Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 247
Filter
1.
Immunol Lett ; : 106928, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39299652

ABSTRACT

Neonatal hypoxic-ischemic brain damage (HIBD) is a severe condition closely associated with neuroinflammation and oxidative stress. Clonidine, a selective α2-adrenergic receptor agonist, is known for its anti-inflammatory and antioxidant properties. Despite these recognized therapeutic benefits, the exact mechanisms by which clonidine exerts its effects in the context of HIBD are not fully understood. This study was designed to thoroughly investigate the impact of clonidine on HIBD-induced neuronal injury and to clarify its underlying mechanism of action. We employed a neonatal mouse model of HIBD to meticulously assess the effects of clonidine on neuronal injury, apoptosis, inflammation, and oxidative stress markers. In addition, we conducted extensive in vitro studies to evaluate the neuroprotective effects of clonidine on primary hippocampal neuronal cells, utilizing advanced techniques such as the Cell Counting Kit-8 (CCK-8), flow cytometry, enzyme-linked immunosorbent assay (ELISA), immunofluorescence assay, and western blotting. Furthermore, we explored the regulatory effects of clonidine on the nuclear factor erythroid 2-related factor (Nrf2)/nuclear factor-κB (NF-κB) signaling pathway through a combination of in vivo and in vitro experiments. The results showed that clonidine significantly reduced cerebral infarction, neuronal damage, and apoptosis in HIBD mice. It also alleviated neuroinflammation and oxidative stress, improved cell viability, and reduced neuronal injury following oxygen-glucose deprivation/reoxygenation (OGD/R). The neuroprotective effects of clonidine were linked to the activation of the Nrf2/heme oxygenase-1 (HO-1) pathway and the inhibition of the NF-κB pathway. Overall, clonidine exhibited neuroprotective properties in HIBD by reducing neuroinflammation and oxidative stress, likely through the modulation of the Nrf2/NF-κB signaling pathway.

2.
Front Biosci (Landmark Ed) ; 29(9): 329, 2024 Sep 23.
Article in English | MEDLINE | ID: mdl-39344311

ABSTRACT

BACKGROUND: Hypoxic-ischemic brain damage (HIBD) is a prevalent brain injury with high mortality and morbidity. It results from hypoxia and ischemia of the brain due to various perinatal factors. A previous study showed that knockdown of programmed cell death factor 4 (PDCD4) could reduce infarction injury resulting from ischemia/reperfusion injury. However, exact mechanism by which PDCD4 acts in HIBD is not yet understood. Our aim in present investigation was to investigate the function and mechanism of PDCD4 in alleviating HIBD. METHODS: An HIBD model was developed using neonatal rats. After 48 h of modeling, short-term neurological function was evaluated and the brain tissue removed for assessment of cerebral infarct volume and brain water content (BWC). A cell model of oxygen glucose deprivation/reoxygenation (OGD/R) was also constructed. Overexpression or knockdown of insulin-like growth factor 2 mRNA binding protein 3 (IGF2BP3) or PDCD4 was performed in pretreated cells. RESULTS: The geotaxis reflex time, cerebral infarct volume, and BWC all increased after HIBD in this neonatal rat model. Additionally, the levels of PDCD4 and of the N6-Methyladenosine (m6A) reader protein IGF2BP3 were increased in HIBD rats and OGD/R-stimulated pheochromocytoma (PC12) cells relative to controls. Moreover, OGD/R-stimulated pheochromocytoma PC12 cells showed decreased cell viability, increased apoptosis, and elevated Interleukin 6 (IL-6), Interleukin 1 ß (IL-1ß), and tumor necrosis factor-α (TNF-α) contents. These features were reversed after knocking down IGF2BP3. The interaction between IGF2BP3 protein and PDCD4 mRNA was confirmed by RNA immunoprecipitation and RNA pull-down assays. Furthermore, knockdown of IGF2BP3 in OGD/R-stimulated PC12 cells reduced cell damage via down-regulation of PDCD4. Finally, the IGF2BP3/PDCD4 axis alleviated OGD/R-induced cell injury in primary cortical neurons (PCNs). CONCLUSIONS: PDCD4 and m6A reader protein IGF2BP3 were up-regulated in an HIBD neonatal rat model. Knockdown of IGF2BP3 in OGD/R-stimulated PC12 cells or PCNs alleviated cell damage through reducing PDCD4.


Subject(s)
Apoptosis Regulatory Proteins , Down-Regulation , Gene Knockdown Techniques , Hypoxia-Ischemia, Brain , RNA-Binding Proteins , Rats, Sprague-Dawley , Animals , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Apoptosis Regulatory Proteins/metabolism , Apoptosis Regulatory Proteins/genetics , Hypoxia-Ischemia, Brain/metabolism , Hypoxia-Ischemia, Brain/genetics , Hypoxia-Ischemia, Brain/pathology , Rats , PC12 Cells , Animals, Newborn , Disease Models, Animal , Male
3.
Immun Inflamm Dis ; 12(8): e70000, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39172048

