Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 91
Filter
1.
Int J Cancer ; 2024 Sep 23.
Article in English | MEDLINE | ID: mdl-39308420

ABSTRACT

Alterations within the tryptophan-kynurenine metabolic pathway have been linked to the etiology of colorectal cancer (CRC), but the relevance of this pathway for prognostic outcomes in CRC patients needs further elucidation. Therefore, we investigated associations between circulating concentrations of tryptophan-kynurenine pathway metabolites and all-cause mortality among CRC patients. This study utilizes data from 2102 stage I-III CRC patients participating in six prospective cohorts involved in the international FOCUS Consortium. Preoperative circulating concentrations of tryptophan, kynurenine, kynurenic acid (KA), 3-hydroxykynurenine (HK), xanthurenic acid (XA), 3-hydroxyanthranilic acid (HAA), anthranilic acid (AA), picolinic acid (PA), and quinolinic acid (QA) were measured by liquid chromatography-tandem mass spectrometry. Using Cox proportional hazards regression, we examined associations of above-mentioned metabolites with all-cause mortality, adjusted for potential confounders. During a median follow-up of 3.2 years (interquartile range: 2.2-4.9), 290 patients (13.8%) deceased. Higher blood concentrations of tryptophan, XA, and PA were associated with a lower risk of all-cause mortality (per doubling in concentrations: tryptophan: HR = 0.56; 95%CI:0.41,0.76, XA: HR = 0.74; 95%CI:0.64,0.85, PA: HR = 0.76; 95%CI:0.64,0.92), while higher concentrations of HK and QA were associated with an increased risk of death (per doubling in concentrations: HK: HR = 1.80; 95%CI:1.47,2.21, QA: HR = 1.31; 95%CI:1.05,1.63). A higher kynurenine-to-tryptophan ratio, a marker of cell-mediated immune activation, was associated with an increased risk of death (per doubling: HR = 2.07; 95%CI:1.52,2.83). In conclusion, tryptophan-kynurenine pathway metabolites may be prognostic markers of survival in CRC patients.

2.
Brain Behav Immun ; 122: 422-432, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39151650

ABSTRACT

BACKGROUND: Schizophrenia and bipolar disorder frequently face significant delay in diagnosis, leading to being missed or misdiagnosed in early stages. Both disorders have also been associated with trait and state immune abnormalities. Recent machine learning-based studies have shown encouraging results using diagnostic biomarkers in predictive models, but few have focused on immune-based markers. Our main objective was to develop supervised machine learning models to predict diagnosis and illness state in schizophrenia and bipolar disorder using only a panel of peripheral kynurenine metabolites and cytokines. METHODS: The cross-sectional I-GIVE cohort included hospitalized acute bipolar patients (n = 205), stable bipolar outpatients (n = 116), hospitalized acute schizophrenia patients (n = 111), stable schizophrenia outpatients (n = 75) and healthy controls (n = 185). Serum kynurenine metabolites, namely tryptophan (TRP), kynurenine (KYN), kynurenic acid (KA), quinaldic acid (QUINA), xanthurenic acid (XA), quinolinic acid (QUINO) and picolinic acid (PICO) were quantified using liquid chromatography-tandem mass spectrometry (LC-MS/MS), while V-plex Human Cytokine Assays were used to measure cytokines (interleukin-6 (IL-6), IL-8, IL-17, IL-12/IL23-P40, tumor necrosis factor-alpha (TNF-ɑ), interferon-gamma (IFN-γ)). Supervised machine learning models were performed using JMP Pro 17.0.0. We compared a primary analysis using nested cross-validation to a split set as sensitivity analysis. Post-hoc, we re-ran the models using only the significant features to obtain the key markers. RESULTS: The models yielded a good Area Under the Curve (AUC) (0.804, Positive Prediction Value (PPV) = 86.95; Negative Prediction Value (NPV) = 54.61) for distinguishing all patients from controls. This implies that a positive test is highly accurate in identifying the patients, but a negative test is inconclusive. Both schizophrenia patients and bipolar patients could each be separated from controls with a good accuracy (SCZ AUC 0.824; BD AUC 0.802). Overall, increased levels of IL-6, TNF-ɑ and PICO and decreased levels of IFN-γ and QUINO were predictive for an individual being classified as a patient. Classification of acute versus stable patients reached a fair AUC of 0.713. The differentiation between schizophrenia and bipolar disorder yielded a poor AUC of 0.627. CONCLUSIONS: This study highlights the potential of using immune-based measures to build predictive classification models in schizophrenia and bipolar disorder, with IL-6, TNF-ɑ, IFN-γ, QUINO and PICO as key candidates. While machine learning models successfully distinguished schizophrenia and bipolar disorder from controls, the challenges in differentiating schizophrenic from bipolar patients likely reflect shared immunological pathways by the both disorders and confounding by a larger state-specific effect. Larger multi-centric studies and multi-domain models are needed to enhance reliability and translation into clinic.


