Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 335
Filter
1.
J Colloid Interface Sci ; 678(Pt B): 578-587, 2024 Sep 07.
Article in English | MEDLINE | ID: mdl-39265330

ABSTRACT

Anode-free lithium metal batteries (AFLMBs) are considered to have greater application potential than traditional LMBs because of their higher energy density and safety. Unfortunately, their poor cycling performances originated from the unsatisfactory reversibility of Li plating/stripping remains a big challenge. A rational designed host for lithium deposition is an effective solving strategy. Herein, pure Au nanoparticles (NPs) without any impurities are prepared by a liquid-phase laser irradiation technology to construct and develop a self-supported Au/reduced graphene oxide (Au/rGO) film as lithium deposition host for AFLMBs. The densely and uniformly distributed Au NPs provide abundant lithiophilic sites that significantly reduce the nucleation barrier of lithium. Attributed to the precise regulation of Au sites towards lithium nucleation/growth, dendrites-free anode and improved electrochemical performance are obtained by using the Au/rGO film host. It keeps stable for 30 min of lithiation at 6 mA cm-2 without dendrite formation. Additionally, the Li||Au/rGO half-cell shows an overpotential close to 0 mV and maintains a Coulombic efficiency exceeding 97 % after 500 cycles at 1 mA cm-2. Moreover, a symmetric Au/rGO-Li cell can operate for 700 h without short-circuit. When paired with LiFePO4 (LFP) to assemble a full battery, the Au/rGO-Li achieves 96 % capacity retention rate after 100 cycles. This work not only develops an efficient host for lithium, but also provides a unique strategy to the safety concerns associated with LMBs' anodes.

2.
Small Methods ; : e2401095, 2024 Sep 26.
Article in English | MEDLINE | ID: mdl-39324283

ABSTRACT

Nanosecond pulsed laser irradiation is employed for synthesis of highly active and stable Pt-based electrocatalysts by anchoring Pt nanoclusters on porous sulfur-doped carbon supports (L-Pt/SC). Strong metal-support interaction (SMSI) between Pt and S induces a local charge rearrangement and modulates the electronic structure of Pt surroundings, thus boosting the reaction kinetics and enhancing stability in long-term hydrogen evolution reaction (HER). The L-Pt/SC catalyst exhibits high activity toward HER, with an overpotential of 23 mV at current densities reaching 10 mA cm-2 and a Tafel slope of 24 mV dec-1. The unit mass activity of L-Pt/SC is calculated to be -10.8 A cm-2 mgPt -1 at an applied voltage of -0.3 V versus RHE. In situ Raman spectra reveals that L-Pt/SC catalyst exhibits fast hydrogen production efficiency and its electrocatalytic HER process is determined by the Tafel step. Density functional theory calculations suggest the strong bonding energy between SC and Pt induces the formation of smaller nanoclusters of L-Pt/SC during fast pulsed laser preparation, which increases the effective contact area during the HER process thereby increasing the activity per unit mass.

3.
Small ; : e2405107, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39300865

ABSTRACT

Palladium nanosheets (Pd NSs) are widely used as electrocatalysts due to their high atomic utilization efficiency, and long-term stability. Here, the electronic structure modulation of the Pd NSs is realized by a femtosecond laser irradiation strategy. Experimental results indicate that laser irradiation induces the variation in the atomic structures and the macrostrain effects in the Pd NSs. The electronic structure of Pd NSs is modulated by laser irradiation through the balancing between Au-Pd charge transfer and the macros-strain effects. Finite element analysis (FEA) indicates that the lattice of the nanostructures undergoes fast heating and cooling during laser irradiation. The structural evolution mechanism is disclosed by a combined FEA and molecule dynamics (MD) simulation. These results coincide well with the experimental results. The L-AuPd NSs exhibit excellent mass activity and specific activity of 7.44 A mg-1 Pd and 18.70 mA cm-2 toward ethanol oxidation reaction (EOR), 4.3 and 4.4 times higher than the commercial Pd/C. The 2500-cycle accelerated durability (ADT) test confirms the outstanding catalytic stability of the L-AuPd NSs. Density functional theory (DFT) calculations reveal the catalytic mechanism. This unique strategy provides a new pathway to design the ultrathin nanosheet-based materials with excellent performance.

