Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
1.
Can J Kidney Health Dis ; 11: 20543581241258812, 2024.
Article in English | MEDLINE | ID: mdl-38863503

ABSTRACT

Background: Cisplatin (Cis) is potent chemotherapy used to treating already many different types of cancer; however, it is found to correlate with nephrotoxicity and other adverse health consequences. Thymoquinone (TQ) is an antioxidant and anti-inflammatory molecule that may defend against the consequences of different chemotherapies. Thymoquinone uses, although, are negatively impacted by its weak solubility and inadequate biological availability. Objectives: This investigation examined the efficacy of a new nanoparticle (NP) absorbing TQ in an Ehrlich Ascites Carcinoma (EAC) mice model to address its low solubility, enhance its bioavailability, and protect against Cis-induced nephrotoxicity. Methods: Following 4 treatment groups were included in this research: (1) control, (2) EAC, (3) EAC + Cis + Thymoquinone nanoparticle (TQ-NP) treated, and (4) EAC + Cis-treated. Results: The study revealed that TQ-NP was efficacious in avoiding Cis-induced kidney problems in EAC mice, as well as restoring kidney function and pathology. Thymoquinone nanoparticle considerably reduced Cis-induced oxidative damage in renal tissue by augmenting antioxidant levels. According to tumor weight and histological investigation results, TQ-NP did not impair Cis's anticancer efficacy. Conclusion: Thymoquinone nanoparticle might be used as a potential drug along with Cis anticancer therapy to reduce nephrotoxicity and other side effects while maintaining Cis anticancer properties.


Contexte: Le cisplatine (CIS) est un puissant agent chimiothérapeutique utilisé pour le traitement de nombreux types de cancers. Le cisplatine est cependant corrélé à de la néphrotoxicité et à d'autres conséquences néfastes pour la santé. La thymoquinone (TQ) est une molécule antioxydante et anti-inflammatoire qui peut protéger contre les effets néfastes de différents agents chimiothérapeutiques. Les faibles solubilité et biodisponibilité de la TQ limitent toutefois son utilisation. Objectifs: Un modèle de souris atteintes d'un carcinome ascitique d'Ehrlich (souris EAC) a servi à vérifier l'efficacité d'une nouvelle nanoparticule (NP) absorbant la TQ pour remédier aux faibles solubilité et biodisponibilité de la TQ et protéger contre la néphrotoxicité induite par le CIS. Méthodologie: Les quatre groupes suivants ont été examinés: i) témoin; ii) souris EAC; iii) souris EAC traitées par CIS + TQ-NP (thymoquinone-nanoparticule); iv) souris EAC traitées par CIS. Résultats: L'étude a révélé que la TQ-NP était efficace pour éviter les problèmes rénaux induits par le CIS chez les souris EAC, de même que pour restaurer la fonction rénale et soigner la pathologie. En augmentant les niveaux d'antioxydants, la TQ-NP a considérablement réduit les dommages oxydatifs induits par le CIS dans le tissu rénal. Selon le poids des tumeurs et les résultats de l'étude histologique, la TQ-NP n'a pas altéré l'efficacité anticancéreuse du CIS. Conclusion: La TQ-NP pourrait potentiellement être utilisée avec le traitement anticancéreux par CIS afin de réduire la néphrotoxicité et les autres effets secondaires, sans altérer les propriétés anticancer du CIS.

2.
Toxicol Pathol ; : 1926233241248656, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38742644

ABSTRACT

Emerging urinary kidney safety biomarkers have been evaluated in recent years and have been shown to be superior to the serum parameters blood urea nitrogen (BUN) and creatinine (sCr) for monitoring kidney injury in the proximal tubule. However, their potential application in differentiating the location of the initial kidney injury (eg, glomerulus vs tubule) has not been fully explored. Here, we assessed the performance of two algorithms that were constructed using either an empirical or a mathematical model to predict the site of kidney injury using a data set consisting of 22 rat kidney toxicity studies with known urine biomarker and histopathologic outcomes. Two kidney safety biomarkers used in both models, kidney injury molecule 1 (KIM-1) and albumin (ALB), were the best performers to differentiate glomerular injury from tubular injury. The performance of algorithms using these two biomarkers against the gold standard of kidney histopathologic examination showed high sensitivity in differentiating the location of the kidney damage to either the glomerulus or the proximal tubules. These data support the exploration of such an approach for use in clinical settings, leveraging urinary biomarker data to aid in the diagnosis of either glomerular or tubular injury where histopathologic assessments are not conducted.