ABSTRACT

BACKGROUND: Oxidative stress (OS) plays a major role in the progress of hypoxic-ischemic brain damage (HIBD). This study aimed to investigate OS-related genes and their underlying molecular mechanisms in neonatal HIBD. METHODS: Microarray data sets were acquired from the Gene Expression Omnibus (GEO) database to screen the differentially expressed genes (DEGs) between control samples and HIBD samples. OS-related genes were drawn from GeneCards and OS-DEGs in HIBD were obtained by intersecting with the DEGs. Subsequently, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA) were conducted to determine the underlying mechanisms and functions of OS-DEGs in HIBD. Moreover, the hub genes were screened using the protein-protein interaction network and identified in the GSE144456 data set. CIBERSORT was then performed to evaluate the expression of immunocytes in each sample and perform a correlation analysis of the optimal OS-DEGs and immunocytes. Finally, quantitative reverse transcription polymerase chain reaction (RT-qPCR) and immunohistochemistry were performed to validate the expression levels of the optimal OS-DEGs. RESULTS: In total, 93 OS-DEGs were identified. GO, KEGG, and GSEA enrichment analyses indicated that these genes were predominantly enriched in OS and inflammation. Four OS-related biomarker genes (Jun, Fos, Tlr2, and Atf3) were identified and verified. CIBERSORT analysis revealed the dysregulation of six types of immune cells in the HIBD group. Moreover, 47 drugs that might target four OS-related biomarker genes were screened. Eventually, RT-qPCR and immunohistochemistry results for rat samples further validated the expression levels of Fos, Tlr2, and Atf3. CONCLUSIONS: Fos, Tlr2 and Atf3 are potential OS-related biomarkers of HIBD progression. The mechanisms of OS are associated with those of neonatal HIBD.


Subject(s)
Computational Biology , Hypoxia-Ischemia, Brain , Oxidative Stress , Protein Interaction Maps , Computational Biology/methods , Hypoxia-Ischemia, Brain/genetics , Hypoxia-Ischemia, Brain/metabolism , Hypoxia-Ischemia, Brain/pathology , Animals , Gene Expression Profiling , Humans , Rats , Gene Ontology , Gene Regulatory Networks , Activating Transcription Factor 3/genetics , Activating Transcription Factor 3/metabolism , Toll-Like Receptor 2/genetics , Toll-Like Receptor 2/metabolism , Databases, Genetic , Gene Expression Regulation
4.
Acta Pharmacol Sin ; 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39179868

ABSTRACT

As a major contributor to neonatal death and neurological sequelae, hypoxic-ischemic encephalopathy (HIE) lacks a viable medication for treatment. Oxidative stress induced by hypoxic-ischemic brain damage (HIBD) predisposes neurons to ferroptosis due to the fact that neonates accumulate high levels of polyunsaturated fatty acids for their brain developmental needs but their antioxidant capacity is immature. Ferroptosis is a form of cell death caused by excessive accumulation of iron-dependent lipid peroxidation and is closely associated with mitochondria. Mitophagy is a type of mitochondrial quality control mechanism that degrades damaged mitochondria and maintains cellular homeostasis. In this study we employed mitophagy agonists and inhibitors to explore the mechanisms by which mitophagy exerted ferroptosis resistance in a neonatal rat HIE model. Seven-days-old neonatal rats were subjected to ligation of the right common carotid artery, followed by exposure to hypoxia for 2 h. The neonatal rats were treated with a mitophagy activator Tat-SPK2 peptide (0.5, 1 mg/kg, i.p.) 1 h before hypoxia, or in combination with mitochondrial division inhibitor-1 (Mdivi-1, 20 mg/kg, i.p.), and ferroptosis inhibitor Ferrostatin-1 (Fer-1) (2 mg/kg, i.p.) at the end of the hypoxia period. The regulation of ferroptosis by mitophagy was also investigated in primary cortical neurons or PC12 cells in vitro subjected to 4 or 6 h of OGD followed by 24 h of reperfusion. We showed that HIBD induced mitochondrial damage, ROS overproduction, intracellular iron accumulation, lipid peroxidation and ferroptosis, which were significantly reduced by the pretreatment with Tat-SPK2 peptide, and aggravated by the treatment with Mdivi-1 or BNIP3 knockdown. Ferroptosis inhibitors Fer-1 and deferoxamine B (DFO) reversed the accumulation of iron and lipid peroxides caused by Mdivi-1, hence reducing ferroptosis triggered by HI. We demonstrated that Tat-SPK2 peptide-activated BNIP3-mediated mitophagy did not alleviate neuronal ferroptosis through the GPX4-GSH pathway. BNIP3-mediated mitophagy drove the P62-KEAP1-NRF2 pathway, which conferred ferroptosis resistance by maintaining iron and redox homeostasis via the regulation of FTH1, HO-1, and DHODH/FSP1-CoQ10-NADH. This study may provide a new perspective and a therapeutic drug for the treatment of neonatal HIE.

5.
Transl Pediatr ; 13(6): 963-975, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38984029

ABSTRACT

Background and Objective: Ferroptosis, a form of programmed cell death driven by lipid peroxidation and dependent on iron ions, unfolds through a sophisticated interplay of multiple biological processes. These include perturbations in iron metabolism, lipid peroxidation, aberrant amino acid metabolism, disruptions in hypoxia-inducible factor-prolyl hydroxylase (HIF-PHD) axis, and endoplasmic reticulum (ER) stress. Recent studies indicate that ferroptosis may serve as a promising therapeutic target for hypoxia-associated brain injury such as hypoxic-ischemic brain damage (HIBD) and cerebral ischemia-reperfusion injury (CIRI). HIBD is a neonatal disease that can be fatal, causing death or mental retardation in newborns. HIBD is a kind of diffuse brain injury, which is characterized by apoptosis of nerve cells and abnormal function and structure of neurons after cerebral hypoxia and ischemia. At present, there are no fundamental prevention and treatment measures for HIBD. The brain is the most sensitive organ of the human body to hypoxia. Cerebral ischemia will lead to the damage of local brain tissue and its function, and CIRI will lead to a series of serious consequences. We hope to clarify the mechanism of ferroptosis in hypoxia-associated brain injury, inhibit the relevant targets of ferroptosis in hypoxia-associated brain injury to guide clinical treatment, and provide guidance for the subsequent treatment of disease-related drugs. Methods: Our research incorporated data on "ferroptosis", "neonatal hypoxic ischemia", "hypoxic ischemic brain injury", "hypoxic ischemic encephalopathy", "brain ischemia-reperfusion injury", and "therapeutics", which were sourced from Web of Science, PubMed, and comprehensive reviews and articles written in English. Key Content and Findings: This review delineates the underlying mechanisms of ferroptosis and the significance of these pathways in hypoxia-associated brain injury, offering an overview of therapeutic strategies for mitigating ferroptosis. Conclusions: Ferroptosis involves dysregulation of iron metabolism, lipid peroxidation, amino acid metabolism, dysregulation of HIF-PHD axis and endoplasmic reticulum stress (ERS). By reviewing the literature, we identified the involvement of the above processes in HIBD and CIRI, and summarized a series of therapeutic measures for HIBD and CIRI by inhibiting ferroptosis. We hope this study would provide guidance for the clinical treatment of HIBD and CIRI in the future.