Subject(s)
Biomarkers , Bipolar Disorder , Cytokines , Kynurenine , Machine Learning , Schizophrenia , Humans , Schizophrenia/diagnosis , Schizophrenia/blood , Schizophrenia/immunology , Bipolar Disorder/diagnosis , Bipolar Disorder/immunology , Bipolar Disorder/blood , Male , Female , Adult , Cytokines/blood , Kynurenine/blood , Cross-Sectional Studies , Middle Aged , Biomarkers/blood , Supervised Machine Learning , Tryptophan/blood , Tryptophan/metabolism
3.
J Headache Pain ; 25(1): 129, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39107712

ABSTRACT

Migraine, a primary headache disorder whose mechanism remains incompletely understood, appears to involve the activation of the trigeminovascular system (TS) during attacks. Research suggests that inflammatory processes mediated by the immune system may play a role in migraine pathophysiology. Neuroinflammation is often associated with migraine attacks, with cytokines serving as crucial mediators in the process. Elevated levels of pro-inflammatory cytokines, such as interleukin-1 beta (IL-1ß), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α), have been observed in the blood and cerebrospinal fluid of individuals experiencing migraine attacks. These cytokines have the capacity to sensitize pain pathways in the brain, thereby increasing sensitivity to pain stimuli. This phenomenon, known as central sensitization, is believed to contribute to the intensity and persistence of migraine pain. Kynurenines, endogenous mediators of glutamatergic mechanisms, can significantly influence the pathophysiology of primary headache disorders. The kynurenine system is collectively known as the kynurenine pathway (KP), which can act on multiple receptors, such as glutamate receptors, aryl hydrocarbon receptors (AhRs), G protein-coupled receptors 35 (GPR35), and α-7 nicotinic acetylcholine (α7 nACh) receptors. These receptors are also found on various cells of the immune system, so the role of the KP in the pathomechanism of primary headaches may also be mediated through them. In this review, our goal is to show a possible link between the receptors of the KP and immune system in the context of inflammation and migraine. Migraine research in recent years has focused on neuropeptides, such as calcitonin gene-related peptide (CGRP) and pituitary adenylate cyclase-activating polypeptide (PACAP) as potential pathogenic factors and possible therapeutic approaches. These peptides share many similarities in their characteristics and roles. For instance, they exhibit potent vasodilation, occur in both the peripheral and central nervous systems, and play a role in transmitting nociception and neurogenic inflammation. The investigation of potential connections between the aforementioned neuropeptides and the kynurenine pathway could play a significant role in uncovering the pathomechanism of migraine and identifying new drug candidates.


Subject(s)
Kynurenine , Migraine Disorders , Humans , Migraine Disorders/immunology , Migraine Disorders/physiopathology , Migraine Disorders/metabolism , Kynurenine/metabolism , Animals , Neuroimmunomodulation/physiology , Neuroinflammatory Diseases/immunology , Neuroinflammatory Diseases/physiopathology
4.
Pharmaceuticals (Basel) ; 17(8)2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39204088

ABSTRACT

Multiple sclerosis (MS) is a chronic inflammatory autoimmune neurological disease characterized by the recurrent appearance of demyelinating lesions and progressive disability. Currently, there are multiple disease-modifying treatments, however, there is a significant need to develop new therapeutic targets, especially for the progressive forms of the disease. This review article provides an overview of the most recent studies aimed at understanding the inflammatory processes that are activated in response to the accumulation of kynurenine pathway (KP) metabolites, which exacerbate an imbalance between immune system cells (e.g., Th1, Th2, and T reg) and promote the release of pro-inflammatory interleukins that modulate different mechanisms: membrane-receptors function; nuclear factors expression; and cellular signals. Together, these alterations trigger cell death mechanisms in brain cells and promote neuron loss and axon demyelination. This hypothesis could represent a remarkable approach for disease-modifying therapies for MS. Here, we also provide a perspective on the repositioning of some already approved drugs involved in other signaling pathways, which could represent new therapeutic strategies for MS treatment.

5.
Biochem Pharmacol ; 228: 116350, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38852644

ABSTRACT

Impaired activity of the hypothalamic-pituitary axis and reduced blood levels of glucocorticoids (GCs) are signature features of stress-related maladies. Recent evidence suggests a possible role of the tryptophan metabolite kynurenic acid (KYNA) in this context. Here we investigated possible causal relationships in adult male rats, using stress-induced fear discrimination as a translationally relevant behavioral outcome measure. One week following adrenalectomy (ADX) or sham surgery, animals were for 2 h either physically restrained or exposed to a predator odor, which caused a much milder stress response. Extracellular KYNA levels were determined before, during and after stress by in vivo microdialysis in the prefrontal cortex. Separate cohorts underwent a fear discrimination procedure starting immediately after stress termination. Different auditory conditioned stimuli (CS) were either paired with a foot shock (CS+) or non-reinforced (CS-). One week later, fear was assessed by re-exposing the animals to each CS. Separate groups of rats were treated with the KYNA synthesis inhibitor BFF-816 prior to stress initiation to test a causal role of KYNA in fear discrimination. Restraint stress raised extracellular KYNA levels by ∼85 % in ADX rats for several hours, and these animals were unable to discriminate between CS+ and CS-. Both effects were prevented by BFF-816 and were not observed after exposure to predator odor or in sham-operated rats. These findings suggest that a causal connection exists between adrenal function, stress-induced KYNA increases, and behavioral deficits. Pharmacological inhibition of KYNA synthesis may therefore be an attractive, novel option for the treatment of stress-related disorders.