3.
Pharmaceuticals (Basel) ; 17(4)2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38675472

ABSTRACT

[177Lu]Lu-PSMA-617 has recently been successfully approved by the FDA, the MHRA, Health Canada and the EMA as Pluvicto®. However, salivary gland (SG) and kidney toxicities account for its main dose-limiting side-effects, while its corresponding uptake and retention mechanisms still remain elusive. Recently, the presence of different ATP-binding cassette (ABC) transporters, such as human breast cancer resistance proteins (BCRP), multidrug resistance proteins (MDR1), multidrug-resistance-related proteins (MRP1, MRP4) and solute cassette (SLC) transporters, such as multidrug and toxin extrusion proteins (MATE1, MATE2-K), organic anion transporters (OAT1, OAT2v1, OAT3, OAT4) and peptide transporters (PEPT2), has been verified at different abundances in human SGs and kidneys. Therefore, our aim was to assess whether [177Lu]Lu-PSMA-617 and [225Ac]Ac-PSMA-617 are substrates of these ABC and SLC transporters. For in vitro studies, the novel isotopologue ([α,ß-3H]Nal)Lu-PSMA-617 was used in cell lines or vesicles expressing the aforementioned human ABC and SLC transporters for inhibition and uptake studies, respectively. The corresponding probe substrates and reference inhibitors were used as controls. Our results indicate that [177Lu]Lu-PSMA-617 and [225Ac]Ac-PSMA-617 are neither inhibitors nor substrates of the examined transporters. Therefore, our results show that human ABC and SLC transporters play no central role in the uptake and retention of [177Lu]Lu-PSMA-617 and [225Ac]Ac-PSMA-617 in the SGs and kidneys nor in the observed toxicities.

4.
Sci Total Environ ; 926: 171817, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38513858

ABSTRACT

Polystyrene microplastic (PS-MPs) contamination has become a worldwide hotspot of concern, and its entry into organisms can cause oxidative stress resulting in multi-organ damage. The plasticizer di (2-ethylhexyl) phthalate (DEHP) is a common endocrine disruptor, these two environmental toxins often occur together, but their combined toxicity to the kidney and its mechanism of toxicity are unknown. Therefore, in this study, we established PS-MPS and/or DEHP-exposed mouse models. The results showed that alone exposure to both PS-MPs and DEHP caused inflammatory cell infiltration, cell membrane rupture, and content spillage in kidney tissues. There were also down-regulation of antioxidant enzyme levels, increased ROS content, activated of the NF-κB pathway, stimulated the levels of heat shock proteins (HSPs), pyroptosis, and inflammatory associated factors. Notably, the co-exposure group showed greater toxicity to kidney tissues, the cellular assay further validated these results. The introduction of the antioxidant n-acetylcysteine (NAC) and the NLRP3 inhibitor (MCC950) could mitigate the changes in the above measures. In summary, co-exposure of PS-MPs and DEHP induced oxidative stress that activated the NF-κB/NLRP3 pathway and aggravated kidney pyroptosis and inflammation, as well as that HSPs are also involved in this pathologic injury process. This study not only enriched the nephrotoxicity of plasticizers and microplastics, but also provided new insights into the toxicity mechanisms of multicomponent co-pollution in environmental.


Subject(s)
Diethylhexyl Phthalate , Microplastics , Oxidative Stress , Phthalic Acids , Pyroptosis , Animals , Mice , Antioxidants/metabolism , Diethylhexyl Phthalate/toxicity , Diethylhexyl Phthalate/metabolism , Inflammation/chemically induced , Kidney/metabolism , Microplastics/metabolism , Microplastics/toxicity , NF-kappa B/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Plasticizers/toxicity , Plasticizers/metabolism , Plastics/metabolism , Plastics/toxicity , Polystyrenes/toxicity , Polystyrenes/metabolism
5.
Toxicology ; 502: 153726, 2024 02.
Article in English | MEDLINE | ID: mdl-38191021