6.
Biochem Biophys Res Commun ; 726: 150259, 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-38909535

ABSTRACT

Hypoxic-ischemic brain damage (HIBD) in the perinatal period is an important cause of cerebral damage and long-term neurological sequelae, and can place much pressure on families and society. Our previous study demonstrated that miRNA-326 reduces neuronal apoptosis by up-regulating the δ-opioid receptor (DOR) under oxygen-glucose deprivation in vitro. In the present study, we aimed to explore the neuroprotective effects of the miRNA-326/DOR axis by inhibiting apoptosis in HIBD using neonatal miRNA-326 knockout mice. Neonatal C57BL/6 mice, neonatal miRNA-326 knockout mice, and neonatal miRNA-326 knockout mice intraperitoneally injected with the DOR inhibitor naltrindole were treated with hypoxic-ischemia (HI). Neurological deficit scores, magnetic resonance imaging, terminal deoxynucleotidyl transferase-mediated uridine 5'-triphosphate-biotin nick end labeling, and Caspase-3, Bax, and B-cell lymphoma 2 (Bcl-2) expression were evaluated on day 2 after HI. Neurobehavioral analyses were performed on days 2 and 28 after HI. Additionally, the Morris water maze test was conducted on days 28. Compared with HI-treated neonatal C57BL/6 mice, HI-treated neonatal miRNA-326 knockout mice had higher neurological deficit scores, smaller cerebral infarction areas, and improved motor function, reaction ability, and long-term spatial learning and memory. These effects were likely the result of inhibiting apoptosis; the DOR inhibitor reversed these neuroprotective effects. Our findings indicate that miRNA-326 knockout plays a neuroprotective effect in neonatal HIBD by inhibiting apoptosis via the target gene DOR.


Subject(s)
Animals, Newborn , Apoptosis , Hypoxia-Ischemia, Brain , Mice, Inbred C57BL , Mice, Knockout , MicroRNAs , Receptors, Opioid, delta , Animals , Male , Mice , Apoptosis/genetics , Hypoxia-Ischemia, Brain/genetics , Hypoxia-Ischemia, Brain/metabolism , Hypoxia-Ischemia, Brain/pathology , MicroRNAs/genetics , MicroRNAs/metabolism , Neuroprotective Agents/pharmacology , Receptors, Opioid, delta/genetics , Receptors, Opioid, delta/metabolism
7.
Sud Med Ekspert ; 67(3): 54-59, 2024.
Article in Russian | MEDLINE | ID: mdl-38887073

ABSTRACT

OBJECTIVE: To systematize the mechanisms of formation and morphology of secondary ischemic brain damage, formed in the case of craniocerebral injury. MATERIAL AND METHODS: A literature review devoted to the study of formation mechanisms of secondary ischemic brain damage in craniocerebral injury was conducted. The secondary sequential and secondary long-term ischemic brain damage in the posttraumatic period, as well as intracranial and extracranial factors that contribute to their occurrence and progression, were considered. RESULTS AND CONCLUSION: Analysis of the literature has shown that primary lesions occurring at the time of head injury must be differentiated from sequential and long-term secondary ischemic changes in different brain structures.


Subject(s)
Brain Ischemia , Craniocerebral Trauma , Humans , Craniocerebral Trauma/pathology , Craniocerebral Trauma/complications , Brain Ischemia/pathology , Brain Ischemia/etiology , Brain/pathology
8.
Immun Inflamm Dis ; 12(6): e1320, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38888378

ABSTRACT

BACKGROUND: At present, neonatal hypoxic-ischemic encephalopathy (HIE), especially moderate to severe HIE, is a challenging disease for neonatologists to treat, and new alternative/complementary treatments are urgently needed. The neuroinflammatory cascade triggered by hypoxia-ischemia (HI) insult is one of the core pathological mechanisms of HIE. Early inhibition of neuroinflammation provides long-term neuroprotection. Plant-derived monomers have impressive anti-inflammatory effects. Aloesin (ALO) has been shown to have significant anti-inflammatory and antioxidant effects in diseases such as ulcerative colitis, but its role in HIE is unclear. To this end, we conducted a series of experiments to explore the potential mechanism of ALO in preventing and treating brain damage caused by HI insult. MATERIALS AND METHODS: Hypoxic-ischemic brain damage (HIBD) was induced in 7-day-old Institute of Cancer Research (ICR) mice, which were then treated with 20 mg/kg ALO. The neuroprotective effects of ALO on HIBD and the underlying mechanism were evaluated through neurobehavioral testing, infarct size measurement, apoptosis detection, protein and messenger RNA level determination, immunofluorescence, and molecular docking. RESULTS: ALO alleviated the long-term neurobehavioral deficits caused by HI insult; reduced the extent of cerebral infarction; inhibited cell apoptosis; decreased the levels of the inflammatory factors interleukin (IL)-1ß, IL-6, and tumor necrosis factor-α; activated microglia and astrocytes; and downregulated the protein expression of members in the TLR4 signaling pathway. In addition, molecular docking showed that ALO can bind stably to TLR4. CONCLUSION: ALO ameliorated HIBD in neonatal mice by inhibiting the neuroinflammatory response mediated by TLR4 signaling.


