Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
Add more filters











Publication year range
1.
Biology (Basel) ; 13(9)2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39336160

ABSTRACT

Understanding plant physiological response to a rising atmospheric CO2 concentration (ca) is key in predicting Earth system plant-climate feedbacks; however, the effects of long-term rising ca on plant gas-exchange characteristics in the tropics are largely unknown. Studying this long-term trend using herbarium records is challenging due to specimen trait variation. We assessed the impact of a ca rise of ~95 ppm (1927-2015) on the intrinsic water-use efficiency (iWUE) and maximum stomatal conductance (gsmax) of five tropical tree species in Fiji using the isotopic composition and stomatal traits of herbarium leaves. Empirical results were compared with simulated values using models that uniquely incorporated the variation in the empirical gsmax responses and species-specific parameterisation. The magnitude of the empirical iWUE and gsmax response was species-specific, ranging from strong to negligible. Stomatal density was more influential than the pore size in determining the gsmax response to ca. While our simulation results indicated that photosynthesis is the main factor contributing to the iWUE gain, stomata were driving the iWUE trend across the tree species. Generally, a stronger increase in the iWUE was accompanied by a stronger decline in stomatal response. This study demonstrates that the incorporation of variation in the gsmax in simulations is necessary for assessing an individual species' iWUE response to changing ca.

2.
Tree Physiol ; 44(9)2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39151030

ABSTRACT

Increases in temperatures and atmospheric CO2 concentration influence the growth performance of trees worldwide. The direction and intensity of tree growth and physiological responses to changing climate do, however, vary according to environmental conditions. Here we present complex, long-term, tree-physiological responses to unprecedented temperature increase in East Asia. For this purpose, we studied radial growth and isotopic (δ13C and δ18O) variations using tree-ring data for the past 100 yr of dominant Quercus mongolica trees from the cool-temperate forests from Hallasan, South Korea. Overall, we found that tree stem basal area increment, intercellular CO2 concentration and intrinsic water-use efficiency significantly increased over the last century. We observed, however, short-term variability in the trends of these variables among four periods identified by change point analysis. In comparison, δ18O did not show significant changes over time, suggesting no major hydrological changes in this precipitation-rich area. The strength and direction of growth-climate relationships also varied during the past 100 yr. Basal area increment (BAI) did not show significant relationships with the climate over the 1924-1949 and 1975-1999 periods. However, over 1950-1974, BAI was negatively affected by both temperature and precipitation, while after 2000, a temperature stimulus was observed. Finally, over the past two decades, the increase in Q. mongolica tree growth accelerated and was associated with high spring-summer temperatures and atmospheric CO2 concentrations and decreasing intrinsic water-use efficiency, δ18O and vapour pressure deficit, suggesting that the photosynthetic rate continued increasing under no water limitations. Our results indicate that the performance of dominant trees of one of the most widely distributed species in East Asia has benefited from recent global changes, mainly over the past two decades. Such findings are essential for projections of forest dynamics and carbon sequestration under climate change.


Subject(s)
Carbon Dioxide , Climate Change , Quercus , Trees , Water , Carbon Dioxide/metabolism , Republic of Korea , Trees/growth & development , Trees/physiology , Quercus/growth & development , Quercus/physiology , Quercus/metabolism , Water/metabolism , Oxygen Isotopes/analysis , Carbon Isotopes/analysis , Temperature
3.
Tree Physiol ; 44(9)2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39163491

