ABSTRACT
Local adaptation is common in plant species, and knowing whether a population is locally adapted has fundamental and applied relevance. However, local adaptation in tropical plants remains largely less studied, and covering this gap is not simple since reciprocal transplantation - the gold standard for detecting local adaptation - is not feasible for most species. Here, we combined genetic, climatic and phenotypic data to investigate ecotypic differentiation, an important aspect of local adaptation, in coastal and inland populations of the orchid Epidendrum fulgens Brongn., a long-lived tropical plant for which reciprocal transplantation would not be feasible. We used nine microsatellite markers to estimate genetic divergence between inland and coastal populations. Moreover, occurrence data and climate data were used to test for differences in the realized niche of those populations. Finally, we assessed saturated water content, leaf specific area, height, and stomatal density in common garden and in situ to investigate the effects of ecotypic differentiation and plasticity on the phenotype. Coastal and inland groups' niches do not overlap, the former occupying a wetter and warmer area. However, this differentiation does not seem to be driven by ecotypic differentiation since there was no positive correlation between genetic structure and climate dissimilarity. Moreover, specific leaf area and leaf saturated water content, which are important phenotypic traits related to soil fertility and drought stress, were rather plastic. We conclude that ecotypic differentiation is absent, since phenotypic plasticity is an important mechanism explaining the niche broadness of this species.
ABSTRACT
The opposing forces of gene flow and isolation are two major processes shaping genetic diversity. Understanding how these vary across space and time is necessary to identify the environmental features that promote diversification. The detection of considerable geographic structure in taxa from the arid Nearctic has prompted research into the drivers of isolation in the region. Several geographic features have been proposed as barriers to gene flow, including the Colorado River, Western Continental Divide (WCD), and a hypothetical Mid-Peninsular Seaway in Baja California. However, recent studies suggest that the role of barriers in genetic differentiation may have been overestimated when compared to other mechanisms of divergence. In this study, we infer historical and spatial patterns of connectivity and isolation in Desert Spiny Lizards (Sceloporus magister) and Baja Spiny Lizards (Sceloporus zosteromus), which together form a species complex composed of parapatric lineages with wide distributions in arid western North America. Our analyses incorporate mitochondrial sequences, genomic-scale data, and past and present climatic data to evaluate the nature and strength of barriers to gene flow in the region. Our approach relies on estimates of migration under the multispecies coalescent to understand the history of lineage divergence in the face of gene flow. Results show that the S. magister complex is geographically structured, but we also detect instances of gene flow. The WCD is a strong barrier to gene flow, while the Colorado River is more permeable. Analyses yield conflicting results for the catalyst of differentiation of peninsular lineages in S. zosteromus. Our study shows how large-scale genomic data for thoroughly sampled species can shed new light on biogeography. Furthermore, our approach highlights the need for the combined analysis of multiple sources of evidence to adequately characterize the drivers of divergence.
Subject(s)
Gene Flow , Lizards , Animals , Lizards/genetics , Lizards/classification , Desert Climate , Phylogeny , Mexico , GenomicsABSTRACT
Distinguishing among the mechanisms underlying the spatial distribution of genetic variation resulting from the environmental or physical barriers from those arising due to simple geographic distance is challenging in complex landscapes. The Andean uplift represents one of the most heterogeneous habitats where multiple mechanisms may interact, confounding their relative roles. We explore this broad question in the leaf-cutting ant Atta cephalotes, a species that is distributed across the Andes mountains, using nuclear microsatellite markers and mtCOI gene sequences. We investigate spatial genetic divergence across the western range of the northern Andes in Colombia by testing the relative role of alternative scenarios of population divergence, including isolation by geographic distance (IBD), climatic conditions (IBE), and the physical barriers presented by the Andes mountains (IBB). Our results reveal substantial genetic differentiation among A. cephalotes populations for both types of markers, but only nuclear divergence followed a hierarchical pattern with multiple models of genetic divergence imposed by the western range. Model selection showed that the IBD, IBE (temperature and precipitation), and IBB (Andes mountains) models, often proposed as individual drivers of genetic divergence, interact, and explain up to 33% of the genetic divergence in A. cephalotes. The IBE model remained significant after accounting for IBD, suggesting that environmental factors play a more prominent role than IBB. These factors, in combination with the idiosyncratic dispersal patterns of ants, appear to determine the hierarchical patterns of gene flow. This study enriches our understanding of the forces shaping population divergence in complex habitat landscapes.
Subject(s)
Ants , Animals , Ants/genetics , Genetic Variation/genetics , Genetic Drift , Ecosystem , Temperature , Genetics, PopulationABSTRACT
The Atlantic spotted dolphin (Stenella frontalis) is endemic to tropical, subtropical, and warm temperate waters of the Atlantic Ocean. Throughout its distribution, both geographic distance and environmental variation may contribute to population structure of the species. In this study, we follow a seascape genetics approach to investigate population differentiation of Atlantic spotted dolphins based on a large worldwide dataset and the relationship with marine environmental variables. The results revealed that the Atlantic spotted dolphin exhibits population genetic structure across its distribution based on mitochondrial DNA control region (mtDNA-CR) data. Analyses based on the contemporary landscape suggested, at both the individual and population level, that the population genetic structure is consistent with the isolation-by-distance model. However, because geography and environmental matrices were correlated, and because in some, but not all analyses, we found a significant effect for the environment, we cannot rule out the addition contribution of environmental factors in structuring genetic variation. Future analyses based on nuclear data are needed to evaluate whether local processes, such as social structure and some level of philopatry within populations, may be contributing to the associations among genetic structure, geographic, and environmental distance.
Subject(s)
Dolphins , Stenella , Animals , Atlantic Ocean , DNA, Mitochondrial/genetics , Humans , Social Structure , Stenella/geneticsABSTRACT
A primary challenge for modern phylogeography is understanding how ecology and geography, both contemporary and historical, shape the spatial distribution and evolutionary histories of species. Phylogeographic patterns are the result of many factors, including geology, climate, habitat, colonization history and lineage-specific constraints. Assessing the relative influences of these factors is difficult because few species, regions and environments are sampled in enough detail to compare competing hypotheses rigorously and because a particular phylogeographic pattern can potentially result from different evolutionary scenarios. The silky anoles (Anolis sericeus complex) of Central America and Mexico are abundant and found in all types of lowland terrestrial habitat, offering an excellent opportunity to test the relative influences of the factors affecting diversification. Here, we performed a range-wide statistical phylogeographic analysis on restriction site-associated DNA (RAD) markers from silky anoles and compared the phylogeographic patterns we recovered to historical and contemporary environmental and topographic data. We constructed niche models to compare niche overlap between sister lineages and conducted coalescent simulations to characterize how the major lineages of silky anoles have diverged. Our results revealed that the mode of divergence for major lineage diversification events was geographic isolation, resulting in ecological divergence between lineages, followed by secondary contact. Moreover, comparisons of parapatric sister lineages suggest that ecological niche divergence contributed to isolation by environment in this system, reflecting the natural history differences among populations in divergent environments.
Subject(s)
Ecosystem , Genetics, Population , Lizards/genetics , Animals , Biological Evolution , Central America , Mexico , Models, Genetic , PhylogeographyABSTRACT
Identifying the genetic basis of phenotypic variation and its relationship with the environment is key to understanding how local adaptations evolve. Such patterns are especially interesting among populations distributed across habitat gradients, where genetic structure can be driven by isolation by distance (IBD) and/or isolation by environment (IBE). Here, we used variation in ~1,600 high-quality SNPs derived from paired-end sequencing of double-digest restriction site-associated DNA (ddRAD-Seq) to test hypotheses related to IBD and IBE in the Yucatan jay (Cyanocorax yucatanicus), a tropical bird endemic to the Yucatán Peninsula. This peninsula is characterized by a precipitation and vegetation gradient-from dry to evergreen tropical forests-that is associated with morphological variation in this species. We found a moderate level of nucleotide diversity (π = .008) and little evidence for genetic differentiation among vegetation types. Analyses of neutral and putatively adaptive SNPs (identified by complementary genome-scan approaches) indicate that IBD is the most reliable explanation to account for frequency distribution of the former, while IBE has to be invoked to explain those of the later. These results suggest that selective factors acting along a vegetation gradient can promote local adaptation in the presence of gene flow in a vagile, nonmigratory and geographically restricted species. The putative candidate SNPs identified here are located within or linked to a variety of genes that represent ideal targets for future genomic surveys.
Subject(s)
Adaptation, Physiological/genetics , Ecosystem , Genetics, Population , Passeriformes/genetics , Animals , Breeding , Gene Flow , Genetic Variation , Genomics , Mexico , Polymorphism, Single NucleotideABSTRACT
The Cerrado is the largest South American savanna and encompasses substantial species diversity and environmental variation. Nevertheless, little is known regarding the influence of the environment on population divergence of Cerrado species. Here, we searched for climatic drivers of genetic (nuclear microsatellites) and leaf trait divergence in Annona crassiflora, a widespread tree in the Cerrado. The sampling encompassed all phytogeographic provinces of the continuous area of the Cerrado and included 397 individuals belonging to 21 populations. Populations showed substantial genetic and leaf trait divergence across the species' range. Our data revealed three spatially defined genetic groups (eastern, western and southern) and two morphologically distinct groups (eastern and western only). The east-west split in both the morphological and genetic data closely mirrors previously described phylogeographic patterns of Cerrado species. Generalized linear mixed effects models and multiple regression analyses revealed several climatic factors associated with both genetic and leaf trait divergence among populations of A. crassiflora. Isolation by environment (IBE) was mainly due to temperature seasonality and precipitation of the warmest quarter. Populations that experienced lower precipitation summers and hotter winters had heavier leaves and lower specific leaf area. The southwestern area of the Cerrado had the highest genetic diversity of A. crassiflora, suggesting that this region may have been climatically stable. Overall, we demonstrate that a combination of current climate and past climatic changes have shaped the population divergence and spatial structure of A. crassiflora. However, the genetic structure of A. crassiflora reflects the biogeographic history of the species more strongly than leaf traits, which are more related to current climate.