Subject(s)
Animals, Newborn , Hypoxia-Ischemia, Brain , Neuroinflammatory Diseases , Neuroprotective Agents , Toll-Like Receptor 4 , Animals , Toll-Like Receptor 4/metabolism , Hypoxia-Ischemia, Brain/drug therapy , Hypoxia-Ischemia, Brain/metabolism , Hypoxia-Ischemia, Brain/pathology , Mice , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/etiology , Neuroinflammatory Diseases/pathology , Neuroinflammatory Diseases/metabolism , Mice, Inbred ICR , Disease Models, Animal , Signal Transduction/drug effects , Apoptosis/drug effects , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Molecular Docking Simulation
9.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(6): 631-638, 2024 Jun 15.
Article in Chinese | MEDLINE | ID: mdl-38926381

ABSTRACT

OBJECTIVES: To observe the effects of melatonin on autophagy in cortical neurons of neonatal rats with hypoxic-ischemic brain damage (HIBD) and to explore its mechanisms via the PI3K/AKT signaling pathway, aiming to provide a basis for the clinical application of melatonin. METHODS: Seven-day-old Sprague-Dawley neonatal rats were randomly divided into a sham operation group, an HIBD group, and a melatonin group (n=9 each). The neonatal rat HIBD model was established using the classic Rice-Vannucci method. Neuronal morphology in the neonatal rat cerebral cortex was observed with hematoxylin-eosin staining and Nissl staining. Autophagy-related protein levels of microtubule-associated protein 1 light chain 3 (LC3) and Beclin-1 were detected by immunofluorescence staining and Western blot analysis. Phosphorylated phosphoinositide 3-kinase (p-PI3K) and phosphorylated protein kinase B (p-AKT) protein expression levels were measured by immunohistochemistry and Western blot. The correlation between autophagy and the PI3K pathway in the melatonin group and the HIBD group was analyzed using Pearson correlation analysis. RESULTS: Twenty-four hours post-modeling, neurons in the sham operation group displayed normal size and orderly arrangement. In contrast, neurons in the HIBD group showed swelling and disorderly arrangement, while those in the melatonin group had relatively normal morphology and more orderly arrangement. Nissl bodies were normal in the sham operation group but distorted in the HIBD group; however, they remained relatively intact in the melatonin group. The average fluorescence intensity of LC3 and Beclin-1 was higher in the HIBD group compared to the sham operation group, but was reduced in the melatonin group compared to the HIBD group (P<0.05). The number of p-PI3K+ and p-AKT+ cells decreased in the HIBD group compared to the sham operation group but increased in the melatonin group compared to the HIBD group (P<0.05). LC3 and Beclin-1 protein expression levels were higher, and p-PI3K and p-AKT levels were lower in the HIBD group compared to the sham operation group (P<0.05); however, in the melatonin group, LC3 and Beclin-1 levels decreased, and p-PI3K and p-AKT increased compared to the HIBD group (P<0.05). The correlation analysis results showed that the difference of the mean fluorescence intensity of LC3 and Beclin-1 protein in the injured cerebral cortex between the melatonin and HIBD groups was negatively correlated with the difference of the number of p-PI3K+ and p-AKT+ cells between the two groups (P<0.05). CONCLUSIONS: Melatonin can inhibit excessive autophagy in cortical neurons of neonatal rats with HIBD, thereby alleviating HIBD. This mechanism is associated with the PI3K/AKT pathway.


Subject(s)
Animals, Newborn , Autophagy , Cerebral Cortex , Hypoxia-Ischemia, Brain , Melatonin , Neurons , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Rats, Sprague-Dawley , Signal Transduction , Animals , Melatonin/pharmacology , Hypoxia-Ischemia, Brain/pathology , Hypoxia-Ischemia, Brain/metabolism , Rats , Proto-Oncogene Proteins c-akt/metabolism , Cerebral Cortex/pathology , Autophagy/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Neurons/pathology , Neurons/drug effects , Signal Transduction/drug effects , Male , Female
10.
Neuroscience ; 552: 54-64, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-38908506

ABSTRACT

The activation of the NLR family pyrin domain containing 3 (NLRP3) inflammasome in astrocytes has been found in the hypoxic-ischemic brain damage (HIBD) model. Cysteine rich angiogenic inducer 61 (CYR61) is secreted by reactive astrocytes. However, the effects of CYR61 on HIBD and its related mechanisms remain unclear. This study sought to explore the role of CYR61 in the activation of astrocytes and the NLRP3 inflammasome in neonatal HIBD. HIBD models were established in 7-day Sprague-Dawley rat pups. Neurobehavioral evaluation and 2,3,5-triphenyl-tetrazolium chloride staining were performed. In addition, rat primary astrocytes were used to establish the cell model of HIBD in vitro by oxygen-glucose deprivation/reperfusion (OGD/R). Then, CYR61-overexpression and sh-CYR61 viruses mediated by lentivirus were transduced into ODG/R-treated primary astrocytes. The expressions of related genes were evaluated using real-time quantitative PCR, western blot, immunofluorescence staining, and Enzyme-linked immunosorbent assay. The results showed that hypoxia-ischemia induced short-term neurological deficits, neuronal damage, and cerebral infarction in neonatal rats. In vivo, the expressions of CYR61, NLRP3, and glial fibrillary acidic protein (GFAP) were up-regulated in the HIBD model. In vitro, CYR61 exhibited high expression. CYR61 overexpression increased the expressions of GFAP and C3, whereas decreased S100A10 expression. CYR61 overexpression increased the expression of NLRP3, ASC, caspase-1 p20 and IL-1ß. CYR61 overexpression activated NF-κB by promoting the phosphorylation of IκBα and p65. Thus, CYR61 is involved in neonatal HIBD progress, which may be related to the activation of astrocytes, the NLRP3 inflammasome, and the NF-κB signaling pathway.