ABSTRACT

Mistletoes are xylem-tapping hemiparasites that rely on their hosts for water and nutrient uptake. Thus, they impair tree performance in the face of environmental stress via altering the carbon and water relations and nutritional status of trees. To improve our understanding of physiological responses to mistletoe and ongoing climate change, we investigated radial growth, stable carbon and oxygen isotopic signals, and elemental composition of tree rings in silver fir (Abies alba Mill.) and Scots pine (Pinus sylvestris L.) forests infested with Viscum album L. We compared temporal series (1990-2020) of basal area increment (BAI), intrinsic water-use efficiency (iWUE), oxygen isotope composition (δ18O), nutrient concentrations and stoichiometric ratios between non-infested (NI) and severely infested (SI) fir and pine trees from populations located close to the xeric distribution limit of the species in north-eastern Spain. The SI trees showed historically higher growth, but the BAI trend was negative for more than three decades before 2020 and their growth rates became significantly lower than those of NI trees by the mid-2010s. Mistletoe infestation was related to an enhanced sensitivity of radial growth to vapour pressure deficit (atmospheric drought). The SI trees showed less pronounced iWUE increases (fir) and lower iWUE values (pine) than NI trees. The lower tree-ring δ18O values of SI trees may be the result of several superimposed effects operating simultaneously, including leaf-level evaporative enrichment, source water isotopic signals, and anatomical and phenological differences. We observed a deterioration of potassium (K) nutrition in tree-ring wood of both species in SI trees, along with accumulation of manganese (Mn). We suggest that such nutritional patterns are driven by the indirect effect of mistletoe-induced drought stress, particularly in pine. The combined analyses of different physiological indicators imprinted on tree rings provided evidence of the progressive onset of carbon, water and nutrient imbalances in mistletoe-infested conifers inhabiting seasonally dry regions.


Subject(s)
Abies , Carbon , Pinus sylvestris , Trees , Water , Water/metabolism , Pinus sylvestris/growth & development , Pinus sylvestris/physiology , Pinus sylvestris/parasitology , Carbon/metabolism , Trees/growth & development , Trees/physiology , Abies/growth & development , Abies/physiology , Viscum album/physiology , Spain , Nutrients/metabolism , Climate Change , Droughts
4.
J Exp Bot ; 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38970337

ABSTRACT

The ratio of net CO2 uptake (Anet) and stomatal conductance (gs) is an intrinsic measurement of leaf water use efficiency (WUEi) however its measurement can be challenging for large phenotypic screens. Measurements of leaf carbon isotope composition (δ13Cleaf) may be a scalable tool to approximate WUEi for screening because it in part reflects the competing influences of Anet and gs on the CO2 partial pressure (pCO2) inside the leaf over time. However, in C4 photosynthesis the CO2 concentrating mechanism complicates the relationship between δ13Cleaf and WUEi. Despite this complicated relationship, several studies have shown genetic variation in δ13Cleaf across C4 plants. Yet there has not been a clear demonstration of whether Anet or gs are the causal mechanisms controlling WUEi and δ13Cleaf. Our approach was to characterize leaf photosynthetic traits of two Zea mays recombinant inbred lines (Z007E0067 and Z007E0150) which consistently differ for δ13Cleaf even though they have minimal confounding genetic differences. We demonstrate that these two genotypes contrasted in WUEi driven by differences in the speed of stomatal responses to changes in pCO2 and light that lead to unproductive leaf water loss. These findings provide support that differences in δ13Cleaf in closely related genotypes do reflect greater WUEi and further suggests that differences in stomatal kinetic response to changing environmental conditions is a key target to improve WUEi.

5.
J Exp Bot ; 75(18): 5655-5666, 2024 Sep 27.
Article in English | MEDLINE | ID: mdl-38829698

ABSTRACT

Whether green light promotes or represses plant growth is an unresolved but important question, warranting a global meta-analysis of published data. We collected 136 datasets from 48 publications on 17 crop species, and calculated the green light effect for a range of plant traits. For each trait the effect was calculated as the ratio between the trait value attained under a red/blue background light plus green, divided by the value attained under the background light only, both having the same light intensity. Generally, green light strongly increased intrinsic water use efficiency (15%), the shoot-to-root ratio (13%), and decreased stomatal conductance (-15%). Moreover, green light increased fresh weight to a small extent (4%), but not plant dry weight, resulting in a reduced dry matter content (-2%). Hence, green light is similarly effective at increasing biomass as red and blue light. Green light also showed to increase leaf area (7%) and specific leaf area (4%; i.e. thinner leaves). Furthermore, effects of green light were species-dependent, with positive effects on biomass for lettuce and microgreens, and negative effects in basil and tomato. Our data suggest that future research should focus on the role of green light in modulating water loss, its putative role as a shade signal, and the causes for its species-specific effects on crop biomass.