ABSTRACT

Heavy metals are found naturally in our environment and have many uses and applications in daily life. However, high concentrations of metals may be a result of pollution due to industrialization. In particular, cadmium (Cd), a white metal abundantly distributed in the terrestrial crust, is found in mines together with zinc, which accumulates after volcanic eruption or is found naturally in the sea and earth. High levels of Cd have been associated with disease. In the human body, Cd accumulates in two ways: via inhalation or consumption, mainly of plants or fish contaminated with high concentrations. Several international organizations have been working to establish the limit values of heavy metals in food, water, and the environment to avoid their toxic effects. Increased Cd levels may induce kidney, liver, or neurological diseases. Cd mainly accumulates in the kidney, causing renal disease in people exposed to moderate to high levels, which leads to the development of end-stage chronic kidney disease or death. The aim of this review is to provide an overview of Cd-induced nephrotoxicity, the mechanisms of Cd damage, and the current treatments used to reduce the toxic effects of Cd exposure.


Subject(s)
Cadmium , Metals, Heavy , Humans , Animals , Cadmium/toxicity , Metals, Heavy/toxicity , Kidney , Liver , Zinc/pharmacology
6.
Environ Res ; 237(Pt 1): 116908, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37597833

ABSTRACT

The increasing use of the herbicide mixture of glyphosate, dicamba and 2-4-D to deal with glyphosate-resistant weeds raises concerns regarding human health and environmental risks. This study aimed to evaluate the effects of developmental exposure to glyphosate and a herbicide mixture containing glyphosate, dicamba and 2-4-D on rat dams' kidney and thyroid function and offspring's health. Pregnant Wistar rats were exposed from day-6 of gestation till weaning to regulatory relevant doses of glyphosate corresponding to the European Union (EU) acceptable daily intake (ADI; 0.5 mg/kg bw/day), and the no-observed-adverse-effect level (NOAEL; 50 mg/kg bw/day), and to a mixture of glyphosate, dicamba and 2,4-D all at the EU ADI (0.5, 0.002 and 0.3 mg/kg bw/day) respectively. After weaning the dams were sacrificed and blood and organs were collected. The pups' health was assessed by measuring viability, gestational and anogenital indices. Perinatal exposure to GLY alone and the herbicide mixture resulted in anti-androgenic effects in male offspring. In dams, exposure to glyphosate resulted in kidney glomerular and tubular dysfunction as well as increased thyroid hormone levels in a dose-dependent manner. Furthermore, exposure to the herbicide mixture resulted in effects similar to those observed with glyphosate at the NOAEL, suggesting at least an additive effect of the herbicide mixture at doses individually considered safe for humans.

7.
Toxicol Pathol ; 51(1-2): 15-26, 2023 01.
Article in English | MEDLINE | ID: mdl-37078689

ABSTRACT

Activating mutations of the leucine-rich repeat kinase 2 (LRRK2) gene are associated with Parkinson disease (PD), prompting development of LRRK2 inhibitors as potential treatment for PD. However, kidney safety concerns have surfaced from LRRK2 knockout (KO) mice and rats and from repeat-dose studies in rodents administered LRRK2 inhibitors. To support drug development of this therapeutic target, we conducted a study of 26 weeks' duration in 2-month-old wild-type and LRRK2 KO Long-Evans Hooded rats to systematically examine the performance of urinary safety biomarkers and to characterize the nature of the morphological changes in the kidneys by light microscopy and by ultrastructural evaluation. Our data reveal the time course of early-onset albuminuria at 3 and 4 months in LRRK2 KO female and male rats, respectively. The increases in urine albumin were not accompanied by concurrent increases in serum creatinine, blood urea nitrogen, or renal safety biomarkers such as kidney injury molecule 1 or clusterin, although morphological alterations in both glomerular and tubular structure were identified by light and transmission electron microscopy at 8 months of age. Diet optimization with controlled food intake attenuated the progression of albuminuria and associated renal changes.


Subject(s)
Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 , Parkinson Disease , Protein Serine-Threonine Kinases , Animals , Female , Male , Mice , Rats , Albuminuria/pathology , Biomarkers , Kidney/pathology , Leucine , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Mice, Knockout , Mutation , Parkinson Disease/drug therapy , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Rats, Long-Evans
8.
OMICS ; 26(11): 583-585, 2022 11.
Article in English | MEDLINE | ID: mdl-36269614