Subject(s)
Animals, Newborn , Astrocytes , Cysteine-Rich Protein 61 , Hypoxia-Ischemia, Brain , NLR Family, Pyrin Domain-Containing 3 Protein , Rats, Sprague-Dawley , Animals , Cysteine-Rich Protein 61/metabolism , Cysteine-Rich Protein 61/genetics , Astrocytes/metabolism , Astrocytes/pathology , Hypoxia-Ischemia, Brain/metabolism , Hypoxia-Ischemia, Brain/pathology , Rats , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Neuroinflammatory Diseases/metabolism , Inflammasomes/metabolism , Cells, Cultured , Disease Models, Animal
11.
Front Mol Neurosci ; 17: 1375843, 2024.
Article in English | MEDLINE | ID: mdl-38638600

ABSTRACT

Introduction: Neonatal hypoxic-ischemic brain damage (HIBD) refers to brain damage in newborns caused by hypoxia and reduced or even stopped cerebral blood flow during the perinatal period. Currently, there are no targeted treatments for neonatal ischemic hypoxic brain damage, primarily due to the incomplete understanding of its pathophysiological mechanisms. Especially, the role of NMDA receptors is less studied in HIBD. Therefore, this study explored the molecular mechanism of endogenous protection mediated by GluN2B-NMDAR in HIBD. Method: Hypoxic ischemia was induced in mice aged 9-11 days. The brain damage was examined by Nissl staining and HE staining, while neuronal apoptosis was examined by Hoechst staining and TTC staining. And cognitive deficiency of mice was examined by various behavior tests including Barnes Maze, Three Chamber Social Interaction Test and Elevated Plus Maze. The activation of ER stress signaling pathways were evaluated by Western blot. Results: We found that after HIBD induction, the activation of GluN2B-NMDAR attenuated neuronal apoptosis and brain damage. Meanwhile, the ER stress PERK/eIF2α signaling pathway was activated in a time-dependent manner after HIBE. Furthermore, after selective inhibiting GluN2B-NMDAR in HIBD mice with ifenprodil, the PERK/eIF2α signaling pathway remains continuously activated, leading to neuronal apoptosis, morphological brain damage. and aggravating deficits in spatial memory, cognition, and social abilities in adult mice. Discussion: The results of this study indicate that, unlike its role in adult brain damage, GluN2B in early development plays a neuroprotective role in HIBD by inhibiting excessive activation of the PERK/eIF2α signaling pathway. This study provides theoretical support for the clinical development of targeted drugs or treatment methods for HIBD.

12.
Eur J Pharmacol ; 971: 176539, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38565342

ABSTRACT

Hypoxic-ischemic brain damage (HIBD) is a cerebral injury resulting from the combination of ischemia and hypoxia in neonatal brain tissue. Presently, there exists no efficacious remedy for HIBD. A mounting body of evidence indicates that dynamic metabolites formed during metabolic procedures assume a vital role in neuronal maturation and recuperation. However, it remains unclear whether any endogenous metabolites are involved in the pathogenesis of HIBD. Here, an untargeted metabolomics analysis was conducted by gas chromatography-mass spectrometry and liquid chromatography-mass spectrometry (GC/LC-MS) in OGD/R (oxygen-glucose deprivation/reoxygenation)-induced HT-22 cells. We observed that ferroptosis signaling plays an essential role in HI-induced neuronal injury. Interestingly, we also found that the differentially expressed metabolite, 2-phosphoglyceric acid, significantly improved the neuronal cell survival of OGD/R HT-22 cells by inhibiting ferroptosis. Moreover, 2-phosphoglyceric acid effectively rescued the cell activity of HT-22 cells treated with the ferroptosis inducer RSL-3. Furthermore, 2-phosphoglyceric acid alleviated cerebral infarction and reduced HIBD-induced neuronal cell loss of the central nervous system in neonatal rats by regulating GPX4 expression. Taken together, we found that 2-phosphoglyceric acid, which was downregulated in HT-22 cells induced by OGD/R, exerted neuronal protective effects on OGD/R-treated HT-22 cells and HIBD-induced neonatal rats by inhibiting hypoxic-ischemic-induced ferroptosis through the regulation of the GPX4/ACSL4 axis.


Subject(s)
Hypoxia-Ischemia, Brain , Rats , Animals , Animals, Newborn , Rats, Sprague-Dawley , Hypoxia-Ischemia, Brain/metabolism , Hypoxia/metabolism , Brain/metabolism
13.
Transl Pediatr ; 13(1): 119-136, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38323182