Subject(s)
Biomass , Light , Crops, Agricultural/growth & development , Crops, Agricultural/physiology , Green Light , Blue Light
6.
Biology (Basel) ; 13(5)2024 May 02.
Article in English | MEDLINE | ID: mdl-38785800

ABSTRACT

P. euphratica stands as the pioneering and dominant tree within desert riparian forests in arid and semi-arid regions. The aim of our work was to reveal why dioecious P. euphratica in natural desert riparian forests in the lower Tarim River exhibits sexual spatial distribution differences combined with field investigation, tree ring techniques, isotope analysis techniques, and statistical analyses. The results showed that P. euphratica was a male-biased population, with the operational sex ratio (OSR) exhibiting spatial distribution differences to variations in drought stress resulting from groundwater depth change. The highest OSR was observed under mild drought stress (groundwater depth of 6-7 m), and it was reduced under non-drought stress (groundwater depth below 6 m) or severe drought stress (groundwater depth exceeding 7 m). As drought stress escalated, the degradation and aging of the P. euphratica forest became more pronounced. Males exhibited significantly higher growth rates and WUEi than females under mild drought stress. However, under severe drought stress, males' growth rates significantly slowed down, accompanied by significantly lower WUEi than in females. This divergence determined the sexual spatial segregation of P. euphratica in the natural desert riparian forests of the lower Tarim River. Furthermore, the current ecological water conveyance project (EWCP) in the lower Tarim River was hard to fundamentally reverse the degradation and aging of the P. euphratica forest due to inadequate population regeneration. Consequently, we advocated for an optimized ecological water conveyance mode to restore, conserve, and rejuvenate natural P. euphratica forests.

7.
Tree Physiol ; 44(6)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38769900

ABSTRACT

The effects of rising atmospheric CO2 concentrations (Ca) with climate warming on intrinsic water-use efficiency and radial growth in boreal forests are still poorly understood. We measured tree-ring cellulose δ13C, δ18O, and tree-ring width in Larix dahurica (larch) and Betula platyphylla (white birch), and analyzed their relationships with climate variables in a boreal permafrost region of northeast China over past 68 years covering a pre-warming period (1951-1984; base period) and a warm period (1985-2018; warm period). We found that white birch but not larch significantly increased their radial growth over the warm period. The increased intrinsic water-use efficiency in both species was mainly driven by elevated Ca but not climate warming. White birch but not larch showed significantly positive correlations between tree-ring δ13C, δ18O and summer maximum temperature as well as vapor pressure deficit in the warm period, suggesting a strong stomatal response in the broad-leaved birch to temperature changes. The climate warming-induced radial growth enhancement in white birch is primarily associated with a conservative water-use strategy. In contrast, larch exhibits a profligate water-use strategy. It implies an advantage for white birch over larch in the warming permafrost regions.


Subject(s)
Betula , Larix , Permafrost , Water , Larix/growth & development , Larix/physiology , Betula/growth & development , Betula/physiology , Water/metabolism , China , Climate Change , Taiga , Global Warming
8.
Front Plant Sci ; 15: 1291630, 2024.
Article in English | MEDLINE | ID: mdl-38606074

ABSTRACT

Climate change, characterized by rising atmospheric CO2 levels and temperatures, poses significant challenges to global crop production. Sweet sorghum, a prominent C4 cereal extensively grown in arid areas, emerges as a promising candidate for sustainable bioenergy production. This study investigated the responses of photosynthesis and leaf-scale water use efficiency (WUE) to varying light intensity (I) in sweet sorghum under different temperature and CO2 conditions. Comparative analyses were conducted between the A n-I, g s-I, T r-I, WUEi-I, and WUEinst-I models proposed by Ye et al. and the widely utilized the non-rectangular hyperbolic (NRH) model for fitting light response curves. The Ye's models effectively replicated the light response curves of sweet sorghum, accurately capturing the diminishing intrinsic WUE (WUEi) and instantaneous WUE (WUEinst) trends with increasing I. The fitted maximum values of A n, g s, T r, WUEi, and WUEinst and their saturation light intensities closely matched observations, unlike the NRH model. Despite the NRH model demonstrating high R 2 values for A n-I, g s-I, and T r-I modelling, it returned the maximum values significantly deviating from observed values and failed to generate saturation light intensities. It also inadequately represented WUE responses to I, overestimating WUE. Across different leaf temperatures, A n, g s, and T r of sweet sorghum displayed comparable light response patterns. Elevated temperatures increased maximum A n, g s, and T r but consistently declined maximum WUEi and WUEinst. However, WUEinst declined more sharply due to the disproportionate transpiration increase over carbon assimilation. Critically, sweet sorghum A n saturated at current atmospheric CO2 levels, with no significant gains under 550 µmol mol-1. Instead, stomatal closure enhanced WUE under elevated CO2 by coordinated g s and T r reductions rather than improved carbon assimilation. Nonetheless, this response diminished under simultaneously high temperature, suggesting intricate interplay between CO2 and temperature in modulating plant responses. These findings provide valuable insights into photosynthetic dynamics of sweet sorghum, aiding predictions of yield and optimization of cultivation practices. Moreover, our methodology serves as a valuable reference for evaluating leaf photosynthesis and WUE dynamics in diverse plant species.

