ABSTRACT
CONTEXT: The evaluation of quadriceps muscle inhibition with the interpolated twitch technique is usually performed by stimulating the femoral nerve (FN). However, there are some problems related to the use of this stimulation site, which may be partially overcome by delivering the stimulation over the motor point (MP). This study sought to compare MP to FN stimulation at different joint angles for the evaluation of quadriceps muscle inhibition, resting peak torque, and discomfort in healthy women. DESIGN: Cross-sectional study. METHODS: Sixteen healthy women (age: 28 [4] y; body mass: 60 [5] kg; height: 162 [5] cm) participated in this study. Supramaximal paired stimuli were delivered to the FN and to the rectus femoris MP before and during maximal voluntary contractions at different knee angles (15°, 30°, 45°, 60°, and 90° of knee flexion) to assess muscle inhibition and resting peak torque. Discomfort was also recorded for each stimulation site and knee angle. RESULTS: Muscle inhibition was similar between the 2 stimulation sites (P > .05) and was higher at 45° than at 90° (P = .03). MP stimulation evoked lower resting peak torque at 30° (P = .004), 60° (P = .006), and 90° (P = .006) and higher discomfort at 30° (P = .008) and 90° (P = .027) compared to FN stimulation. CONCLUSIONS: Despite lower resting peak torque and higher discomfort at some angles, MP stimulation provided similar muscle inhibition to FN stimulation at all knee angles and is therefore a valid method to evaluate quadriceps muscle inhibition in healthy women. MP stimulation can be used as an alternative to FN stimulation for the evaluation of quadriceps muscle inhibition with no added discomfort at the angles where muscle inhibition is the highest.
ABSTRACT
Analysis of locomotion is often used as a measure for impairment and recovery following experimental peripheral nerve injury. Compared to rodents, sheep offer several advantages for studying peripheral nerve regeneration. In the present study, we compared for the first time, two-dimensional (2D) and three-dimensional (3D) hindlimb kinematics during obstacle avoidance in the ovine model. This study obtained kinematic data to serve as a template for an objective assessment of the ankle joint motion in future studies of common peroneal nerve (CP) injury and repair in the ovine model. The strategy used by the sheep to bring the hindlimb over a moderately high obstacle, set to 10% of its hindlimb length, was pronounced knee, ankle and metatarsophalangeal flexion when approaching and clearing the obstacle. Despite the overall time course kinematic patterns about the hip, knee, ankle, and metatarsophalangeal were identical, we found significant differences between values of the 2D and 3D joint angular motion. Our results showed that the most apparent changes that occurred during the gait cycle were for the ankle (2D-measured STANCEmax: 157±2.4 degrees vs. 3D-measured STANCEmax: 151±1.2 degrees; P .05) and metatarsophalangeal joints (2D-measured STANCEmin: 151±2.2 degrees vs. 3D-measured STANCEmin: 162 ± 2.2 degrees; P .01 and 2D-measured TO: 163±4.9 degrees vs. 3D-measured TO: 177±1.4 degrees; P .05), whereas the hip and knee joints were much less affected. Data and techniques described here are useful for an objective assessment of altered gait after CP injury and repairin an ovine model.(AU)