Subject(s)
Adrenalectomy , Fear , Kynurenic Acid , Stress, Psychological , Animals , Male , Kynurenic Acid/metabolism , Fear/physiology , Fear/drug effects , Fear/psychology , Stress, Psychological/metabolism , Stress, Psychological/psychology , Rats , Rats, Sprague-Dawley , Discrimination, Psychological/drug effects , Discrimination, Psychological/physiology , Restraint, Physical , Microdialysis
6.
Int J Cancer ; 155(7): 1172-1190, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38783597

ABSTRACT

Fatigue is prevalent in colorectal cancer (CRC) survivors, impacting their health-related quality of life (HRQoL). Inflammation-induced activation of the kynurenine pathway may play a role in cancer-related fatigue and HRQoL, but evidence is scarce. Therefore, we aimed to investigate longitudinal associations of plasma tryptophan, kynurenines, and ratios with fatigue and HRQoL in CRC survivors up to 12 months post-treatment. Repeated measurements at 6 weeks, 6 months, and 12 months post-treatment were performed in 249 stage I-III CRC survivors. Plasma tryptophan and eight kynurenines were analyzed using liquid chromatography-tandem mass spectrometry (LC/MS-MS). Fatigue and HRQoL outcomes were evaluated using validated questionnaires. Confounder-adjusted linear mixed models were conducted to analyze longitudinal associations, with false discovery rate (FDR) correction. Higher tryptophan (Trp), kynurenic acid (KA), and xanthurenic acid (XA) concentrations, as well as a higher kynurenic acid-to-quinolinic acid ratio (KA/QA), were associated with less fatigue and better functioning, while a higher kynurenine-to-tryptophan ratio (KTR) and 3-hydroxykynurenine ratio (HKr) were associated with more fatigue and worse functioning. Finally, higher KA and XA concentrations and a higher KA/QA ratio were associated with a higher overall HRQoL summary score, while a higher HKr was associated with a lower overall HRQoL summary score. In conclusion, we observed that tryptophan and several kynurenines were longitudinally associated with fatigue and HRQoL in CRC survivors up to 12 months post-treatment. Future research is needed to validate our findings and explore the potential of the kynurenine pathway as intervention target for reducing fatigue and enhancing HRQoL after CRC treatment.


Subject(s)
Cancer Survivors , Colorectal Neoplasms , Fatigue , Kynurenine , Quality of Life , Tryptophan , Humans , Kynurenine/blood , Colorectal Neoplasms/blood , Male , Female , Fatigue/blood , Fatigue/etiology , Middle Aged , Cancer Survivors/statistics & numerical data , Aged , Longitudinal Studies , Tryptophan/blood , Adult , Kynurenic Acid/blood , Tandem Mass Spectrometry , Xanthurenates
7.
Psychoneuroendocrinology ; 163: 106981, 2024 May.
Article in English | MEDLINE | ID: mdl-38335827