ABSTRACT

Background: Neonatal hypoxic-ischemic brain damage (HIBD) is a clinical syndrome causing brain injury in newborns with obscure etiology. Increasing evidence suggests that ferroptosis plays a role in HIBD. This study aimed to clarify the key ferroptosis-related genes (FRGs) of HIBD, construct a long non-coding RNA-microRNA-messenger RNA (lncRNA-miRNA-mRNA) network, and further investigate the pathogenesis of HIBD. Methods: Gene expression data were downloaded from the Gene Expression Omnibus and FerrDb databases. The differentially expressed lncRNAs and FRGs were screened, and the related miRNAs and mRNAs were predicted. The obtained mRNA was intersected with the differentially expressed FRGs (DE-FRGs) to identify the key DE-FRGs. Cell-type Identification by Estimating Relative Subsets of RNA Transcripts method was applied to analyze the immune cell infiltration level and the relationship between key genes and immune cells. Results: Gene differential expression analysis revealed that 1,178 lncRNAs, 207 miRNAs, and 647 mRNAs were differentially expressed in the blood of HIBD patients in comparison to healthy controls. The correlations of the lncRNAs, miRNAs, and mRNAs lead to the establishment of a competing endogenous RNA (ceRNA) network associated with ferroptosis in HIBD. Further validation using an external dataset and quantitative real-time polymerase chain reaction (PCR) analysis of brain tissues from hypoxic-ischemic encephalopathy rats confirmed the expression patterns of three key genes, including HMOX1, MYCN, and QSOX1. Meanwhile, the three key genes were closely correlated with the infiltration of multiple immune cells and might affect the function of HIBD regulatory genes such as CPT2 and GCK. In addition, drug prediction suggested that four drugs, including cephaeline, emetine, mestranol, and sulmazole, might alleviate HIBD. Conclusions: Our study established a ceRNA network, identified three key genes, and predicted four drugs that are associated with ferroptosis in HIBD, which provides new ideas for the investigation of the disease mechanisms and might facilitate the diagnosis and treatment of the disease.

14.
Mol Biol Rep ; 51(1): 320, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38393618

ABSTRACT

BACKGROUND: The aim of this study was to investigate whether ischemia/hypoxia conditions induce fatty acid transport from neurons to astrocytes and whether this mechanism is affected by ApoE isoforms. METHODS AND RESULTS: A neonatal rat model of hypoxic-ischemic brain damage was established. Excessive accumulation of lipid droplets and upregulation of ApoE expression occurred in the hippocampus and cerebral cortex after hypoxia-ischemia, which implied the occurrence of abnormal fatty acid metabolism. Lipid peroxidation was induced in an oxygen-glucose deprivation and reperfusion (OGDR) model of ApoE-/- primary neurons. The number of BODIPY 558/568 C12-positive particles (fatty acid markers) transferred from neurons to astrocytes was significantly increased with the addition of human recombinant ApoE compared with that in the OGDR group, which significantly increased the efficiency of fatty acid transport from neurons to astrocytes and neuronal viability. However, ApoE4 was found to be associated with lower efficiency in fatty acid transport and less protective effects in OGDR-induced neuronal cell death than both ApoE2 and ApoE3. COG133, an ApoE-mimetic peptide, partially compensated for the adverse effects of ApoE4. FABP5 and SOD1 gene and protein expression levels were upregulated in astrocytes treated with BODIPY 558/568 C12 particles. CONCLUSIONS: In conclusion, ApoE plays an important role in mediating the transport of fatty acids from neurons to astrocytes under ischemia/hypoxia conditions, and this transport mechanism is ApoE isoform dependent. ApoE4 has a low transfer efficiency and may be a potential target for the clinical treatment of neonatal hypoxic-ischemic encephalopathy.


Subject(s)
Apolipoprotein E4 , Astrocytes , Boron Compounds , Animals , Humans , Rats , Apolipoprotein E4/genetics , Astrocytes/metabolism , Fatty Acid-Binding Proteins , Fatty Acids/metabolism , Hypoxia/metabolism , Ischemia , Neurons/metabolism
15.
Aging (Albany NY) ; 16(3): 2828-2847, 2024 02 05.
Article in English | MEDLINE | ID: mdl-38319722

ABSTRACT

MicroRNA-124 (miR-124) is implicated in various neurological diseases; however, its significance in hypoxic-ischaemic brain damage (HIBD) remains unclear. This study aimed to elucidate the underlying pathophysiological mechanisms of miR-124 in HIBD. In our study performed on oxygen-glucose deprivation followed by reperfusion (OGD)/R-induced primary cortical neurons, a substantial reduction in miR-124 was observed. Furthermore, the upregulation of miR-124 significantly mitigated oxidative stress, apoptosis, and mitochondrial impairment. We demonstrated that miR-124 interacts with the signal transducer and activator of transcription 3 (STAT3) to exert its biological function using the dual-luciferase reporter gene assay. As the duration of OGD increased, miR-124 exhibited a negative correlation with STAT3. STAT3 overexpression notably attenuated the protective effects of miR-124 mimics, while knockdown of STAT3 reversed the adverse effects of the miR-124 inhibitor. Subsequently, we conducted an HIBD model in rats. In vivo experiments, miR-124 overexpression attenuated cerebral infarction volume, cerebral edema, apoptosis, oxidative stress, and improved neurological function recovery in HIBD rats. In summary, the neuroprotective effects of the miR-124/STAT3 axis were confirmed in the HIBD model. MiR-124 may serve as a potential biomarker with significant therapeutic implications for HIBD.


Subject(s)
Hypoxia-Ischemia, Brain , MicroRNAs , Rats , Animals , STAT3 Transcription Factor/genetics , Hypoxia-Ischemia, Brain/genetics , MicroRNAs/metabolism , Apoptosis , Brain/metabolism , Oxidative Stress/genetics , Glucose/pharmacology
16.
Ultrasound Med Biol ; 50(4): 610-616, 2024 04.
Article in English | MEDLINE | ID: mdl-38290910