ABSTRACT

The current pandemic has markedly shifted the focus of the global research and development ecosystem toward infectious agents such as SARS-CoV-2, the causative agent for COVID-19. A case in point is the chronic liver disease associated with hepatitis B virus (HBV) infection that continues to be a leading cause of severe liver disease and death globally. The burden of HBV infection is highest in the World Health Organization designated western Pacific and Africa regions. Tenofovir disoproxil fumarate (TDF) is a nucleoside analogue used in treatment of HBV infection but carries a potential for kidney toxicity. TDF is not metabolized by the cytochrome P450 enzymes and, therefore, its clearance in the proximal tubule of the renal nephron is controlled mostly by membrane transport proteins. Clinical pharmacogenomics of TDF with a focus on drug transporters, discussed in this perspective article, offers a timely example where resource-limited countries and regions of the world with high prevalence of HBV can strengthen the collective efforts to fight both COVID-19 and liver diseases impacting public health. We argue that precision/personalized medicine is invaluable to guide this line of research inquiry. In all, our experience in Ghana tells us that it is important not to forget the burden of chronic diseases while advancing research on infectious diseases such as COVID-19. For the long game with COVID-19, we need to address the public health burden of infectious agents and chronic diseases in tandem.


Subject(s)
COVID-19 , Hepatitis B, Chronic , Hepatitis B , Humans , Tenofovir/adverse effects , Hepatitis B virus/genetics , Hepatitis B, Chronic/drug therapy , Pharmacogenetics , Ecosystem , Antiviral Agents/adverse effects , DNA, Viral/therapeutic use , SARS-CoV-2 , Hepatitis B/complications , Hepatitis B/genetics , Kidney , Ghana
9.
Cancers (Basel) ; 14(17)2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36077823

ABSTRACT

Cisplatin-based chemo-radiotherapy (CRT) is the standard treatment for advanced cervical cancer (CC) but the response rate is poor (46-72%) and cisplatin is nephrotoxic. Therefore, better treatment of CC is urgently needed. We have directly compared, for the first time, the cytotoxicity of four DDR inhibitors (rucaparib/PARPi, VE-821/ATRi, PF-477736/CHK1i and MK-1775/WEE1i) as single agents, and in combination with cisplatin and radiotherapy (RT) in a panel of CC cells. All inhibitors alone caused concentration-dependent cytotoxicity. Low ATM and DNA-PKcs levels were associated with greater VE-821 cytotoxicity. Cisplatin induced ATR, CHK1 and WEE1 activity in all of the cell lines. Cisplatin only activated PARP in S-phase cells, but RT activated PARP in the entire population. Rucaparib was the most potent radiosensitiser and VE-821 was the most potent chemosensitiser. VE-821, PF-47736 and MK-1775 attenuated cisplatin-induced S-phase arrest but tended to increase G2 phase accumulation. In mice, cisplatin-induced acute kidney injury was associated with oxidative stress and PARP activation and was prevented by rucaparib. Therefore, while all inhibitors investigated may increase the efficacy of CRT, the greatest clinical potential of rucaparib may be in limiting kidney damage, which is dose-limiting.

10.
Biomolecules ; 12(8)2022 08 05.
Article in English | MEDLINE | ID: mdl-36008971

ABSTRACT

Cisplatin is an FDA approved anti-cancer drug that is widely used for the treatment of a variety of solid tumors. However, the severe adverse effects of cisplatin, particularly kidney toxicity, restrict its clinical and medication applications. The major mechanisms of cisplatin-induced renal toxicity involve oxidative stress, inflammation, and renal fibrosis, which are covered in this short review. In particular, we review the underlying mechanisms of cisplatin kidney injury in the context of NAD+-dependent redox enzymes including mitochondrial complex I, NAD kinase, CD38, sirtuins, poly-ADP ribosylase polymerase, and nicotinamide nucleotide transhydrogenase (NNT) and their potential contributing roles in the amelioration of cisplatin-induced kidney injury conferred by natural products derived from plants. We also cover general procedures used to create animal models of cisplatin-induced kidney injury involving mice and rats. We highlight the fact that more studies will be needed to dissect the role of each NAD+-dependent redox enzyme and its involvement in modulating cisplatin-induced kidney injury, in conjunction with intensive research in NAD+ redox biology and the protective effects of natural products against cisplatin-induced kidney injury.