ABSTRACT

INTRODUCTION: Colorectal cancer (CRC) survivors often experience neuropsychological symptoms, including anxiety and depression. Mounting evidence suggests a role for the kynurenine pathway in these symptoms due to potential neuroprotective and neurotoxic roles of involved metabolites. However, evidence remains inconclusive and insufficient in cancer survivors. Thus, we aimed to explore longitudinal associations of plasma tryptophan, kynurenines, and their established ratios with anxiety and depression in CRC survivors up to 12 months post-treatment. METHODS: In 249 stage I-III CRC survivors, blood samples were collected at 6 weeks, 6 months, and 12 months post-treatment to analyze plasma concentrations of tryptophan and kynurenines using liquid-chromatography tandem-mass spectrometry (LC/MS-MS). At the same timepoints, anxiety and depression were assessed using the Hospital Anxiety and Depression Scale (HADS). Confounder-adjusted linear mixed models were used to analyze longitudinal associations. Sensitivity analyses with false discovery rate (FDR) correction were conducted to adjust for multiple testing. RESULTS: Higher plasma tryptophan concentrations were associated with lower depression scores (ß as change in depression score per 1 SD increase in the ln-transformed kynurenine concentration: -0.31; 95%CI: -0.56,-0.05), and higher plasma 3-hydroxyanthranilic acid concentrations with lower anxiety scores (-0.26; -0.52,-0.01). A higher 3-hydroxykynurenine ratio (HKr; the ratio of 3-hydroxykynurenine to the sum of kynurenic acid, xanthurenic acid, anthranilic acid, and 3-hydroxyanthranilic acid) was associated with higher depression scores (0.34; 0.04,0.63) and higher total anxiety and depression scores (0.53; 0.02,1.04). Overall associations appeared to be mainly driven by inter-individual associations, which were statistically significant for tryptophan with depression (-0.60; -1.12,-0.09), xanthurenic acid with total anxiety and depression (-1.04; -1.99,-0.10), anxiety (-0.51; -1.01,-0.01), and depression (-0.56; -1.08,-0.05), and kynurenic-acid-to-quinolinic-acid ratio with depression (-0.47; -0.93,-0.01). In sensitivity analyses, associations did not remain statistically significant after FDR adjustment. CONCLUSION: We observed that plasma concentrations of tryptophan, 3-hydroxyanthranilic acid, xanthurenic acid, 3-hydroxykynurenine ratio, and kynurenic-acid-to-quinolinic-acid ratio tended to be longitudinally associated with anxiety and depression in CRC survivors up to 12 months post-treatment. Future studies are warranted to further elucidate the association of plasma kynurenines with anxiety and depression.


Subject(s)
Cancer Survivors , Neoplasms , Humans , Kynurenine/metabolism , Tryptophan/metabolism , 3-Hydroxyanthranilic Acid/metabolism , Depression , Biomarkers , Kynurenic Acid , Anxiety
8.
Mech Ageing Dev ; 217: 111890, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38056721

ABSTRACT

BACKGROUND: The kynurenine pathway (KP) is gaining more attention as a common pathway involved in age-related conditions. However, which changes in the KP occur due to normal ageing is still largely unclear. The aim of this systematic review was to summarize the available evidence for associations of KP metabolites with age. METHODS: We used an broad search strategy and included studies up to October 2023. RESULTS: Out of 8795 hits, 55 studies were eligible for the systematic review. These studies suggest that blood levels of tryptophan decrease with age, while blood and cerebrospinal fluid levels of kynurenine and its ratio with tryptophan increase. Studies investigating associations between cerebrospinal fluid and blood levels of kynurenic acid and quinolinic acid with age reported either positive or non-significant findings. However, there is a large heterogeneity across studies. Additionally, most studies were cross-sectional, and only few studies investigated associations with other downstream kynurenines. CONCLUSIONS: This systematic review suggests that levels of kynurenines are positively associated with age. Larger and prospective studies are needed that also investigate a more comprehensive panel of KP metabolites and changes during the life-course.


Subject(s)
Aging , Kynurenine , Kynurenine/metabolism , Quinolinic Acid/cerebrospinal fluid , Tryptophan/metabolism , Aging/metabolism
9.
Anticancer Res ; 43(12): 5275-5282, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38030171

ABSTRACT

Kynurenine 3-monooxygenase (KMO), a key enzyme within the kynurenine (KYN) pathway of tryptophan (TRY) metabolism, enables the excess production of toxic metabolites (such as 3-hydroxykynurenine, xanthurenic acid, 3-hydroxyanthranilic acid and quinolinic acid), and modulates the balance between these toxic molecules and the protective metabolite, kynurenic acid (KYNA). Despite its importance, KMO suppression as a treatment for cancer has not been fully explored. Instead, researchers have focused on prevention of KYN pathway activity by inhibition of enzymes indoleamine 2,3-dioxygenase (IDO1 and IDO2) or tryptophan 2,3-dioxygenase (TDO, also known as TDO2). However, studies using IDO/TDO inhibitors against cancer have not yet shown that this type of treatment can be successful. We argue that KMO suppression can be an effective strategy for treatment of cancer by 1) decreasing toxic metabolites within the KYN pathway and 2) increasing levels of KYNA, which has important protective and anticancer properties. This strategy may be beneficial in the treatment of aggressive breast cancer, particularly in patients with triple-negative breast cancer. A major challenge to this strategy, when searching for an effective treatment for tumors, especially tumors like breast carcinoma that often metastasize to the brain, is finding KMO inhibitors that adequately cross the blood-brain barrier.