9.
Tree Physiol ; 44(3)2024 02 11.
Article in English | MEDLINE | ID: mdl-38198740

ABSTRACT

As wildfires increase in size and severity, large areas of forest are undergoing substantial increases in shrub cover. In forests where water is the limiting resource, the partitioning of soil water between shrubs and young trees may determine how shrubs affect tree growth and water-stress. Here we evaluated juvenile trees (average age = 32 years) of two dominant conifer species in the southern Sierra Nevada of California (Abies concolor (white fir) and Pinus jeffreyi (Jeffrey pine)) growing in the presence or absence of shrubs. The two shrub species included Arctostaphylos patula and Ceanothus cordulatus, a nitrogen-fixing species. We analyzed the δ2H and δ18O values of xylem water for both tree and shrub species to assess how shrub cover affects the water-uptake patterns of conifers and whether there is niche partitioning between trees and shrubs. We found that growing near shrubs did not have a significant effect on the water source dynamics of either tree species, with similar source water contributions calculated for conifers growing in both the presence and absence of shrubs. Using a tree-ring analysis of growth and δ13C from 2016 to 2021, a period of high precipitation variability, we found that shrub cover had a positive effect on tree growth while decreasing carbon discrimination, which may be due to increased nitrogen availability from Ceanothus cordulatus. Overall, our results suggest that growing in the presence of shrubs does not alter the water uptake patterns of white fir and Jeffrey pine and instead may have a positive effect on the growth rates of these species during both wet and dry years.


Subject(s)
Pinus , Water , Forests , Trees/physiology , Pinus/physiology , Nitrogen
10.
Glob Chang Biol ; 29(12): 3449-3462, 2023 06.
Article in English | MEDLINE | ID: mdl-36897273

ABSTRACT

Trees continuously regulate leaf physiology to acquire CO2 while simultaneously avoiding excessive water loss. The balance between these two processes, or water use efficiency (WUE), is fundamentally important to understanding changes in carbon uptake and transpiration from the leaf to the globe under environmental change. While increasing atmospheric CO2 (iCO2 ) is known to increase tree intrinsic water use efficiency (iWUE), less clear are the additional impacts of climate and acidic air pollution and how they vary by tree species. Here, we couple annually resolved long-term records of tree-ring carbon isotope signatures with leaf physiological measurements of Quercus rubra (Quru) and Liriodendron tulipifera (Litu) at four study locations spanning nearly 100 km in the eastern United States to reconstruct historical iWUE, net photosynthesis (Anet ), and stomatal conductance to water (gs ) since 1940. We first show 16%-25% increases in tree iWUE since the mid-20th century, primarily driven by iCO2 , but also document the individual and interactive effects of nitrogen (NOx ) and sulfur (SO2 ) air pollution overwhelming climate. We find evidence for Quru leaf gas exchange being less tightly regulated than Litu through an analysis of isotope-derived leaf internal CO2 (Ci ), particularly in wetter, recent years. Modeled estimates of seasonally integrated Anet and gs revealed a 43%-50% stimulation of Anet was responsible for increasing iWUE in both tree species throughout 79%-86% of the chronologies with reductions in gs attributable to the remaining 14%-21%, building upon a growing body of literature documenting stimulated Anet overwhelming reductions in gs as a primary mechanism of increasing iWUE of trees. Finally, our results underscore the importance of considering air pollution, which remains a major environmental issue in many areas of the world, alongside climate in the interpretation of leaf physiology derived from tree rings.