Subject(s)
Antineoplastic Agents , Biological Products , Animals , Antineoplastic Agents/adverse effects , Antineoplastic Agents/metabolism , Biological Products/metabolism , Biological Products/pharmacology , Cisplatin/adverse effects , Kidney/metabolism , Mice , NAD/metabolism , Oxidative Stress , Poly(ADP-ribose) Polymerases/metabolism , Rats
11.
Adv Cancer Res ; 155: 77-129, 2022.
Article in English | MEDLINE | ID: mdl-35779877

ABSTRACT

It has been estimated that nearly 80% of anticancer drug-treated patients receive potentially nephrotoxic drugs, while the kidneys play a central role in the excretion of anticancer drugs. Nephrotoxicity has long been a serious complication that hampers the effectiveness of cancer treatment and continues to influence both mortality and length of hospitalization among cancer patients exposed to either conventional cytotoxic agents or targeted therapies. Kidney injury arising from anticancer drugs tends to be associated with preexisting comorbidities, advanced cancer stage, and the use of concomitant non-chemotherapeutic nephrotoxic drugs. Despite the prevalence and impact of kidney injury on therapeutic outcomes, the field is sorely lacking in an understanding of the mechanisms driving cancer drug-induced renal pathophysiology, resulting in quite limited and largely ineffective management of anticancer drug-induced nephrotoxicity. Consequently, there is a clear imperative for understanding the basis for nephrotoxic manifestations of anticancer agents for the successful management of kidney injury by these drugs. This article provides an overview of current preclinical research on the nephrotoxicity of cancer treatments and highlights prospective approaches to mitigate cancer therapy-related renal toxicity.


Subject(s)
Antineoplastic Agents , Drug-Related Side Effects and Adverse Reactions , Neoplasms , Antineoplastic Agents/adverse effects , Humans , Kidney , Neoplasms/drug therapy , Prospective Studies
12.
Ecotoxicol Environ Saf ; 242: 113842, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35810668

ABSTRACT

Because of essential role in homeostasis of the body fluid and excretion of wastes, kidney damage can lead to severe impacts on health and survival of humans. For most chemicals, nephrotoxic potentials and associated mechanisms are unclear. Hence, fast and sensitive screening measures for nephrotoxic chemicals are required. In this study, the utility of zebrafish (Danio rerio) was evaluated for the investigation of chemical-induced kidney toxicity and associated modes of toxicity, based on the literature review. Zebrafish has a well-understood biology, and many overlapping physiological characteristics with mammals. One such characteristic is its kidneys, of which histology and functions are similar to those of mammals, although unique differences of zebrafish kidneys, such as kidney marrow, should be noted. Moreover, the zebrafish kidney is simpler in structure and easy to observe. For these advantages, zebrafish has been increasingly used as an experimental model for screening nephrotoxicity of chemicals and for understanding related mechanisms. Multiple endpoints of zebrafish model, from functional level, i.e., glomerular filtration, to transcriptional changes of key genes, have been assessed to identify chemical-induced kidney toxicities, and to elucidate underlying mechanisms. The most frequently studied mechanisms of chemical-induced nephrotoxicity in zebrafish include oxidative stress, inflammation, DNA damage, apoptosis, fibrosis, and cell death. To date, several pharmaceuticals, oxidizing agents, natural products, biocides, alcohols, and consumer chemicals have been demonstrated to exert different types of kidney toxicities in zebrafish. The present review shows that zebrafish model can be efficiently employed for quick and reliable assessment of kidney damage potentials of chemicals, and related toxic mechanisms. The toxicological information obtained from this model can be utilized for identification of nephrotoxic chemicals and hence for protection of public health.


Subject(s)
Water Pollutants, Chemical , Zebrafish , Animals , Embryo, Nonmammalian/metabolism , Humans , Mammals/metabolism , Oxidative Stress , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/toxicity , Zebrafish/metabolism , Zebrafish Proteins/metabolism
13.
Life (Basel) ; 12(6)2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35743930