Subject(s)
Kynurenine 3-Monooxygenase , Triple Negative Breast Neoplasms , Humans , Kynurenine 3-Monooxygenase/metabolism , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/metabolism , Tryptophan , Kynurenine/metabolism , Brain/metabolism , Treatment Outcome , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism
10.
Am J Clin Nutr ; 118(5): 865-880, 2023 11.
Article in English | MEDLINE | ID: mdl-37923499

ABSTRACT

BACKGROUND: The tryptophan-kynurenine pathway is increasingly recognized to play a role in health-related quality of life (HRQoL) after cancer. Because tryptophan is an essential amino acid, and vitamins and minerals act as enzymatic cofactors in the tryptophan-kynurenine pathway, a link between diet and kynurenines is plausible. OBJECTIVES: This study aimed to investigate the longitudinal associations of macronutrient and micronutrient intake with metabolites of the kynurenine pathway in colorectal cancer (CRC) survivors up to 12 mo posttreatment. METHODS: In a prospective cohort of stage I-III CRC survivors (n = 247), repeated measurements were performed at 6 wk, 6 mo, and 12 mo posttreatment. Macronutrient and micronutrient intake was measured by 7-d dietary records. Plasma concentrations of tryptophan and kynurenines were analyzed using liquid chromatography tandem mass spectrometry (LC/MS-MS). Longitudinal associations were analyzed using linear mixed models adjusted for sociodemographic, clinical, and lifestyle factors. RESULTS: After adjustment for multiple testing, higher total protein intake was positively associated with kynurenic acid (KA) (ß as standard deviation [SD] change in KA concentration per 1 SD increase in total protein intake: 0.12; 95% CI: 0.04, 0.20), xanthurenic acid (XA) (standardized ß: 0.22; 95% CI: 0.11, 0.33), 3-hydroxyanthranilic acid (HAA) (standardized ß: 0.15; 95% CI: 0.04, 0.27) concentrations, and the kynurenic acid-to-quinolinic acid ratio (KA/QA) (standardized ß: 0.12; 95% CI: 0.02,0.22). In contrast, higher total carbohydrate intake was associated with lower XA concentrations (standardized ß: -0.18; 95% CI: -0.30, -0.07), a lower KA/QA (standardized ß: -0.23; 95% CI: -0.34, -0.13), and a higher kynurenine-to-tryptophan ratio (KTR) (standardized ß: 0.20; 95% CI: 0.10, 0.30). Higher fiber intake was associated with a higher KA/QA (standardized ß: 0.11; 95% CI: 0.02, 0.21) and a lower KTR (standardized ß: -0.12; 95% CI: -0.20, -0.03). Higher total fat intake was also associated with higher tryptophan (Trp) concentrations (standardized ß: 0.18; 95% CI: 0.06, 0.30) and a lower KTR (standardized ß: -0.13; 95% CI: -0.22, -0.03). For micronutrients, positive associations were observed for zinc with XA (standardized ß: 0.13; 95% CI: 0.04, 0.21) and 3-hydroxykynurenine (HK) (standardized ß: 0.12; 95% CI: 0.03, 0.20) concentrations and for magnesium with KA/QA (standardized ß: 0.24; 95% CI: 0.13, 0.36). CONCLUSIONS: Our findings show that intake of several macronutrients and micronutrients is associated with some metabolites of the kynurenine pathway in CRC survivors up to 12 mo posttreatment. These results may be relevant for enhancing HRQoL after cancer through potential diet-induced changes in kynurenines. Further studies are necessary to confirm our findings.


Subject(s)
Kynurenine , Neoplasms , Humans , Tryptophan , Kynurenic Acid , Prospective Studies , Quality of Life , Eating , Nutrients , Survivors , Micronutrients
11.
Pharmaceuticals (Basel) ; 16(10)2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37895892

ABSTRACT

The kynurenine pathway (KP) and the endocannabinoid system (ECS) are known to be deregulated in depression and obesity; however, it has been recognized that acute physical exercise has an important modulating role inducing changes in the mobilization of their respective metabolites-endocannabinoids (eCBs) and kynurenines (KYNs)-which overlap at some points, acting as important antidepressant, anti-nociceptive, anti-inflammatory, and antioxidant biomarkers. Therefore, the aim of this review is to analyze and discuss some recently performed studies to investigate the potential interactions between both systems, particularly those related to exercise-derived endocannabinoidome and kynurenine mechanisms, and to elucidate how prescription of physical exercise could represent a new approach for the clinical management of these two conditions.

12.
J Neurol Sci ; 454: 120819, 2023 11 15.
Article in English | MEDLINE | ID: mdl-37852105

ABSTRACT

BACKGROUND: The kynurenine pathway is the main metabolic pathway of tryptophan degradation and has been associated with stroke and impaired cognitive functioning, but studies on its role in post-stroke cognitive impairment (PSCI) are scarce. We aimed to investigate associations between metabolites of the kynurenine pathway at baseline and post-stroke cognitive functioning over time. METHODS: Baseline plasma kynurenines were quantified in 198 stroke patients aged 65.4 ± 10.8 years, 138 (69.7%) men, who were followed up over a period of three years after stroke. Baseline and longitudinal associations of kynurenines with PSCI and cognitive domain scores were investigated using linear mixed models, adjusted for several confounders. RESULTS: No evidence of associations between kynurenines and odds of PSCI were found. However, considering individual cognitive domains, higher plasma levels of anthranilic acid (AA) were associated with better episodic memory at baseline (ß per SD 0.16 [0.05, 0.28]). Additionally, a linear-quadratic association was found for the kynurenic acid/ quinolinic acid ratio (KA/QA), a neuroprotective index, with episodic memory (Wald χ2 = 8.27, p = .016). Higher levels of KA were associated with better processing speed in women only (pinteraction = .008; ß per SD 0.15 [95% CI 0.02, 0.27]). These associations did not change over time. CONCLUSIONS: Higher levels of KA, AA and KA/QA were associated with better scores on some cognitive domains at baseline. These associations did not change over time. Given the exploratory nature and heterogeneity of findings, these results should be interpreted with caution, and verified in other prospective studies.