Subject(s)
Air Pollution , Liriodendron , Quercus , Climate Change , Carbon Dioxide/analysis , Water , Plant Leaves/chemistry
11.
Tree Physiol ; 43(7): 1066-1080, 2023 07 09.
Article in English | MEDLINE | ID: mdl-36928744

ABSTRACT

Fire is an important regulator of ecosystem dynamics in boreal forests, and in particular has a complicated association with growth and physiological processes of fire-tolerant tree species. Stable isotope ratios in tree rings are used extensively in eco-physiological studies for evaluating the impact of past environmental (e.g., drought and air pollution) factors on tree growth and physiological processes. Yet, such studies based on carbon (δ13C) and oxygen (δ18O) isotope ratios in tree rings are rarely conducted on fire effect, and are especially not well explored for fire-tolerant trees. In this study, we investigated variations in basal area increment and isotopes of Larix gmelinii (Rupr.) Rupr. before and after three moderate fires (different fire years) at three sites across the Great Xing'an Mountains, Northeastern China. We found that the radial growth of L. gmelinii trees has significantly declined after the fires across study sites. Following the fires, a simultaneous increase in δ13C and δ18O has strengthened the link between the two isotopes. Further, fires have significantly enhanced the 13C-derived intrinsic water-use efficiency (iWUE) and largely altered the relationships between δ13C, δ18O, iWUE and climate (temperature and precipitation). A dual-isotope conceptual model revealed that an initial co-increase in δ13C and δ18O in the fire year can be mainly attributed to a reduction in stomatal conductance with a constant photosynthetic rate. However, this physiological response would shift to different patterns over post-fire time between sites, which might be partly related to spring temperature. This study is beneficial to better understand, from a physiological perspective, how fire-tolerant tree species adapt to a fire-prone environment. It should also be remembered that the limitation of model assumptions and constraints may challenge model applicability and further inferred physiological response.


Subject(s)
Ecosystem , Larix , Larix/physiology , Carbon , Climate , Isotopes , Water , Carbon Isotopes/analysis , Oxygen Isotopes , Forests
12.
Ann Bot ; 131(6): 941-951, 2023 07 10.
Article in English | MEDLINE | ID: mdl-36996263

ABSTRACT

BACKGROUND AND AIMS: The vulnerability and responsiveness of forests to drought are immensely variable across biomes. Intraspecific tree responses to drought in species with wide niche breadths that grow across contrasting climatically environments might provide key information regarding forest resistance and changes in species distribution under climate change. Using a species with an exceptionally wide niche breath, we tested the hypothesis that tree populations thriving in dry environments are more resistant to drought than those growing in moist locations. METHODS: We determined temporal trends in tree radial growth of 12 tree populations of Nothofagus antarctica (Nothofagaceae) located across a sharp precipitation gradient (annual precipitation of 500-2000 mm) in Chile and Argentina. Using dendrochronological methods, we fitted generalized additive mixed-effect models to predict the annual basal area increment as a function of year and dryness (De Martonne aridity index). We also measured carbon and oxygen isotope signals (and estimated intrinsic water-use efficiency) to provide potential physiological causes for tree growth responses to drought. KEY RESULTS: We found unexpected improvements in growth during 1980-1998 in moist sites, while growth responses in dry sites were mixed. All populations, independent of site moisture, showed an increase in their intrinsic water-use efficiency in recent decades, a tendency that seemed to be explained by an increase in the photosynthetic rate instead of drought-induced stomatal closure, given that δ18O did not change with time. CONCLUSIONS: The absence of drought-induced negative effects on tree growth in a tree species with a wide niche breadth is promising because it might relate to the causal mechanisms tree species possess to face ongoing drought events. We suggest that the drought resistance of N. antarctica might be attributable to its low stature and relatively low growth rate.


