection of environmental uranium contamination of great importance. The sensitive and specific detection of uranyl ions, which are the dominant form of uranium in the environment, depends on the specific recognition of uranyl ions by chemical groups. In this study, a novel fluorescent sensor containing a highly specific uranyl ion recognition group is synthesized via the reaction of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) and 1,1,2,2-tetra(4-carboxylphenyl)ethylene (TPE-(COOH)4). Owing to the effects of aggregation-induced emission (AIE) and intramolecular charge transfer (ICT), the fluorescent sensor, named TPE-EDC, exhibits significant fluorescent properties in aqueous environments. The binding of uranyl ions by specific recognition groups in TPE-EDC leads to a decrease in the ICT effect, thus causing a significant reduction in the emission intensity of TPE-EDC. The attenuation of the fluorescence intensity of TPE-EDC shows an excellent linear relationship with an increase in uranyl ion concentration. TPE-EDC exhibits ultra-sensitive and ultra-selective detection ability for uranyl ions with an ultra-low detection limit of 69 pmol/L and an ultrashort response time of 30 s. These high detection performances render the fluorescent sensor TPE-EDC a promising candidate for early warning of uranium pollution.

14.
Chem Asian J ; : e202400721, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39136408

ABSTRACT

Donor-acceptor (D-A) materials based on butterfly-shaped molecules could inhibit exciton-migration-induced quenching due to molecular twist. To explore this attribute towards beneficial photophysical properties, three novel bipolar acceptor-donor-acceptor (A-D-A) molecules with triphenyl triazine end capping along with substitution ortho to the Tröger's base (TB) scaffold varying from H, Me, and F were explored. The installation of H/Me/F imparted an electron push-pull effect with concomitant maneuvering of photophysical properties. On increasing solvent polarity, a remarkable bathochromic shift with a significant decrease in emission efficiency was observed due to the twisted intramolecular charge transfer state (TICT). Emission enhancement in the ethylene glycol-water mixture and diminution in the THF-water mixture further confirmed the existence of TICT states in these TBs. The torsional dynamics in the excited state were also evidenced by the time-dependent density-functional theory (TD-DFT) calculations. Owing to the butterfly architecture of the TB that suppressed TICT, TB-Trzs exhibited a significant blue shift, accompanied by a favorable quantum yield in the solid state. Among the three compounds, Me-TB-Trz exhibited deep-blue photoluminescence and was explored as a dopant in organic light-emitting diodes (OLEDs) to obtain deep-blue electroluminescence of brightness 4128 cdm-2 and CIE coordinates of (0.16, 0.09).

15.
Spectrochim Acta A Mol Biomol Spectrosc ; 322: 124808, 2024 Dec 05.
Article in English | MEDLINE | ID: mdl-39024786

ABSTRACT

A novel thermally activated delayed fluorescence (TADF) emitter, DCNP-SCF, is developed based on a dicyanophenanthrene acceptor. DCNP-SCF is prepared by a simple C-N coupling reaction. Its thermal, theoretical, photophysical, and electroluminescent properties are investigated, emphasizing its potential in organic electroluminescence devices. DCNP-SCF demonstrates highly distorted donor-acceptor conformation, facilitating significant TADF for efficient triplet harvesting in electroluminescence devices. Additionally, due to the moderate electron push-pull effect, DCNP-SCF exhibits appropriate intramolecular charge transfer for considerable photoluminescence quantum yield for electroluminescence applications.

16.
Spectrochim Acta A Mol Biomol Spectrosc ; 322: 124835, 2024 Dec 05.
Article in English | MEDLINE | ID: mdl-39024787

ABSTRACT

The excited (S1) state charge distribution characteristics and fluorescence mechanism of fluorescence probes benzyl (6-cyano-2-naphthoyl)-L-valinate (NPI) and benzyl (6-amino-2-naphthoyl)-L-valinate (NPA) have been discussed using density functional theory (DFT) and time-dependent density functional theory (TD-DFT). Further analysis by constructing a torsional potential energy curve (PEC) shows that a well-defined minimum energy conformation is observed when the C-C single bond between the valine benzyl ester and naphthalene ring in NPI rotates. For NPA, the most stable conformation is the naphthalene ring conformation with dihedral angle N2C1C2C3 of -30.60°, whose total energy is 0.17 kcal/mol lower than that of the second most stable conformer. The frontier molecular orbitals (FMOs) demonstrate that NPI exhibits a low degree of charge coupling, and the oscillator intensity is close to zero, indicating that it is not conducive to luminescence. However, in the S1 state, the oscillator strength of NPA is 1.2044, which is a bright state, resulting in the strong emitting. Additionally, fluorescence imaging is favored as a visual observation technique, and Stokes shift is an important physical parameter to measure fluorescence. According to the idea that changing the number and position of functional groups can affect the photophysical properties of fluorescent dyes, o-NPDI, p-NPDI and m-NPDI dyes were newly designed and o-NPDA, p-NPDA, m-NPDA produced after recognition of Hg2+. The spectral performance results show that the newly designed fluorescent dye (p-NPDA) can not only emit in the near infrared region after recognizing Hg2+, but also has a large Stokes shift (236 nm). This indirectly reflects that para-substitution is more conducive to Stokes shift, and has become one of the strategies for fluorescent dye design.