Subject(s)
Kynurenine , Stroke , Male , Humans , Female , Kynurenine/metabolism , Prospective Studies , Biomarkers , Stroke/complications , Kynurenic Acid , Cognition
13.
Brain Behav Immun ; 111: 312-319, 2023 07.
Article in English | MEDLINE | ID: mdl-37149106

ABSTRACT

INTRODUCTION: Altered levels of kynurenines in blood and cerebrospinal fluid (CSF) have been reported in Alzheimer's disease (AD). However, it is still largely unknown whether peripheral kynurenine concentrations resemble those found in CSF and how they relate to AD pathology. We therefore studied correlations between kynurenines in plasma and CSF and their associations with CSF amyloid-beta (Aß1-42) and tau levels in patients from the memory clinic spanning the whole cognitive spectrum. METHODS: The Biobank Alzheimer Center Limburg study is a prospective cohort study of consecutive patients referred to the memory clinic of the Alzheimer Center Limburg. Plasma and CSF concentrations of tryptophan (TRP), eight kynurenines and neopterin from 138 patients were determined by means of LC-MS/MS. Additionally, CSF Aß1-42, total-tau (t-tau) and phosphorylated tau (p-tau) concentrations were determined using commercially available single-parameter ELISA methods. Partial correlations were used to analyze cross-sectional associations between kynurenines in plasma and CSF and their relation to AD related CSF-biomarkers adjusted for age, sex, educational level, and kidney function. RESULTS: Moderate to strong correlations were observed between plasma and CSF levels for quinolinic acid (QA; r = 0.63), TRP (r = 0.47), anthranilic acid (r = 0.59), picolinic acid (r = 0.55), and the kynurenine (KYN)/TRP ratio (KTR; r = 0.55; all p < 0.0001), while other kynurenines correlated only weakly with their corresponding CSF values. No correlations were found between plasma and CSF levels of KA/QA. Several kynurenines were also weakly correlated with Aß1-42, t-tau or p-tau. Plasma levels of KA/QA were negatively correlated with Aß1-42 (r = -0.21, p < 0.05). Plasma levels of TRP were negatively correlated with t-tau (r = -0.19) and levels of KYN with p-tau (r = -0.18; both p < 0.05). CSF levels of KYN (r = 0.20, p < 0.05), KA (r = 0.23, p < 0.01), and KTR (r = 0.18, p < 0.05) were positively correlated with Aß1-42. Finally, TRP and KYN were negatively (r = -0.22 and r = -0.18, respectively), and neopterin positively (r = 0.19) correlated with p-tau (all p < 0.05). CONCLUSIONS: Plasma concentrations of TRP, KP metabolites, KTR, and neopterin all significantly correlated positively with their corresponding CSF concentrations, but many correlations were weak. Additionally, our results suggest a relation between higher kynurenine levels and lower AD pathology load. These results need verification in future studies and require more research into (shared) underlying mechanisms.


Subject(s)
Alzheimer Disease , Kynurenine , Humans , Kynurenine/metabolism , Alzheimer Disease/metabolism , Chromatography, Liquid , Neopterin , Cross-Sectional Studies , Prospective Studies , Tandem Mass Spectrometry , Tryptophan , tau Proteins/cerebrospinal fluid , Amyloid beta-Peptides/cerebrospinal fluid , Biomarkers
14.
PNAS Nexus ; 2(3): pgad036, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36896128

ABSTRACT

The environmental light/dark cycle has left its mark on the body's physiological functions to condition not only our inner biology, but also the interaction with external cues. In this scenario, the circadian regulation of the immune response has emerged as a critical factor in defining the host-pathogen interaction and the identification of the underlying circuitry represents a prerequisite for the development of circadian-based therapeutic strategies. The possibility to track down the circadian regulation of the immune response to a metabolic pathway would represent a unique opportunity in this direction. Herein, we show that the metabolism of the essential amino acid tryptophan, involved in the regulation of fundamental processes in mammals, is regulated in a circadian manner in both murine and human cells and in mouse tissues. By resorting to a murine model of pulmonary infection with the opportunistic fungus Aspergillus fumigatus, we showed that the circadian oscillation in the lung of the tryptophan-degrading enzyme indoleamine 2,3-dioxygenase (IDO)1, generating the immunoregulatory kynurenine, resulted in diurnal changes in the immune response and the outcome of fungal infection. In addition, the circadian regulation of IDO1 drives such diurnal changes in a pre-clinical model of cystic fibrosis (CF), an autosomal recessive disease characterized by progressive lung function decline and recurrent infections, thus acquiring considerable clinical relevance. Our results demonstrate that the circadian rhythm at the intersection between metabolism and immune response underlies the diurnal changes in host-fungal interaction, thus paving the way for a circadian-based antimicrobial therapy.