Subject(s)
Climate Change , Trees , Trees/physiology , Forests , Carbon , Droughts , Water
13.
New Phytol ; 237(5): 1606-1619, 2023 03.
Article in English | MEDLINE | ID: mdl-36451527

ABSTRACT

Intrinsic water-use efficiency (iWUE), a key index for carbon and water balance, has been widely estimated from tree-ring δ13 C at annual resolution, but rarely at high-resolution intraseasonal scale. We estimated high-resolution iWUE from laser-ablation δ13 C analysis of tree-rings (iWUEiso ) and compared it with iWUE derived from gas exchange (iWUEgas ) and eddy covariance (iWUEEC ) data for two Pinus sylvestris forests from 2002 to 2019. By carefully timing iWUEiso via modeled tree-ring growth, iWUEiso aligned well with iWUEgas and iWUEEC at intraseasonal scale. However, year-to-year patterns of iWUEgas , iWUEiso , and iWUEEC were different, possibly due to distinct environmental drivers on iWUE across leaf, tree, and ecosystem scales. We quantified the modification of iWUEiso by postphotosynthetic δ13 C enrichment from leaf sucrose to tree rings and by nonexplicit inclusion of mesophyll and photorespiration terms in photosynthetic discrimination model, which resulted in overestimation of iWUEiso by up to 11% and 14%, respectively. We thus extended the application of tree-ring δ13 C for iWUE estimates to high-resolution intraseasonal scale. The comparison of iWUEgas , iWUEiso , and iWUEEC provides important insights into physiological acclimation of trees across leaf, tree, and ecosystem scales under climate change and improves the upscaling of ecological models.


Subject(s)
Pinus sylvestris , Ecosystem , Water , Carbon Dioxide , Forests , Carbon Isotopes/analysis
14.
Ying Yong Sheng Tai Xue Bao ; 34(12): 3232-3238, 2023 Dec.
Article in Chinese | MEDLINE | ID: mdl-38511361

ABSTRACT

Chinese fir in China are generally inefficient plantations with single species, unreasonable stand density, and low productivity. The introduction of broadleaved species is usually adopted as a strategy to improve Chinese fir plantations. Taking the pure forests and mixed forests of the Guanshan Forest Farm in Jiangxi Province as example, we quantified the intrinsic water-use efficiency (iWUE) of trees based on the stable isotope carbon method, as well as its response to meteorological factors, and investigated the improvement of stand quality after introducing Phoebe zhennan into Chinese fir plantation. The results showed that the basal area increment was 0.23 cm2 in pure forest, being higher than that of 0.19 cm2 in mixed forest. The δ13C and iWUE of pure forest were -27.4‰ and 52.9%, respectively, being lower than those of -26.7‰ and 62.8% in the mixed forest. Tree δ13C in pure forest was more sensitive to changes in mean annual precipitation and mean annual relative humidity, while that in mixed forest was not significantly correlated with meteorological factors. Pure forest iWUE was positively correlated with mean annual temperature, mean annual atmospheric CO2 concentration, and mean annual maximum temperature, and negatively correlated with mean annual precipitation and mean annual relative humidity, while mixed forest iWUE was positively correlated with mean annual atmospheric CO2 concentration only. Our results indicated that pure forests was more sensitive to climate than mixed forests.


Subject(s)
Cunninghamia , Water , Carbon Dioxide , Climate , Forests , Trees , Temperature
15.
Heliyon ; 8(10): e11219, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36339991

ABSTRACT

Though rising atmospheric CO2 concentrations (Ca) harm the environment and society, they may also raise photosynthetic rates and enhance intrinsic water-use efficiency (iWUE). Numerous short-term studies have investigated tree growth under elevated CO2 (eCO2) conditions, but no long-duration study has investigated eCO2 impacts on tree growth and iWUE under natural conditions. Utilizing a new dendrochronological experimental design in a heavily-touristed nature preserve in Southwest China (Jiuzhaigou National Nature Reserve), we compared tree growth (e.g., basal area increment) and iWUE in two biophysically and environmentally similar valleys with contrasting anthropogenic activities. Trees in the control valley with ambient CO2 benefited from increasing Ca, possibly due to the CO2 fertilization effect and optimal environmental conditions. However, trees in the treatment valley with intensive tourism experienced comparatively higher localized eCO2 and growth rate declines. While iWUE increased (1959-2017) in the control (25.3%) and treatment sites (47.8%), declining tree growth rates in the treatment site was likely because comparatively extreme CO2 exposure levels encouraged stomatal closures. As the first long-term study investigating eCO2 impacts on tree growth and iWUE under natural conditions, we demonstrate that increased forest iWUE is unlikely to overcome negative drought stress and rising temperature impacts. Thus, forest potential for mitigating eCO2 and global climate change is likely overestimated, particularly under dry temperate conditions.