ABSTRACT

OBJECTIVE: Neonatal hypoxic-ischemic brain damage (HIBD) can have long-term implications on patients' physical and mental health, yet the available treatment options are limited. Recent research has shown that low-intensity pulsed ultrasound (LIPUS) holds promise for treating neurodegenerative diseases and traumatic brain injuries. Our objective was to explore the therapeutic potential of LIPUS for HIBD. METHODS: Due to the lack of a suitable animal model for neonatal HIBD, we will initially simulate the therapeutic effects of LIPUS on neuronal cells under oxidative stress and neuroinflammation using cell experiments. Previous studies have investigated the biologic responses following intracranial injection of 6-hydroxydopamine (6-OHDA). In this experiment, we will focus on the biologic effects produced by LIPUS treatment on neuronal cells (specifically, SH-SY5Y cells) without the presence of other neuroglial cell assistance after stimulation with 6-OHDA. RESULTS: We found that (i) pulsed ultrasound exposure, specifically three-intermittent sonication at intensities ranging from 0.1 to 0.5 W/cm², did not lead to a significant decrease in viability among SH-SY5Y cells; (ii) LIPUS treatment exhibited a positive effect on cell viability, accompanied by an increase in glial cell-derived neurotrophic factor (GDNF) levels and a decrease in caspase three levels; (iii) the administration of 6-OHDA had a significant impact on cell viability, resulting in a decrease in both brain cell-derived neurotrophic factor (BDNF) and GDNF levels, while concurrently elevating caspase three and matrix metalloproteinase-9 (MMP-9) levels; and (iv) LIPUS treatment demonstrated its potential to alleviate the changes induced by 6-OHDA, particularly in the levels of BDNF, GDNF, and tyrosine hydroxylase (TH). CONCLUSION: LIPUS treatment may possess partial therapeutic capabilities for SH-SY5Y cells damaged by 6-OHDA neurotoxicity. Our findings enhance our understanding of the effects of LIPUS treatment on cell viability and its modulation of key factors involved in the pathophysiology of HIBD and show the promising potential of LIPUS as an alternative therapeutic approach for neonates with HIBD.


Subject(s)
Biological Products , Neuroblastoma , Animals , Infant, Newborn , Humans , Brain-Derived Neurotrophic Factor , Oxidopamine , Glial Cell Line-Derived Neurotrophic Factor , Ultrasonic Waves , Caspases
17.
Int Immunopharmacol ; 128: 111532, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38237226

ABSTRACT

Following hypoxic-ischemic brain damage (HIBD), there is a decline in cognitive function; however, there are no effective treatment strategies for this condition in neonates. This study aimed to evaluate the role of the cluster of differentiation 200 (CD200)/CD200R1 axis in cognitive function following HIBD using an established model of HIBD in postnatal day 7 rats. Western blotting analysis was conducted to evaluate the protein expression levels of CD200, CD200R1, proteins associated with the PI3K/Akt-NF-κB pathway, and inflammatory factors such as TNF-α, IL-1ß, and IL-6 in the hippocampus. Additionally, double-immunofluorescence labeling was utilized to evaluate M1 microglial polarization and neurogenesis in the hippocampus. To assess the learning and memory function of the experimental rats, the Morris water maze (MWM) test was conducted. HIBDleads to a decrease in the expression of CD200 and CD200R1 proteins in the neonatal rat hippocampus, while simultaneously increasing the expression of TNF-α, IL-6, and IL-1ß proteins, ultimately resulting in cognitive impairment. The administration of CD200Fc, a fusion protein of CD200, was found to enhance the expression of p-PI3K and p-Akt, but reduce the expression of p-NF-κB. Additionally, CD200Fc inhibited M1 polarization of microglia, reduced neuroinflammation, improved hippocampal neurogenesis, and mitigated cognitive impairment caused by HIBD in neonatal rats. In contrast, blocking the interaction between CD200 and CD200R1 with the anti-CD200R1 antibody (CD200R1 Ab) exerted the opposite effect. Furthermore, the PI3K specific activator, 740Y-P, significantly increased the expression of p-PI3K and p-Akt, but reduced p-NF-κB expression. It also inhibited M1 polarization of microglia, reduced neuroinflammation, and improved hippocampal neurogenesis and cognitive function in neonatal rats with HIBD. Our findings illustrate that activation of the CD200/CD200R1 axis inhibits the NF-κB-mediated M1 polarization of microglia to improve HIBD-induced cognitive impairment and hippocampal neurogenesis disorder via the PI3K/Akt signaling pathway.


Subject(s)
Cognitive Dysfunction , Microglia , Peptide Fragments , Receptors, Platelet-Derived Growth Factor , Animals , Rats , Animals, Newborn , Cognitive Dysfunction/metabolism , Hippocampus/metabolism , Interleukin-6/metabolism , Neuroinflammatory Diseases , NF-kappa B/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Tumor Necrosis Factor-alpha/metabolism
18.
Tissue Cell ; 86: 102289, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38194851

ABSTRACT

Hypoxic-ischemic brain damage (HIBD) frequently induces cognitive impairments. Investigating the role of sevoflurane postconditioning (SPC) in HIBD, we conducted experiments involving HIBD modeling, SPC treatment, and interventions with the PERK inhibitor GSK2656157 or the PERK activator CCT020312, administered 30 min before modeling, followed by SPC treatment. Behavioral testing using the Morris water maze test and Neurological Deficiency Scale (NDS) was conducted. Additionally, Nissl staining assessed hippocampal CA1 area neuronal density, TUNEL staining evaluated hippocampal CA1 area neuronal apoptosis, and Western blot determined hippocampal CA1 area protein levels, including Bax, Bcl-2, p-PERK/PERK, p-eIF2/eIF2, ATF4, CHOP, GRP78, Bax, and Bcl-2 protein levels. Following SPC treatment, HIBD rats exhibited improved spatial learning and memory abilities, reduced neuronal apoptosis, increased neuronal density in the hippocampal CA1 area, elevated Bcl-2 protein level, decreased Bax protein levels, and decreased levels of endoplasmic reticulum stress pathway related proteins (p-PERK/PERK, p-eIF2/eIF2, ATF4, CHOP and GRP78). Pre-modeling treatment with the PERK inhibitor treatment improved outcomes in HIBD rats. However, pre-modeling treatment with the PERK activator CCT020312 counteracted the protective effects of SPC against HIBD in rats. In conclusion, SPC alleviates neuronal apoptosis in the hippocampus CA1 area of HIBD rats by inhibiting the endoplasmic reticulum stress pathway PERK/ATF4/CHOP, thereby mitigating HIBD in rats.