15.
Biomolecules ; 13(2)2023 02 18.
Article in English | MEDLINE | ID: mdl-36830760

ABSTRACT

Tryptophan is an essential amino acid and a precursor of a number of physiologically important metabolites, including serotonin, melatonin, tryptamine, and kynurenines. We assessed tryptophan, kynurenines, and vitamin B2 and B6, as well as biomarkers of liver function and inflammation, in a group of 158 female omnivores and vegetarians aged 18-40 years. The majority of women were omnivores, and 22% were vegetarians. Vegetarians had 25% lower serum ALT, significantly higher pyridoxal concentrations, and significantly lower plasma concentrations of most kynurenines, varying from 8% lower concentrations of median plasma kynurenine to 42% lower concentrations of plasma xanthurenic acid, compared to omnivores. No significant differences were observed in vitamin B2 status or in inflammation markers, C-reactive protein and neopterin between the groups. Vegetarians had lower levels of several plasma kynurenines compared to omnivores. The reason for this is unknown; however, lower ALT concentrations, suggesting a better liver status, and a more favourable vitamin B6 status might be contributing factors.


Subject(s)
Kynurenine , Tryptophan , Humans , Female , Diet, Vegetarian , Riboflavin , Inflammation , Biomarkers
16.
BMC Nutr ; 9(1): 10, 2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36631895

ABSTRACT

BACKGROUND: Epidemiological studies often investigate amino acids and their metabolites as biomarkers, but do not always consistently use fasting or non-fasting blood samples, or may lack information on the prandial status of the study participants. Since little information is available on the effects of the prandial status on many biomarkers, and since blood is typically sampled early in the day with participants in a fasting state or after having consumed a light meal in many trials, the main purpose of this study was to investigate the short-term effects of a light breakfast on serum concentrations of amino acids and related metabolites. METHODS: Blood was collected from sixty-three healthy adults (36 women) in the fasting state and at set times for 120 min after intake of a light breakfast with low protein content (14 g protein, 2218 kJ). Relative changes in serum biomarker concentrations from fasting to postprandial serum concentrations were tested using T test. RESULTS: The serum concentrations of 13 of the 20 measured amino acids were significantly changed 60 min following breakfast intake, with the most marked effects seen as increases in alanine (34%) and proline (45%) concentrations. The response did not reflect the amino acid composition of the breakfast. The concentrations of seven kynurenine metabolites were significantly decreased after breakfast. CONCLUSION: Consumption of a light breakfast affected serum concentrations of several amino acids and related metabolites, underlining the importance of having information regarding the participants' prandial state at the time of blood sampling in studies including these biomarkers. TRIAL REGISTRATION: This trial was registered at clinicaltrials.gov as NCT02350595 (registered January 2015).

17.
Nutrients ; 15(2)2023 Jan 13.
Article in English | MEDLINE | ID: mdl-36678277

ABSTRACT

Background: The incidence of eating disorders (EDs), serious mental and physical conditions characterized by a disturbance in eating or eating-related behaviors, has increased steadily. The present study aims to develop insights into the pathophysiology of EDs, spanning over biochemical, epigenetic, psychopathological, and clinical data. In particular, we focused our attention on the relationship between (i) DNA methylation profiles at promoter-associated CpG sites of the SCL6A4 gene, (ii) serum kynurenine/tryptophan levels and ratio (Kyn/Trp), and (iii) psychopathological traits in a cohort of ED patients. Among these, 45 patients were affected by restricting anorexia nervosa (AN0), 21 by purging AN (AN1), 21 by bulimia (BN), 31 by binge eating disorders (BED), 23 by unspecified feeding or eating disorders (UFED), and finally 14 by other specified eating disorders (OSFED) were compared to 34 healthy controls (CTRs). Results: Kyn level was higher in BED, UFED, and OSFED compared to CTRs (p ≤ 0.001). On the other hand, AN0, AN1, and BN patients showed significatively lower Kyn levels compared to the other three ED groups but were closed to CTRs. Trp was significantly higher in AN0, AN1, and BN in comparison to other ED groups. Moreover, AN1 and BN showed more relevant Trp levels than CTRs (p <0.001). BED patients showed a lower Trp as compared with CTRs (p ≤ 0.001). In addition, Kyn/Trp ratio was lower in the AN1 subtype but higher in BED, UFED, and OSFED patients than in CTRs (p ≤ 0.001). SCL6A4 DNA methylation level at CpG5 was lower in AN0 compared to BED (p = 0.021), and the CpG6 methylation was also significantly lower in AN0 in comparison to CTRs (p = 0.025). The mean methylation levels of the six CpGs analyzed were lower only in the AN0 subgroup compared to CTRs (p = 0.008). Relevant psychological trait EDI-3 subscales were correlated with biochemical and epigenetic data. Conclusions: These findings underline the complexity of psychological and pathophysiological components of EDs.