A análise da locomoção é frequentemente usada como uma medida para avaliar a disfunção e sua recuperação após lesão nervosa periférica experimental. Quando comparadas com os roedores, as ovelhas oferecem várias características atrativas como modelo experimental para o estudo da regeneração nervosa periférica. Não existem estudos acerca dos resultados da locomoção após lesão e reparação do nervo periférico no modelo ovino. No presente estudo, realizámos e comparámos a cinemática bidimensional (2D) e, pela primeira vez, tridimensional (3D) do membro pélvico durante a ultrapassagem de obstáculos no modelo ovino. Este estudo teve como objetivo obter dados cinemáticos para servir de modelo para uma avaliação objetiva do movimento articular do tornozelo em estudos futuros de lesão e reparação do nervo fibular comum (FC) no modelo ovino. A estratégia usada pelas ovelhas para elevar o membro pélvico sobre um obstáculo com uma altura moderada, fixado em 10% do seu comprimento, caracteriza-se por uma flexão pronunciada do joelho, tornozelo e metatarso-falangeana ao se aproximar e ultrapassar o obstáculo. Apesar dos padrões cinemáticos do quadril, joelho, tornozelo e metatarso-falangeano terem sido idênticos, foram encontradas diferenças significativas entre os valores do movimento angular das articulações em 2D e 3D. Os nossos resultados mostram que as mudanças mais aparentes que ocorreram durante o ciclo da marcha foram nas articulações do tornozelo (em 2DSTANCEmax: 157±2.4 graus vs. em 3D STANCEmax: 151±1.2 graus; P .05) e metatarso-falangeana (em 2D STANCEmin: 151±2.2 graus vs. em 3D STANCEmin: 162 ± 2.2 graus; P .01 e em 2D TO: 163±4.9 graus vs. em 3D TO: 177±1.4 graus; P .05), enquanto as articulações do quadril e do joelho foram muito menos afetadas. É provável que os dados e técnicas descritas aqui sejam úteis para uma avaliação objetiva das alterações na marcha após lesão e reparação do PC no modelo ovino.(AU)
Subject(s)
Animals , Biomechanical Phenomena , Pelvis/injuries , SheepABSTRACT
ABSTRACT: Analysis of locomotion is often used as a measure for impairment and recovery following experimental peripheral nerve injury. Compared to rodents, sheep offer several advantages for studying peripheral nerve regeneration. In the present study, we compared for the first time, two-dimensional (2D) and three-dimensional (3D) hindlimb kinematics during obstacle avoidance in the ovine model. This study obtained kinematic data to serve as a template for an objective assessment of the ankle joint motion in future studies of common peroneal nerve (CP) injury and repair in the ovine model. The strategy used by the sheep to bring the hindlimb over a moderately high obstacle, set to 10% of its hindlimb length, was pronounced knee, ankle and metatarsophalangeal flexion when approaching and clearing the obstacle. Despite the overall time course kinematic patterns about the hip, knee, ankle, and metatarsophalangeal were identical, we found significant differences between values of the 2D and 3D joint angular motion. Our results showed that the most apparent changes that occurred during the gait cycle were for the ankle (2D-measured STANCEmax: 157±2.4 degrees vs. 3D-measured STANCEmax: 151±1.2 degrees; P<.05) and metatarsophalangeal joints (2D-measured STANCEmin: 151±2.2 degrees vs. 3D-measured STANCEmin: 162 ± 2.2 degrees; P<.01 and 2D-measured TO: 163±4.9 degrees vs. 3D-measured TO: 177±1.4 degrees; P<.05), whereas the hip and knee joints were much less affected. Data and techniques described here are useful for an objective assessment of altered gait after CP injury and repairin an ovine model.