16.
Front Plant Sci ; 13: 909603, 2022.
Article in English | MEDLINE | ID: mdl-35968133

ABSTRACT

Intrinsic water use efficiency (iWUE) is a critical eco-physiological function allowing plants to adapt to water- and nutrient-limited habitats in arid and semi-arid regions. However, the distribution of iWUE in coexisting species along aridity gradients and its controlling factors are unknown. We established two transects along an aridity gradient in the grasslands of Losses Plateau (LP) and Inner Mongolia Plateau (MP) to elucidate the patterns and underlying mechanisms of iWUE distribution in coexisting species along aridity gradient. We determined leaf carbon (δ13C) and oxygen (δ18O) stable isotopes, functional traits related to carbon fixation, and limiting resources. Bulk leaf δ13C and δ18O were used as proxies for time-integrated iWUE and stomatal conductance (gs) during the growing season. Our results showed that variability in iWUE within transect was primarily controlled by species, sampling sites and an interactive effect between species and sampling sites. Mean values of iWUE (iWUEMean) increased and coefficient of variation (CV) in iWUE (iWUECV) decreased with an increase in aridity, demonstrating that increases in aridity lead to conservative and convergent water use strategies. Patterns of iWUEMean and iWUECV were controlled primarily by the ratio of soil organic carbon to total nitrogen in LP and soil moisture in MP. This revealed that the most limited resource drove the distribution patterns of iWUE along aridity gradients. Interspecific variation in iWUE within transect was positively correlated with Δ18O, indicating that interspecific variation in iWUE was primarily regulated by gs. Furthermore, relationship between iWUE and multi-dimensional functional trait spectrum indicated that species evolved species-specific strategies to adapt to a harsh habitat by partitioning limiting resources. Overall, these findings highlighted the interactive effects of limiting resources and leaf functional traits on plant adaptation strategies for iWUE, and emphasized the importance of considering biological processes in dissecting the underlying mechanisms of plant adaptation strategies at large regional scales.

17.
Planta ; 256(2): 39, 2022 Jul 13.
Article in English | MEDLINE | ID: mdl-35829784

ABSTRACT

MAIN CONCLUSION: This study suggests that stomatal and leaf structures are highly correlated, and mesophyll cell size is an important anatomical trait determining the coordination between stomatal size and mesophyll porosity. A comprehensive study of the correlations between the structural traits and on their relationships with gas exchange parameters may provide some useful information into leaf development and improvement in efficiencies of photosynthetic CO2 fixation and transpirational water loss. In the present study, nine plant materials from eight crop species were pot grown in a growth chamber. Leaf structural traits, gas exchange, and leaf nitrogen content were measured. We found that stomatal size, mesophyll cell size (MCS), and mesophyll porosity were positively correlated and that the surface areas of mesophyll cells and chloroplasts facing intercellular air spaces were positively correlated with both stomatal density and stomatal area per leaf area (SA). These results suggested that the developments of stomata and mesophyll cells are highly correlated among different crop species. Additionally, MCS was positively correlated with leaf thickness and negatively correlated with leaf density and leaf mass per area, which indicated that MCS might play an important role in leaf structural investments and physiological functions among species. In summary, this study illustrates the correlations between stomatal and mesophyll structures, and it highlights the importance of considering the covariations among leaf traits with the intent of improving photosynthesis and iWUE.


Subject(s)
Mesophyll Cells , Plant Stomata , Carbon Dioxide/metabolism , Crops, Agricultural/metabolism , Mesophyll Cells/metabolism , Nitrogen/metabolism , Photosynthesis , Plant Leaves/metabolism , Plant Stomata/physiology , Water/metabolism
18.
Oecologia ; 199(3): 563-578, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35819533