17.
Spectrochim Acta A Mol Biomol Spectrosc ; 322: 124866, 2024 Dec 05.
Article in English | MEDLINE | ID: mdl-39059261

ABSTRACT

The triphenylamine Schiff-base (TPASB) with dual proton transfer sites (N1…H1-O1 [R1] and N2…H2-O2 [R2]), which is crucial in the field of optoelectronic materials. Herein, a novel molecular design strategy for preparing of TPASB-1 and TPASB-2 via the selective methylation of the hydroxyl group at the R2 or R1 position was proposed. The analysis of electronic structures and potential energy surfaces revealed that a single excited state intramolecular proton transfer (ESIPT) process of TPASB occurs only at R1. Nevertheless, the ESIPT process of TPASB-2 was successfully turned on at R2. More noteworthy is that compared to TPASB, the methylation of hydroxyl group at the R2 position triggers the TICT process of TPASB-1, effectively reducing the potential barrier of ESIPT at the R1 position. This theoretical study explains the role of the substituent effect in regulating ESIPT behaviour, and provides valuable guidance for synthesising efficacious ESIPT-active compounds.

18.
ACS Nano ; 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39058791

ABSTRACT

Activity-based detection of γ-Glutamyltranspeptidase (GGT) using near-infrared (NIR) fluorescent probes is a promising strategy for early cancer diagnosis. Although NIR pyridinium probes show high performance in biochemical analysis, the aggregation of both the probes and parental fluorochromes in biological environments is prone to result in a low signal-to-noise ratio (SBR), thus affecting their clinical applications. Here, we develop a GGT-activatable aggregate probe called OTBP-G for two-photon fluorescence imaging in various biological environments under 1040 nm excitation. By rationally tunning the hydrophilicity and donor-acceptor strength, we enable a synergistic effect between twisted intramolecular charge transfer and intersystem crossing processes and realize a perfect dark state for OTBP-G before activation. After the enzymatic reaction, the parental fluorochrome exhibits bright aggregation-induced emission peaking at 670 nm. The fluorochrome-to-probe transformation can induce 1000-fold fluorescence ON/OFF ratio, realizing in vitro GGT detection with an SBR > 900. Activation of OTBP-G occurs within 1 min in vivo, showing an SBR > 400 in mouse ear blood vessels. OTBP-G can further enable the early detection of pulmonary metastasis in breast cancer by topically spraying, outperforming the clinical standard hematoxylin and eosin staining. We anticipate that the in-depth study of OTBP-G can prompt the development of early cancer diagnosis and tumor-related physiological research. Moreover, this work highlights the crucial role of hydrophilicity and donor-acceptor strength in maximizing the ON/OFF ratio of the TICT probes and showcases the potential of OTBP as a versatile platform for activity-based sensing.

19.
Angew Chem Int Ed Engl ; : e202411802, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39081186

ABSTRACT

Near-infrared photosensitizers are valuable tools to improve treatment depth in photodynamic therapy (PDT). However, their low singlet oxygen (1O2) generation ability, indicated by low 1O2 quantum yield, presents a formidable challenge for PDT. To overcome this challenge, the heptamethine cyanine was decorated with biocompatible S (Scy7) and Se (Secy7) atom. We observe that Secy7 exhibits a redshift in the main absorption to ~840 nm and an ultra-efficient 1O2 generation capacity. The emergence of a strong intramolecular charge transfer effect between the Se atom and polymethine chain considerably narrows the energy gap (0.51 eV), and the heavy atom effect of Se strengthens spin-orbit coupling (1.44 cm-1), both of which greatly improved the high triplet state yield (61%), a state that determines the energy transfer to O2. Therefore, Secy7 demonstrated excellent 1O2 generation capacity, which is ~24.5-fold that of indocyanine green, ~8.2-fold that of IR780, and ~1.3-fold that of methylene blue under low-power-density 850 nm irradiation (5 mW cm-2). Secy7 exhibits considerable phototoxicity toward cancer cells buried under 12 mm of tissue. Nanoparticles formed by encapsulating Secy7 within amphiphilic polymers and lecithin, demonstrated promising antitumor and anti-pulmonary metastatic effects, exhibiting remarkable potential for advancing PDT in deep tissues.

20.
Nano Lett ; 24(32): 9898-9905, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39007697

ABSTRACT

The technology of combining multiple emission centers to exploit white-light-emitting (WLE) materials by taking advantage of porous metal-organic frameworks (MOFs) is mature, but preparing undoped WLE MOFs remains a challenge. Herein, a pressure-treated strategy is reported to achieve efficient white photoluminescence (PL) in undoped [Zn(Tdc)(py)]n nanocrystals (NCs) at ambient conditions, where the Commission International del'Eclairage coordinates and color temperature reach (0.31, 0.37) and 6560 K, respectively. The initial [Zn(Tdc)(py)]n NCs exhibit weak-blue PL consisting of localized excited (LE) and planarized intramolecular charge transfer (PLICT) states. After pressure treatment, the emission contributions of LE and PLICT states are balanced by increasing the planarization of subunits, thereby producing white PL. Meanwhile, the reduction of nonradiative decay triggered by the planarized structure results in 5-fold PL enhancement. Phosphor-converted light-emitting diodes based on pressure-treated samples show favorable white-light characteristics. The finding provides a new platform for the development of undoped WLE MOFs.

SELECTION OF CITATIONS
SEARCH DETAIL