ABSTRACT

Thioacetamide (TAA) intoxication produces a reproducible standard animal model of induced liver and kidney injuries where free radicals are produced by phase I oxidation reactions, which eventually leads to liver and kidney failure. Wheat germ oil (WGO) is a unique food supplement with concentrated nutrient efficiency and has remarkable antioxidant functions. Olmutinib, on the other hand, is a chemotherapy drug considered safe for kidneys and the liver. Therefore, in this study, WGO and olmutinib were investigated for their effect on TAA-induced liver and kidney damage. Inflammatory markers; interleukin-1 beta (IL-1ß); IL-6; and the levels of enzymatic markers ALT (Alanine aminotransferase), AST (Aspartate aminotransferase), LDH (Lactate dehydrogenase), and CK (creatinine kinase) in serum for liver and kidney were analyzed and evaluated along with histopathological changes in the tissue. Thirty male mice 4-6 weeks of age were grouped into five groups of six animals: the control group (saline) and the other groups (Groups II to V), which were given thioacetamide for two weeks. In addition, Group II continued with TAA; Group III was given olmutinib (30 mg/kg), Group IV was given the wheat germ oil (WGO) (1400 mg/kg), and Group V was given (olmutinib (30 mg/kg) + WGO (1400 mg/kg)) for five days. The results suggested that olmutinib treatment potentiated TAA-induced liver and kidney injury. At the same time, WGO efficiently alleviated TAA and TAA-olmutinib toxicity in Groups IV and V. The histological studies also showed reduced damage with WGO in the animal model. Hence, it was concluded that WGO could significantly reduce liver and kidney damage caused by TAA and olmutinib in mice.

14.
Article in English | MEDLINE | ID: mdl-35418292

ABSTRACT

BACKGROUND: We report the case of a 93-year-old patient with normal left ventricular function and severe mitral annulus calcification, with mild mitral steno-insufficiency. CASE PRESENTATION: She had developed creeping drugs-induced renal toxicity that is generally totally overlooked, due mainly to statins, a proton pump inhibitor, and aspirin. The Na and fluid retention, along with hypertension that ensued, although not severe, caused acute heart failure (sub-pulmonary edema) by worsening the mitral insufficiency. This occurred due to a less efficient calcific mitral annulus contraction during systole and an increasing mitral transvalvular gradient, as the transvalvular mitral gradient has an exponential relation to flow. After the suspension of the nephrotoxic drugs and starting intravenous furosemide, she rapidly improved. At 6 months follow-up, she is stable, in an NYHA 1-2 functional class, despite the only partial recovery of the renal function. CONCLUSION: Progressive renal failure can functionally worsen even minimal mitral valvulopathy. Drug-induced nephrotoxicity can always be suspected in case of renal failure of unknown etiology. The suspension of the culprit drugs can improve renal function and dramatically improve the clinical symptoms even in a nonagenarian.


Subject(s)
Cardio-Renal Syndrome , Heart Failure , Mitral Valve Insufficiency , Aged, 80 and over , Cardio-Renal Syndrome/chemically induced , Cardio-Renal Syndrome/complications , Cardio-Renal Syndrome/diagnosis , Female , Furosemide , Heart Failure/chemically induced , Heart Failure/diagnosis , Humans , Mitral Valve/diagnostic imaging , Mitral Valve Insufficiency/etiology
15.
Biomolecules ; 12(3)2022 02 24.
Article in English | MEDLINE | ID: mdl-35327552

ABSTRACT

More than one and a half centuries ago, adverse human health effects were reported after use of a cadmium-containing silver polishing agent. Long-term cadmium exposure gives rise to kidney or bone disease, reproductive toxicity and cancer in animals and humans. At present, high human exposures to cadmium occur in small-scale mining, underlining the need for preventive measures. This is particularly urgent in view of the growing demand for minerals and metals in global climate change mitigation. This review deals with a specific part of cadmium toxicology that is important for understanding when toxic effects appear and, thus, is crucial for risk assessment. The discovery of the low-molecular-weight protein metallothionein (MT) in 1957 was an important milestone because, when this protein binds cadmium, it modifies cellular cadmium toxicity. The present authors contributed evidence in the 1970s concerning cadmium binding to MT and synthesis of the protein in tissues. We showed that binding of cadmium to metallothionein in tissues prevented some toxic effects, but that metallothionein can increase the transport of cadmium to the kidneys. Special studies showed the importance of the Cd/Zn ratio in MT for expression of toxicity in the kidneys. We also developed models of cadmium toxicokinetics based on our MT-related findings. This model combined with estimates of tissue levels giving rise to toxicity, made it possible to calculate expected risks in relation to exposure. Other scientists developed these models further and international organizations have successfully used these amended models in recent publications. Our contributions in recent decades included studies in humans of MT-related biomarkers showing the importance of MT gene expression in lymphocytes and MT autoantibodies for risks of Cd-related adverse effects in cadmium-exposed population groups. In a study of the impact of zinc status on the risk of kidney dysfunction in a cadmium-exposed group, the risks were low when zinc status was good and high when zinc status was poor. The present review summarizes this evidence in a risk assessment context and calls for its application in order to improve preventive measures against adverse effects of cadmium exposures in humans and animals.