Subject(s)
Endoplasmic Reticulum Chaperone BiP , Endoplasmic Reticulum Stress , Hypoxia-Ischemia, Brain , Sevoflurane , Animals , Rats , Apoptosis , bcl-2-Associated X Protein/metabolism , Endoplasmic Reticulum Stress/drug effects , Eukaryotic Initiation Factor-2/metabolism , Eukaryotic Initiation Factor-2/pharmacology , Hippocampus/metabolism , Hypoxia-Ischemia, Brain/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Rats, Sprague-Dawley , Sevoflurane/pharmacology
19.
CNS Neurosci Ther ; 30(1): e14486, 2024 01.
Article in English | MEDLINE | ID: mdl-37830170

ABSTRACT

AIMS: Dexmedetomidine (DEX) has been reported to alleviate hypoxic-ischemic brain damage (HIBD) in neonates. This study aimed to investigate whether DEX improves cognitive impairment by promoting hippocampal neurogenesis via the BDNF/TrkB/CREB signaling pathway in neonatal rats with HIBD. METHODS: HIBD was induced in postnatal day 7 rats using the Rice-Vannucci method, and DEX (25 µg/kg) was administered intraperitoneally immediately after the HIBD induction. The BDNF/TrkB/CREB pathway was regulated by administering the TrkB receptor antagonist ANA-12 through intraperitoneal injection or by delivering adeno-associated virus (AAV)-shRNA-BDNF via intrahippocampal injection. Western blot was performed to measure the levels of BDNF, TrkB, and CREB. Immunofluorescence staining was utilized to identify the polarization of astrocytes and evaluate the levels of neurogenesis in the dentate gyrus of the hippocampus. Nissl and TTC staining were performed to evaluate the extent of neuronal damage. The MWM test was conducted to evaluate spatial learning and memory ability. RESULTS: The levels of BDNF and neurogenesis exhibited a notable decrease in the hippocampus of neonatal rats after HIBD, as determined by RNA-sequencing technology. Our results demonstrated that treatment with DEX effectively increased the protein expression of BDNF and the phosphorylation of TrkB and CREB, promoting neurogenesis in the dentate gyrus of the hippocampus in neonatal rats with HIBD. Specifically, DEX treatment significantly augmented the expression of BDNF in hippocampal astrocytes, while decreasing the proportion of detrimental A1 astrocytes and increasing the proportion of beneficial A2 astrocytes in neonatal rats with HIBD. Furthermore, inhibiting the BDNF/TrkB/CREB pathway using either ANA-12 or AAV-shRNA-BDNF significantly counteracted the advantageous outcomes of DEX on hippocampal neurogenesis, neuronal survival, and cognitive improvement. CONCLUSIONS: DEX promoted neurogenesis in the hippocampus by activating the BDNF/TrkB/CREB pathway through the induction of polarization of A1 astrocytes toward A2 astrocytes, subsequently mitigating neuronal damage and cognitive impairment in neonates with HIBD.


Subject(s)
Cognitive Dysfunction , Dexmedetomidine , Hypoxia-Ischemia, Brain , Rats , Animals , Animals, Newborn , Rats, Sprague-Dawley , Dexmedetomidine/pharmacology , Dexmedetomidine/therapeutic use , Brain-Derived Neurotrophic Factor/metabolism , Hippocampus/metabolism , Signal Transduction , Hypoxia-Ischemia, Brain/drug therapy , Hypoxia-Ischemia, Brain/metabolism , RNA, Small Interfering/pharmacology , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/metabolism , Neurogenesis
20.
Neuroscience ; 536: 36-46, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-37967738

ABSTRACT

Neonatal hypoxic-ischemic encephalopathy (HIE) is an abnormal neurological condition caused by hypoxic-ischemic damage during the perinatal period. Human placenta derived mesenchymal stem cells (hPMSCs) have been shown to have protective and reparative effects in various neurological diseases; however, the research on HIE is insufficient. This study aimed to establish a rat model of HIE and transplant hPMSCs through the lateral ventricle after hypoxic-ishcemic (HI) brain damage to observe its protective effects and mechanisms, with a focus on brain apoptosis compared among groups. Differentially expressed apoptosis-related proteins were screened using a rat cytokine array and subsequent verification. Neuropilin-1 (NRP-1) and Semaphorin 3A (Sema 3A) were selected for further investigation. Western blotting was used to quantify the expression of Sema 3A and the proteins related to PI3K/Akt/mTOR signaling pathway. Exogenous Sema 3A was added to evaluate the effects of Sema 3A/NRP-1 on hPMSCs following HI injury. hPMSCs transplantation ameliorated HI-induced pathological changes, reduced apoptosis, and improved long-term neurological prognosis. Furthermore, Sema 3A/NRP-1 was a key regulator in reducing HI-induced apoptosis after hPMSCs transplantation. hPMSCs inhibited the expression of Sema 3A/NRP-1 and activated the PI3K/Akt/mTOR signaling pathway. Additionally, exogenous Sema 3A abolished the protective effects of hPMSCs against HI. In conclusion, hPMSCs transplantation reduced apoptosis and improved long-term neurological prognosis after HI by downregulating Sema 3A/NRP-1 expression and activating the PI3K/Akt/mTOR signaling pathway.


Subject(s)
Mesenchymal Stem Cells , Semaphorin-3A , Female , Pregnancy , Rats , Humans , Animals , Animals, Newborn , Neuropilin-1 , Proto-Oncogene Proteins c-akt , Phosphatidylinositol 3-Kinases , TOR Serine-Threonine Kinases , Apoptosis , Mesenchymal Stem Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL