Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters











Publication year range
1.
Isotopes Environ Health Stud ; : 1-9, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39301749

ABSTRACT

Rapid coagulation of reptile blood often hinders its use in studies in remote and difficult-to-access areas, necessitating chemical preservation. Therefore, understanding the potential effects of anticoagulants on the isotopic compositions of blood is essential to avoid issues in interpreting the results for ecological studies. In this study we aimed to verify whether the storage time of the blood tissue in anticoagulants can influence its isotopic compositions of the broad-snouted caiman (Caiman latirostris), an ectothermic top predator from eastern South America. Blood samples were obtained from ten adult females of C. latirostris from a commercial breeding facility in 2015. Samples were stored in vials containing ethylenediaminetetraacetic acid (EDTA) and sodium heparin (SH) and centrifuged after 2 and 8 h to separate red blood cells and plasma. No effect of time was found on the δ13C and δ15N of whole blood, plasma, and red blood cells in contact with the two types of anticoagulants, EDTA and SH. The findings have practical implications for researchers in this field, as they suggest that anticoagulants can be used effectively for at least eight hours under refrigeration.

2.
Molecules ; 29(13)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38999016

ABSTRACT

The concept of uncertainty in an isotopic analysis is not uniform in the scientific community worldwide and can compromise the risk of false compliance assessment applied to carbon isotopic analyses in natural gas exploratory evaluation. In this work, we demonstrated a way to calculate one of the main sources of this uncertainty, which is underestimated in most studies focusing on gas analysis: the δ13C calculation itself is primarily based on the raw analytical data. The carbon isotopic composition of methane, ethane, propane, and CO2 was measured. After a detailed mathematical treatment, the corresponding expanded uncertainties for each analyte were calculated. Next, for the systematic isotopic characterization of the two gas standards, we calculated the standard uncertainty, intermediary precision, combined standard uncertainty, and finally, the expanded uncertainty for methane, ethane, propane, and CO2. We have found an expanded uncertainty value of 1.8‰ for all compounds, except for propane, where a value of 1.6‰ was obtained. The expanded uncertainty values calculated with the approach shown in this study reveal that the error arising from the application of delta calculation algorithms cannot be neglected, and the obtained values are higher than 0.5‰, usually considered as the accepted uncertainty associated with the GC-IRMS analyses. Finally, based on the use of uncertainty information to evaluate the risk of false compliance, the lower and upper acceptance limits for the carbon isotopic analysis of methane in natural gas are calculated, considering the exploratory limits between -55‰ and -50‰: (i) for the underestimated current uncertainty of 0.5‰, the lower and upper acceptance limits, respectively, are -54.6‰ and -50.4‰; and (ii) for the proposed realistic uncertainty of 1.8‰, the lower and upper acceptance limits would be more restrictive; i.e., -53.5‰ and -51.5‰, respectively.

3.
Chemosphere ; 339: 139779, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37567261

ABSTRACT

Mercury (Hg) emissions from forest fires, especially tropical forests such as the Amazonian forest, were shown to contribute significantly to the atmospheric mercury budget, but new methods are still necessary to improve the traceability and to reduce the great uncertainties related to this emission source. Recent studies have shown that the combustion process can result in Hg stable isotope fractionation that allows tracking coal combustion Hg emissions, as influenced by different factors such as combustion temperature. The main goal of the present study was, therefore, to investigate for the first time the potential of Hg stable isotopes to trace forest fire Hg emissions and pathways. More specifically, small-scale and a large scale prescribed forest fire experiments were conducted in the Brazilian Amazonian forest to study the impact of fire severity on Hg isotopic composition of litter, soil, and ash samples and associated Hg isotope fractionation pathways. In the small-scale experiment, no difference was found in the mercury isotopic composition of the samples collected before and after burning. In contrast, the larger-scale experiment resulted in significant mass dependent fractionation (MDF δ202Hg) in soils and ash suggesting that higher combustion temperature influence Hg isotopic fractionation with the emission of lighter Hg isotopes to the atmosphere and enrichment with heavier Hg in ashes. As for coal combustion, mass independent fractionation was not observed. To our knowledge, these results are the first to highlight the potential of forest fires to cause Hg isotopic fractionation, depending on the fire severity. The results also allowed to establish an isotopic fingerprint for tropical forest fire Hg emissions that corresponds to a mixture of litter and soil Hg isotopic composition (resulting atmospheric δ202Hg, Δ200Hg and Δ199Hg were -1.79 ± 0.24‰, -0.05 ± 0.04‰ and -0.45 ± 0.12‰, respectively).


Subject(s)
Mercury , Wildfires , Mercury Isotopes/analysis , Mercury/analysis , Soil , Isotopes , Coal/analysis , Environmental Monitoring
4.
Mar Pollut Bull ; 188: 114640, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36750004

ABSTRACT

The Fundão Dam rupture released tons of iron ore tailings into the environment. This study analyzes the long-term impacts and provides a possible scenario of Doce River (DR) plume dispersion. For this, water and surface sediment were collected in November 2019 along three Brazilian states to determine metal concentrations and δ13C and δ15N compositions. The δ13Csediment values of the DR plume showed a dispersion pattern mainly to the north but also in areas closer to the south of the DR mouth. Furthermore, the most negative values of δ13C and δ15N were observed in mud, followed by suspended particulate matter, sediment and the dissolved fraction, indicating that geological matrices are involved in the transport of organic matter coupled to metals to the ocean and pointing to the DR as the main source of metals in the region. Thus, this study highlights the need for continuous studies to monitor the environmental and biological conditions in these areas.


Subject(s)
Disasters , Trace Elements , Water Pollutants, Chemical , Rivers , Brazil , Environmental Monitoring , Metals/analysis , Water Pollutants, Chemical/analysis
5.
Mar Pollut Bull ; 162: 111821, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33162056

ABSTRACT

This study analyzed trace elements (As, Ba, Cd, Cu, Fe, Mn, Pb, Zn) and stable isotopes of carbon and nitrogen in egg yolk samples of female green turtles that nested in Rocas Atoll, Brazil, in 2017 and 2018. The trace elements concentration varied between years, with higher concentrations in 2017, suggesting that the nesting groups come from different foraging sites. The isotopic data indicated high overlap between years (73%), leading to an ambiguous interpretation on the turtles' foraging site. The Normalized Total Load presented a low association (0.01 < R2 < 0.41) with the stable isotopes. The Normalized Total Load that represents the trace element load in egg yolk is a holistic approach that can be applied elsewhere to predict ecotoxicology pathways in any animal species. We recommend a continuous monitoring to verify how the trace elements load behave in the nesting green turtles on Rocas Atoll.


Subject(s)
Trace Elements , Turtles , Water Pollutants, Chemical , Animals , Brazil , Egg Yolk , Female , Isotopes , Trace Elements/analysis , Water Pollutants, Chemical/analysis
6.
Anal Bioanal Chem ; 412(17): 4173-4182, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32318766

ABSTRACT

A quantitative analytical method based on laser ablation molecular isotopic spectrometry (LAMIS) and multivariate analysis was developed and evaluated for the determination of the isotopic composition of enriched materials. The method consists preparing a concentrated solution of the enriched material, using small quantities of a sample (125 mg), and ensuring the economic efficiency of the analysis. Standard solutions of known isotopic contents are prepared by employing mixtures of urea highly enriched in 15N and urea of natural isotopic ratio and analyzed by mass spectrometry. A small volume (30 µL) of these solutions is delivered to a filter paper disc (3 cm diameter). After drying, the disc, offering a homogeneously distributed analyte, is presented to a LAMIS equipment to acquire the vibronic emission spectra containing information about the isotopologues of interest. To illustrate the proposed method, the content of 15N is determined in enriched samples of urea. In this case, each spectrum is normalized by the intensity of emission of the CN isotopologues for the electronic (Δν = 0) emission band at 387.1 nm, ensuring better accuracy. Selected regions and single wavelengths of the vibronic emission spectrum (Δν = + 1 or - 1) related to CN species were employed to construct multivariate partial least squares (PLS) and univariate regression models to predict the isotopic content of new samples. Besides, the LAMIS data set was evaluated by multivariate curve resolution (MCR) algorithm. The best MCR and PLS models presented similar results regarding the accuracy to determine 15N content in enriched urea. MCR is capable of identifying spectral interferences and minimizing its effect. The results show that the proposed method based on LAMIS and PLS or MCR multivariate analysis can determine the 15N content in the range 5-50% with a root mean square error of prediction (RMSEP) respectively equal to 0.5 or 0.7% (m/m) in comparison with reference results obtained by mass spectrometry. Graphical abstract.

7.
Front Plant Sci ; 9: 453, 2018.
Article in English | MEDLINE | ID: mdl-29686691

ABSTRACT

Water extraction from the underground aquifers of the Pampa del Tamarugal (Atacama Desert, Chile) reduced the growing area of Prosopis tamarugo, a strict phreatic species endemic to northern Chile. The objective of this work was to evaluate the effect of various architectural and morpho-physiological traits adjustment of P. tamarugo subjected to three groundwater depletion intervals (GWDr): <1 m (control), 1-4 m and 6-9 m. The traits were evaluated at three levels, plant [height, trunk cross-section area, leaf fraction (fGCC), and crown size], organ [length of internodes, leaf mass per unit area (LMA), leaflet mass and area], and tissue level [wood density (WD), leaf 13C, 18O isotope composition (δ), and intrinsic water use efficiency (iWUE)]. In addition, soil water content (VWC) to 1.3 m soil depth, pre-dawn and midday water potential difference (ΔΨ), and stomatal conductance (gs) were evaluated. At the deeper GWDr, P. tamarugo experienced significant growth restriction and reduced fGCC, the remaining canopy had a significantly higher LMA associated with smaller leaflets. No differences in internode length and WD were observed. Values for δ13C and δ18O indicated that as GWDr increased, iWUE increased as a result of partial stomata closure with no significant effect on net assimilation over time. The morpho-physiological changes experienced by P. tamarugo allowed it to acclimate and survive in a condition of groundwater depletion, keeping a functional but diminished canopy. These adjustments allowed maintenance of a relatively high gs; ΔΨ was not different among GWDrs despite smaller VWC at greater GWDr. Although current conservation initiatives of this species are promising, forest deterioration is expected continue as groundwater depth increases.

8.
Front Plant Sci ; 7: 375, 2016.
Article in English | MEDLINE | ID: mdl-27064665

ABSTRACT

Prosopis tamarugo Phil. is a strict phreatophyte tree species endemic to the "Pampa del Tamarugal", Atacama Desert. The extraction of water for various uses has increased the depth of the water table in the Pampa aquifers threatening its conservation. This study aimed to determine the effect of the groundwater table depth on the water relations of P. tamarugo and to present thresholds of groundwater depth (GWD) that can be used in the groundwater management of the P. tamarugo ecosystem. Three levels of GWD, 11.2 ± 0.3 m, 10.3 ± 0.3 m, and 7.1 ± 0.1 m, (the last GWD being our reference) were selected and groups of four individuals per GWD were studied in the months of January and July of the years 2011 through 2014. When the water table depth exceeded 10 m, P. tamarugo had lower pre-dawn and mid-day water potential but no differences were observed in minimum leaf stomatal resistance when compared to the condition of 7.1 m GWD; the leaf tissue increased its δ(13)C and δ(18)O composition. Furthermore, a smaller green canopy fraction of the trees and increased foliage loss in winter with increasing water table depth was observed. The differences observed in the physiological behavior of P. tamarugo trees, attributable to the ground water depth; show that increasing the depth of the water table from 7 to 11 m significantly affects the water status of P. tamarugo. The results indicate that P. tamarugo has an anisohydric stomatal behavior and that given a reduction in water supply it regulates the water demand via foliage loss. The growth and leaf physiological activities are highly sensitive to GWD. The foliage loss appears to prevent the trees from reaching water potentials leading to complete loss of hydraulic functionality by cavitation. The balance achieved between water supply and demand was reflected in the low variation of the water potential and of the variables related to gas exchange over time for a given GWD. This acclimation capacity of P. tamarugo after experiencing increases in GWD has great value for the implementation of conservation strategies. The thresholds presented in this paper should prove useful for conservation purposes of this unique species.

9.
J Agric Food Chem ; 63(18): 4638-45, 2015 May 13.
Article in English | MEDLINE | ID: mdl-25905785

ABSTRACT

The objective of this research was to investigate the development of a reliable fingerprint from elemental and isotopic signatures of Argentinean honey to assess its geographical provenance. Honey, soil, and water from three regions (Córdoba, Buenos Aires, and Entre Ríos) were collected. The multielemental composition was determined by ICP-MS. δ(13)C was measured by isotopic ratio mass spectrometry, whereas the (87)Sr/(86)Sr ratio was determined using thermal ionization mass spectrometry. The data were analyzed by chemometrics looking for the association between the elements, stable isotopes, and honey samples from the three studied areas. Honey samples were differentiated by classification trees and discriminant analysis using a combination of eight key variables (Rb, K/Rb, B, U, (87)Sr/(86)Sr, Na, La, and Zn) presenting differences among the studied regions. The application of canonical correlation analysis and generalized procrustes analysis showed 91.5% consensus between soil, water, and honey samples, in addition to clear differences between studied areas. To the authors' knowledge, this is the first report demonstrating the correspondence between soil, water, and honey samples using different statistical methods, showing that elemental and isotopic honey compositions are related to soil and water characteristics of the site of origin.


Subject(s)
Honey/analysis , Mass Spectrometry/methods , Soil/chemistry , Trace Elements/analysis , Water/chemistry , Argentina , Carbon Isotopes/analysis , Discriminant Analysis , Geography
10.
Biosci. j. (Online) ; 30(3): 604-615, may/june 2014. tab, ilus
Article in Portuguese | LILACS | ID: biblio-947175

ABSTRACT

Diferentes sistemas de uso e manejo do solo modificam o sinal isotópico do 13C e 15N do solo. O objetivo deste trabalho foi avaliar a abundância natural de 13C e 15N no perfil do solo em áreas com diferentes sistemas de uso do solo no Cerrado goiano. Foram avaliados dois sistemas com rotação de culturas: integração lavourapecuária - ILP (milho+braquiária/feijão/algodão/soja) e sistema plantio direto - SPD (girassol/milheto/soja/milho). Uma área de Cerrado natural (Cerradão) foi tomada como condição original do solo. Foram coletadas amostras de solo nas camadas de 0,0-10,0; 10,0-20,0; 20,0-30,0; 30,0-40,0; 40,0-50,0; 50,0-60,0; 60,0-80,0 e 80,0-100,0 cm e mensurados o 15N e 13C do solo por meio de espectrômetro de massa. Em relação ao 13C, verificou-se predomínio de plantas C3 no Cerrado e influência das plantas C4 nas áreas de SPD e ILP. Os valores de 15N apresentaram um enriquecimento isotópico de acordo com o aumento da profundidade, com maiores valores de 15N observados nas áreas cultivadas. A substituição da vegetação original de Cerradão para implantação de SPD e ILP acarretou mudanças no sinal 13C, ou seja, após 17 anos de cultivo, a incorporação de carbono das gramíneas nestas áreas proporcionou um aumento do sinal de 13C. A análise isotópica de 15N indicou maior mineralização da matéria orgânica do solo com o aumento da profundidade do solo e com maiores taxas nas áreas cultivadas.


Different land use systems and soil management modify the isotopic signal of soil 13C and 15N. The objective of this study was to evaluate the natural abundance the 13C and 15N in the soil profile in areas with different land use systems in the Cerrado of Goias State, Brazil. We evaluated two systems with crop rotation: croplivestock integration - CLI (corn + brachiaria/beans/cotton/soybean) and no-tillage system - NTS (sunflower/millet/soybean/corn). An area of natural Cerrado (Cerradão) was taken as the original condition of the soil. Soil samples were collected in layers of 0.0 to 10.0, 10.0 to 20.0, 20.0 to 30.0, 30.0 to 40.0, 40.0 to 50.0, 50.0 to 60.0, 60.0 to 80.0 and 80.0 to 100.0 cm, and the measured the 15N and 13C of the soil by mass spectrometer. Regarding 13C, it was found predominantly in the C3 plant Cerrado influence plant and C4 in the areas of NTS and CLI. The values presented 15N an isotopic enrichment according to the increase in depth, with higher values of 15N observed in cultivated areas. The replacement of the original vegetation of Cerrado for implantation of NTS and CLI led to changes in 13C, i.e., after 17 years of cultivation, the incorporation of carbon from grasses in these areas resulted in an increase in 13C signal.. Isotopic analysis of 15N indicated greater mineralization of soil organic matter with increasing soil depth and with higher rates in cultivated areas.


Subject(s)
Crop Production , Land Use , Grassland , Organic Matter
11.
Mar Pollut Bull ; 77(1-2): 308-14, 2013 Dec 15.
Article in English | MEDLINE | ID: mdl-24269012

ABSTRACT

Total-Hg, monomethylmercury (MMHg), and mercury isotopic composition was determined in sediment from a cold seep and background sites in the northern Gulf of Mexico (nGoM). Total-Hg averaged 50 ng/g (n=28), ranged from 31 to 67 ng/g, and decreased with depth (0-15 cm). MMHg averaged 0.91 ng/g (n=18), and ranged from 0.2 to 1.9 ng/g. There was no significant difference for total-Hg or MMHg between cold seep and background sites. δ(202)Hg ranged from -0.5 to -0.8‰ and becomes more negative with depth (r=0.989). Mass independent fractionation (Δ(199)Hg) was small but consistently positive (0.04-0.12‰); there was no difference between cold seeps (Δ(199)Hg = +0.09±0.03; n=7, 1SD) and background sites (Δ(199)Hg=+0.07±0.02; n=5, 1SD). This suggests that releases of hydrocarbons at the cold seep do not significantly alter Hg levels, and that cold seeps are likely not major sources of MMHg to nGoM waters.


Subject(s)
Environmental Monitoring , Geologic Sediments/chemistry , Mercury/analysis , Water Pollutants, Chemical/analysis , Gulf of Mexico
12.
Food Chem ; 141(3): 2148-53, 2013 Dec 01.
Article in English | MEDLINE | ID: mdl-23870940

ABSTRACT

We studied Brazilian wines produced by microvinification from Cabernet Sauvignon and Merlot grapes, vintages 2007 and 2008, from the Serra Gaúcha, Campanha and Serra do Sudeste regions, in order to differentiate them according to geographical origin by using isotope and mineral element analyses. In addition, the influence of vintage production in isotope values was verified. Isotope analysis was performed by isotope ratio mass spectrometry (IRMS), and the determination of minerals was by flame atomic absorption (FAA). The best parameters to classify the wines in the 2008 vintage were Rb and Li. The results of the δ(13)C of wine ethanol, Rb and Li showed a significant difference between the varieties regardless of the region studied. The δ(18)O values of water and δ(13)C of ethanol showed significant differences, regardless of the variety. Discriminant analysis of isotope and minerals values allowed to classify approximately 80% of the wines from the three regions studied.


Subject(s)
Carbon Isotopes/analysis , Minerals/analysis , Oxygen Isotopes/analysis , Vitis/chemistry , Wine/analysis , Brazil , Geography , Mass Spectrometry/methods , Spectrophotometry, Atomic/methods , Vitis/growth & development
13.
Semina ciênc. agrar ; 32(3): 995-1006, jul.-set. 2011. tab
Article in English | VETINDEX | ID: biblio-1437168

ABSTRACT

Notwithstanding its relevance, studies regarding nutrient cycling and biological dinitrogen fixation in Conilon coffee (Coffee canephora cv. Conilon) associated with cover plants are very scarce. Aiming to evaluate the contribution of cover crops for organic conilon production, a field experiment was carried out consisting of Pennisetum glaucum, and legume species Canavalia ensiformis, Mucuna deeringiana and Cajanus cajan (inoculated and non inoculated) cultivated between coffee trees, and spontaneous vegetation as cover crops. The experiment was carried out in Espírito Santo State- Brazil, in a 6.5 years old coffee crop production system. Chemical analyses of soil and vegetative parts of spontaneous and cover crops, as well as coffee leaf nutrients concentration were performed. Biological Nitrogen Fixation (BNF) was determined by the natural abundance method. BNF contributed with about 80% of the nitrogen accumulated by the leguminous plants, corresponding to 27 - 35 kg of N ha-1. Concentration and accumulation of nutrients varied among cover crops. Rhizobium inoculation did not influence nutrient cycling or BNF. Legume plants partially supplied the nitrogen requirements of Conilon coffee. No significant effect of the treatments was observed on the nutrient concentration of Conilon coffee or on plant growth.


Apesar de sua relevância, estudos sobre a ciclagem de nutrientes e fixação biológica do nitrogênio (FBN) em café Conilon (Coffea canephora cv. Conilon), associadas com plantas de cobertura, são escassos. Objetivou-se, com este trabalho avaliar a ciclagem de nutrientes, a FBN e o efeito que plantas de cobertura podem causar em lavoura de C. canephora cv. Conilon, sob manejo orgânico. O experimento foi conduzido no Estado do Espírito Santo - Brasil, em uma lavoura de café sob manejo orgânico, com 6,5 anos. Os tratamentos consistiram de testemunha (ausência de plantas de cobertura), Pennisetum glaucum e as leguminosas Canavalia ensiformis, Mucuna deeringiana e Cajanus cajan, com e sem inoculação de rizóbio específico. Efetuaram-se análises químicas de solo e da parte aérea das plantas espontâneas e de cobertura, bem como as concentrações foliares de nutrientes do cafeeiro. A contribuição da FBN foi determinada pela técnica da abundância natural. A FBN contribuiu com cerca de 80% do N acumulado pelas leguminosas, correspondendo a 27 - 35 kg N ha-1. A concentração e acúmulo de nutrientes variaram entre as plantas de cobertura. A inoculação com rizóbio não influenciou ciclagem de nutrientes e a FBN. As leguminosas forneceram parte do N necessário para o cafeeiro. Não houve efeito significativo dos tratamentos sobre a concentração de nutrientes e o crescimento do cafeeiro.


Subject(s)
Coffea , Food, Organic , Nitrogen Fixation
SELECTION OF CITATIONS
SEARCH DETAIL