RESUMO: A análise da locomoção é frequentemente usada como uma medida para avaliar a disfunção e sua recuperação após lesão nervosa periférica experimental. Quando comparadas com os roedores, as ovelhas oferecem várias características atrativas como modelo experimental para o estudo da regeneração nervosa periférica. Não existem estudos acerca dos resultados da locomoção após lesão e reparação do nervo periférico no modelo ovino. No presente estudo, realizámos e comparámos a cinemática bidimensional (2D) e, pela primeira vez, tridimensional (3D) do membro pélvico durante a ultrapassagem de obstáculos no modelo ovino. Este estudo teve como objetivo obter dados cinemáticos para servir de modelo para uma avaliação objetiva do movimento articular do tornozelo em estudos futuros de lesão e reparação do nervo fibular comum (FC) no modelo ovino. A estratégia usada pelas ovelhas para elevar o membro pélvico sobre um obstáculo com uma altura moderada, fixado em 10% do seu comprimento, caracteriza-se por uma flexão pronunciada do joelho, tornozelo e metatarso-falangeana ao se aproximar e ultrapassar o obstáculo. Apesar dos padrões cinemáticos do quadril, joelho, tornozelo e metatarso-falangeano terem sido idênticos, foram encontradas diferenças significativas entre os valores do movimento angular das articulações em 2D e 3D. Os nossos resultados mostram que as mudanças mais aparentes que ocorreram durante o ciclo da marcha foram nas articulações do tornozelo (em 2DSTANCEmax: 157±2.4 graus vs. em 3D STANCEmax: 151±1.2 graus; P<.05) e metatarso-falangeana (em 2D STANCEmin: 151±2.2 graus vs. em 3D STANCEmin: 162 ± 2.2 graus; P<.01 e em 2D TO: 163±4.9 graus vs. em 3D TO: 177±1.4 graus; P<.05), enquanto as articulações do quadril e do joelho foram muito menos afetadas. É provável que os dados e técnicas descritas aqui sejam úteis para uma avaliação objetiva das alterações na marcha após lesão e reparação do PC no modelo ovino.
ABSTRACT
This paper presents the analysis of an intensity variation polymer optical fiber (POF)-based angle sensor performance, i.e., sensitivity, hysteresis and determination coefficient ( R 2 ), using cyclic transparent optical polymer (CYTOP) fiber. The analysis consisted of two approaches: influence of different light source central wavelengths (430 nm, 530 nm, 660 nm, 870 nm and 950 nm) and influence of different angular velocities ( 0.70 rad/s, 0.87 rad/s, 1.16 rad/s, 1.75 rad/s and 3.49 rad/s). The first approach aimed to select the source which resulted in the most suitable performance regarding highest sensitivity and linearity while maintaining lowest hysteresis, through the figure of merit. Thereafter, the analysis of different angular velocities was performed to evaluate the influence of velocity in the curvature sensor performance. Then, a discrete angular velocity compensation was proposed in order to reduce the root-mean-square error (RMSE) of responses for different angular velocities. Ten tests for each analysis were performed with angular range of 0 ∘ to 50 ∘ , based on knee and ankle angle range during the gait. The curvature sensor was applied in patterns simulating the knee and ankle during the gait. Results show repeatability and the best sensor performance for λ = 950 nm in the first analysis and show high errors for high angular velocities ( w = 3.49 rad/s) in the second analysis, which presented up to 50 % angular error. The uncompensated RMSE was high for all velocities ( 6.45 ∘ to 12.41 ∘ ), whereas the compensated RMSE decreased up to 74 % ( 1.67 ∘ to 3.62 ∘ ). The compensated responses of application tests showed maximum error of 5.52 ∘ and minimum of 1.06 ∘ , presenting a decrease of mean angular error up to 30 ∘ when compared with uncompensated responses.
ABSTRACT
The quantitative measurement of an articular motion is an important indicator of its functional state and for clinical and pathology diagnoses. Joint angle evaluation techniques can be applied to improve sports performance and provide feedback information for prostheses control. Polymer optical fiber (POF) sensors are presented as a novel method to evaluate joint angles, because they are compact, lightweight, flexible and immune to electromagnetic interference. This study aimed to characterize and implement a new portable and wearable system to measure angles based on a POF curvature sensor. This study also aimed to present the system performance in bench tests and in the measurement of the elbow joint in ten participants, comparing the results with a consolidated resistive goniometer. Results showed high repeatability of sensors between cycles and high similarity of behavior with the potentiometer, with the advantage of being more ergonomic. The proposed sensor presented errors comparable to the literature and showed some advantages over other goniometers, such as the inertial measurement unit (IMU) sensor and over other types of POF sensors. This demonstrates its applicability for joint angle evaluation.