Subject(s)
Cadmium , Metallothionein , Animals , Cadmium/metabolism , Kidney/metabolism , Liver/metabolism , Metals/metabolism , Zinc/metabolism
16.
EXCLI J ; 21: 213-235, 2022.
Article in English | MEDLINE | ID: mdl-35221841

ABSTRACT

Mitochondrial uncouplers (mUncouplers) are known to exhibit a variety of toxic effects in animals. Here we report a safety profile of an mUncoupler, OPC-163493, recently synthesized at Otsuka Pharmaceutical Co, Ltd, and its development as a therapeutic agent for treating diabetes. To understand the acute and subchronic toxicity of OPC-163493, single and repeated oral dose studies in rats, dogs, and monkeys were performed. In the rat studies, rigor mortis and increased body temperatures were observed in the high dose group. Focal necrosis, fatty change, and granular eosinophilic cytoplasm of the hepatocytes were also observed in the high dose group. In the dog studies, gastrointestinal manifestations were observed with decreased body weight and decreased food consumption in the high dose group. Necrotizing arteritis was observed in multiple organs as well as meningitis with hemorrhage in the brain. In the monkey studies, vomiting, decreased food consumption, and decreased locomotor activity were observed in the high dose group. Degeneration of the proximal convoluted tubules and the straight tubular epithelium, regeneration of the proximal tubular epithelium, and degeneration of the collecting tubular epithelium were observed. The target organs of OPC-163493 were liver, blood vessels, and kidney in rats, dogs, and monkeys, respectively. In rats, dogs, and monkeys, safety ratios were 100:1, 13:1, and 20:1, respectively, in terms of total exposure (AUC24h). These safety ratios showed clear separation between exposure to OPC-163493 in animals at NOAEL and the exposure at the effective dose in ZDF rats. This information should contribute to the drug development of new and effective mUncoupler candidates.

17.
Methods Mol Biol ; 2434: 371-384, 2022.
Article in English | MEDLINE | ID: mdl-35213032

ABSTRACT

Antisense oligonucleotides (ASO) therapeutics hold great promise for the treatment of numerous diseases, and several ASO drugs have now reached market approval, confirming the potential of this approach. However, some candidates have also failed, due to limited biodistribution/uptake and poor safety profile. In pursuit of better delivery and higher cellular uptake, ASO are being optimized, and new chemistries are developed or conjugated with various ligands. While these developments may lead to candidates with higher potency, it is important to keep the safety aspects in sight and screen for potential toxicity in early phases of preclinical development to avoid subsequent failure in clinical development. Our understanding of ASO-mediated toxicity keeps improving with increased preclinical and clinical data available. In this chapter, we will focus on the assessment of renal toxicity in mice and describe methods to measure the levels of general urinary biomarkers as well as acute kidney injury biomarkers following ASO treatment.


Subject(s)
Acute Kidney Injury , Oligonucleotides , Acute Kidney Injury/chemically induced , Animals , Biomarkers , Mice , Oligonucleotides, Antisense/therapeutic use , Tissue Distribution
18.
Toxicol Appl Pharmacol ; 423: 115578, 2021 07 15.
Article in English | MEDLINE | ID: mdl-34004237

ABSTRACT

Sotorasib is a first-in class KRASG12C covalent inhibitor in clinical development for the treatment of tumors with the KRAS p.G12C mutation. In the nonclinical toxicology studies of sotorasib, the kidney was identified as a target organ of toxicity in the rat but not the dog. Renal toxicity was characterized by degeneration and necrosis of the proximal tubular epithelium localized to the outer stripe of the outer medulla (OSOM), which suggested that renal metabolism was involved. Here, we describe an in vivo mechanistic rat study designed to investigate the time course of the renal toxicity and sotorasib metabolites. Renal toxicity was dose- and time-dependent, restricted to the OSOM, and the morphologic features progressed from vacuolation and necrosis to regeneration of tubular epithelium. The renal toxicity correlated with increases in renal biomarkers of tubular injury. Using mass spectrometry and matrix-assisted laser desorption/ionization, a strong temporal and spatial association between renal toxicity and mercapturate pathway metabolites was observed. The rat is reported to be particularly susceptible to the formation of nephrotoxic metabolites via this pathway. Taken together, the data presented here and the literature support the hypothesis that sotorasib-related renal toxicity is mediated by a toxic metabolite derived from the mercapturate and ß-lyase pathway. Our understanding of the etiology of the rat specific renal toxicity informs the translational risk assessment for patients.