Subject(s)
Anorexia Nervosa , Binge-Eating Disorder , Bulimia Nervosa , Feeding and Eating Disorders , Humans , Tryptophan , Kynurenine , DNA Methylation , Feeding and Eating Disorders/genetics , Bulimia Nervosa/epidemiology , Binge-Eating Disorder/psychology , Anorexia Nervosa/psychology , Serotonin Plasma Membrane Transport Proteins
18.
Electrophoresis ; 44(5-6): 529-539, 2023 03.
Article in English | MEDLINE | ID: mdl-36718859

ABSTRACT

Tryptophan (TRP) is an essential amino acid catabolized mainly through the kynurenine pathway, and part of it is catabolized in the brain. The abnormal depletion of TRP and production of kynurenine (KYN) by two enzymes, tryptophan 2,3-dioxygenase (TDO) and indoleamine 2,3-dioxygenase (IDO), have been linked to various neurological diseases. The ratio of TRP/KYN in plasma is a valuable measure for IDO/TDO activity and the prognosis of disease conditions. The 4-vinylphenylboronic acid (4-VPBA) was evaluated as a novel stationary phase for OT-CEC-MS/MS. TRP, KYN, and 3-hydroxykynurenine were separated using optimum conditions of 15 mM (NH4 )2 CO3 at pH 8 as a background electrolyte and 25 kV separation voltage on a 90 cm column. The usefulness of the 4-VPBA column for simple, fast, repeatable, and sensitive CEC-ESI-MS/MS application was demonstrated for the quantitation of TRP and KYN in the plasma of healthy human subjects and neuroinflammation subjects. The plasma sample was extracted on a zirconia-based ion-exchange cartridge for simultaneous protein precipitation and phospholipid removal. The method of standard addition, in combination with the internal standards approach, was used to prepare the calibration curve to overcome matrix matching and eliminate procedural errors. The developed quantitation method was validated according to FDA guidelines for sensitivity, accuracy, precision, and extraction recovery. The measured plasma level of TRP and KYN in healthy humans is aligned with the human metabolome database for the same two metabolites.


Subject(s)
Capillary Electrochromatography , Tryptophan , Humans , Tryptophan/chemistry , Kynurenine , Tandem Mass Spectrometry/methods
20.
J Alzheimers Dis ; 91(3): 1141-1150, 2023.
Article in English | MEDLINE | ID: mdl-36565121

ABSTRACT

BACKGROUND: The kynurenine pathway (KP) comprises a family of tryptophan-derived metabolites that some studies have reported are associated with poorer cognitive performance and an increased risk of Alzheimer's disease and related dementias (ADRD). OBJECTIVE: The objective of this study was to determine the associations of plasma KP metabolites (kynurenine [KYN], kynurenic acid [KA], and tryptophan [TRP]) with a panel of plasma ADRD biomarkers (Aß42/ ß40 ratio, pTau-181, glial fibrillary acidic protein [GFAP], and neurofilament light [NfL]) and cognitive performance in a subset of older adults drawn from the Duke Physical Performance Across the LifeSpan (PALS) study. METHODS: The Montreal Cognitive Assessment (MoCA) was used to assess cognitive performance. We used multivariate multiple regression to evaluate associations of the KYN/TRP and KA/KYN ratios with MoCA score and plasma ADRD biomarkers at baseline and over two years (n = 301; Age = 74.8±8.7). RESULTS: Over two years, an increasing KYN/TRP ratio was associated with increasing plasma concentrations of plasma p-Tau181 (ß= 6.151; 95% CI [0.29, 12.01]; p = 0.040), GFAP (ß= 11.12; 95% CI [1.73, 20.51]; p = 0.020), and NfL (ß= 11.13; 95% CI [2.745, 19.52]; p = 0.009), but not MoCA score or the Aß42/Aß40 ratio. There were no significant associations of KA/KYN with MoCA score or plasma ADRD biomarkers. CONCLUSION: Our findings provide evidence that greater concentrations of KP metabolites are associated longitudinally over two years with greater biomarker evidence of neurofibrillary tau pathology (pTau-181), neuroinflammation (GFAP), and neurodegeneration (NfL), suggesting that dysregulated KP metabolism may play a role in ADRD pathogenesis.


Subject(s)
Alzheimer Disease , Kynurenine , Humans , Aged , Aged, 80 and over , Alzheimer Disease/diagnosis , Tryptophan , Longevity , Biomarkers , Cognition
SELECTION OF CITATIONS
SEARCH DETAIL