ABSTRACT

We describe establishment of Encelia farinosa, a drought-deciduous shrub common to the Mojave and Sonoran Deserts, based on annual observations of two populations between 1980 and 2020. Only 11 establishment events of 50 + yearlings (0.02-0.03 individuals m-2) occurred during this monitoring period; in 68% of the years fewer than 10 yearlings were established. Yearling survival to adulthood (age 4) ranged from 88 to 5% and was significantly related to cumulative precipitation. Juvenile survival rates were lowest during the current megadrought period. We calculated intrinsic water-use efficiency (iWUE) and observed the widest variations in iWUE values among the youngest plants. Among juveniles, surviving yearlings with the lowest iWUE values exhibited upward ontogenetic shifts in iWUE values, whereas those yearlings with the highest initial iWUE values exhibited little if any change. Juvenile size, higher iWUE values, and greater likelihood of surviving were all positively related with each other over the past several decades. Furthermore, iWUE and photosynthetic capacity were positively related to each other, providing a mechanistic explanation for why increased iWUE values among juveniles could lead to greater survival rates and to larger plants under water-deficit conditions. We posit that there is bi-directional selection for genotypic variations in iWUE values among E. farinosa and that this variation is selected for because of interannual environmental heterogeneity in precipitation and VPD associated with both high- and low-frequency climate cycles. Extreme drought cycles may favor plants with higher iWUE values, whereas more mesic periods may allow for greater persistence of lower iWUE genotypes.


Subject(s)
Asteraceae , Water , Adult , Carbon Dioxide , Child, Preschool , Climate , Droughts , Humans
19.
New Phytol ; 236(1): 58-70, 2022 10.
Article in English | MEDLINE | ID: mdl-35576102

ABSTRACT

The impact of climate extremes on forest ecosystems is poorly understood but important for predicting carbon and water cycle feedbacks to climate. Some knowledge gaps still remain regarding how drought-related adjustments in intra-annual tree-ring characteristics directly impact tree carbon and water use. In this study we quantified the impact of an extreme summer drought on the water-use efficiency and carbon sequestration of four mature Norway spruce trees. We used detailed observations of wood formation (xylogenesis) and intra-annual tree-ring properties (quantitative wood anatomy and stable carbon isotopes) combined with physiological water-stress monitoring. During 41 d of tree water deficit, we observed an enrichment in 13 C but a reduction in cell enlargement and wall-thickening processes, which impacted the anatomical characteristics. These adjustments diminished carbon sequestration by 67% despite an 11% increase in water-use efficiency during drought. However, with the resumption of a positive hydric state in the stem, we observed a fast recovery of cell formation rates based on the accumulated assimilates produced during drought. Our findings enhance our understanding of carbon and water fluxes between the atmosphere and forest ecosystems, providing observational evidence on the tree intra-annual carbon sequestration and water-use efficiency dynamics to improve future generations of vegetation models.


Subject(s)
Droughts , Trees , Carbon , Carbon Isotopes/analysis , Carbon Sequestration , Ecosystem , Water
20.
Ecol Evol ; 12(4): e8773, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35386876

ABSTRACT

Drought and competition affect how morphological and physiological traits are expressed in plants. California plants were previously found to respond less negatively to resource limitation compared to invasive counterparts. In a glasshouse in Santa Cruz, CA, USA, we exposed five native California C3 grassland species to episodic drought and competition (via five locally invasive species). We hypothesized that leaf morphology would be more affected by competition, and leaf photosynthetic gas exchange more so by drought, consistent with optimal partitioning and environmental filter theories. We expected that traits would exhibit trade-offs along a spectrum for resource conservatism versus acquisition. Bromus carinatus had greater photosynthetic recovery, while Diplacus aurantiacus had lower percent loss of net assimilation (PLA) and intrinsic water-use efficiency (iWUE) during drought and competition simultaneously compared to just drought. Stipa pulchra and Sidalcea malviflora gas exchange was unaffected by drought, and leaf morphology exhibited drought-related adjustments. Lupinus nanus exhibited trait adjustments for competition but not drought. Functional traits sorted onto two principal components related to trade-offs for resource conservatism versus acquisition, and for above- versus belowground allocation. In summary, morphological traits were affected by competition and drought, whereas physiological traits, like leaf gas exchange, were primarily affected by drought. The grassland plants we studied showed diverse responses to drought and competition with trait trade-offs related to resource conservatism versus acquisition, and for above- versus belowground allocation consistent with optimal partitioning and environmental filter theories. Diplacus aurantiacus experienced competitive release based on greater iWUE and lower PLA when facing drought and competition.

SELECTION OF CITATIONS
SEARCH DETAIL