Subject(s)
Acetylcysteine/metabolism , Acute Kidney Injury/metabolism , Piperazines/metabolism , Piperazines/toxicity , Proto-Oncogene Proteins p21(ras)/antagonists & inhibitors , Pyridines/metabolism , Pyridines/toxicity , Pyrimidines/metabolism , Pyrimidines/toxicity , Signal Transduction/drug effects , Acute Kidney Injury/chemically induced , Acute Kidney Injury/pathology , Animals , Dose-Response Relationship, Drug , Male , Rats , Rats, Sprague-Dawley , Signal Transduction/physiology
19.
Toxicol Lett ; 344: 26-33, 2021 Jun 15.
Article in English | MEDLINE | ID: mdl-33689780

ABSTRACT

Cylindrospermopsin (CYN) has been involved in cases of poisoning in humans following ingestion. Studies have demonstrated that the kidney is the most affected organ. CYN exposure leads to low-molecular-weight proteinuria and increased excretions of the tubular enzymes in mice, suggesting the damage caused by CYN is mainly tubular. However, the mechanism involved in CYN nephrotoxicity remains unknown. Thus, in order to evaluate the effects of CYN exposure (0.1, 0.5 and 1.0 µg/mL) on tubular renal cells LLC-PK1 distinct mechanisms were analyzed by assessing cell death using flow cytometry, albumin uptake by fluorescence analysis, Na+/K+-ATPase activity by a colorimetric method, RT-qPCR of genes related to tubular transport and function as well as internalization of CYN by ELISA. In this study, CYN was found to induce necrosis in all concentrations. CYN also decreased albumin uptake as well as downregulated megalin and dab2 expression, both proteins involved in albumin endocytosis process. Moreover, CYN appears to be internalized by renal tubular cells through a receptor-mediated endocytosis. Finally, the present study demonstrates that CYN is responsible for disrupting tubular cell transport and function in LLC-PK1 cells.


Subject(s)
Alkaloids/pharmacology , Epithelial Cells/drug effects , Kidney Tubules, Proximal/cytology , Albumins/metabolism , Animals , Biological Transport/drug effects , Cell Death/drug effects , Cell Line , Cyanobacteria Toxins , Gene Expression Regulation, Enzymologic/drug effects , Sodium/metabolism , Sodium-Potassium-Exchanging ATPase/genetics , Sodium-Potassium-Exchanging ATPase/metabolism , Swine
20.
Biomed Chromatogr ; 35(6): e5064, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33450093

ABSTRACT

Fructus Psoraleae (FP) is commonly used in the treatment of vitiligo, osteoporosis, and other diseases in clinic. As a result, the toxicity caused by FP is frequently encountered in clinical practice; however, the underlying toxicity mechanism remains unclear. The purpose of this study was to investigate the toxic effect of the ethanol extract of FP (EEFP) in rats and to explore the underlying toxic mechanisms using a metabolomics approach. The toxicity was evaluated by hematological indicators, biochemical indicators, and histological changes. In addition, a serum metabolomic method based on ultra-performance liquid chromatography coupled with quadrupole time-of-flight MS (UPLC-Q-TOF-MS) had been established to investigate the hepatorenal toxicity of FP. Multivariate statistical approaches, such as partial least squares discriminant analysis and orthogonal partial least squares discriminant analysis, were built to evaluate the toxic effects of FP and find potential biomarkers and metabolic pathways. Ten endogenous metabolites had been identified and the related metabolic pathways were involved in phospholipid metabolism, amino acid metabolism, purine metabolism, and antioxidant system activities. The results showed that long-term exposure to high-dose EEFP may cause hepatorenal toxicity in rats. Therefore, serum metabolomics can improve the diagnostic efficiency of FP toxicity and make it more accurate and comprehensive.


Subject(s)
Chromatography, High Pressure Liquid/methods , Kidney/drug effects , Liver/drug effects , Plant Extracts/toxicity , Psoralea/chemistry , Animals , Biomarkers/blood , Kidney/pathology , Liver/pathology , Male , Mass Spectrometry , Metabolome/drug effects , Rats , Rats, Sprague-Dawley , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...