4.
Angew Chem Int Ed Engl ; : e202413774, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39136239

ABSTRACT

Developing sustainable energy solutions is critical for addressing the dual challenges of energy demand and environmental impact. In this study, a zinc-nitrate (Zn-NO3-) battery system was designed for the simultaneous production of ammonia (NH3) via the electrocatalytic NO3- reduction reaction (NO3RR) and electricity generation. Continuous wave CO2 laser irradiation yielded precisely controlled CoFe2O4@nitrogen-doped carbon (CoFe2O4@NC) hollow nanocubes from CoFe Prussian blue analogs (CoFe-PBA) as the integral electrocatalyst for NO3RR in 1.0-M KOH, achieving a remarkable NH3 production rate of 10.9 mgh-1cm-2 at -0.47 V versus RHE with exceptional stability. In-situ and ex-situ methods revealed that the CoFe2O4@NC surface transformed into high-valent Fe/CoOOH active-species, optimizing the adsorption energy of NO3RR (*NO2 and *NO species) intermediates. Furthermore, DFT calculations validated the possible NO3RR pathway on CoFe2O4@NC starting with NO3- conversion to *NO2 intermediates, followed by reduction to *NO. Subsequent protonation forms the *NH and *NH2 species, leading to NH3 formation via final protonation. The Zn-NO3- battery utilizing the CoFe2O4@NC cathode exhibits dual functionality by generating electricity with a stable open-circuit voltage of 1.38-V versus Zn/Zn2+ and producing NH3. This study inspires the simple design of low-cost catalysts for NO3RR-to-NH3 conversion and positions the Zn-NO3- battery as a promising technology for industrial applications.

5.
ACS Appl Mater Interfaces ; 16(40): 53718-53728, 2024 Oct 09.
Article in English | MEDLINE | ID: mdl-39172068

ABSTRACT

This study addresses the urgent need to focus on the nitrite reduction reaction (NO2-RR) to ammonia (NH3). A ternary-metal Prussian blue analogue (CoCuFe-PBA) was utilized as the template material, leveraging its tunable electronic properties to synthesize CoCuFe oxide (CoCuFe-O) through controlled calcination. Subsequently, a CoCuFe alloy (CoCuFe-A) was obtained via pulsed laser irradiation in liquids. The electrochemical properties of CoCuFe-O, derived from the PBA crystal structure, demonstrated a high yield of NH4+ at a rate of 555.84 µmol h-1 cm-2, with the highest Faradaic efficiency of 91.8% and a selectivity of 97.3% during a 1-h NO2-RR under an optimized potential of -1.0 V vs. Ag/AgCl. In situ Raman spectroscopy revealed the collaborative role of redox pairs (Co3+/Co2+ and Fe3+/Fe2+) as proton (H+) suppliers, with Cu centers serving as NO2- binders, thereby enhancing the reaction rate. Additionally, theoretical studies confirmed that Fe and Co atoms are more reactive than Cu toward intermediates playing crucial roles in hydrogenation, while Cu primarily activates NO owing to hydrogenation by the Fe and Co atoms and a high kinetic barrier in H2O* adsorption. This comprehensive investigation provides valuable insights into the electrochemical NO2-RR, establishing a foundation for efficient and sustainable NH3 synthesis strategies.

6.
ACS Nano ; 18(33): 22153-22171, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39118372

ABSTRACT

cGAS/STING pathway, which is highly related to tumor hypoxia, is considered as a potential target for remodeling the immunosuppressive microenvironment of solid tumors. Metal ions, such as Mn2+, activate the cGAS/STING pathway, but their efficacy in cancer therapy is limited by insufficient effect on immunogenic tumor cell death of a single ion. Here, we evaluate the association between tumor hypoxia and cGAS/STING inhibition and report a polymetallic-immunotherapy strategy based on large mesoporous trimetal-based nanozyme (AuPdRh) coordinated with Mn2+ (Mn2+@AuPdRh) to activate cGAS/STING signaling for robust adaptive antitumor immunity. Specifically, the inherent CAT-like activity of this polymetallic Mn2+@AuPdRh nanozyme decomposes the endogenous H2O2 into O2 to relieve tumor hypoxia induced suppression of cGAS/STING signaling. Moreover, the Mn2+@AuPdRh nanozyme displays a potent near-infrared-II photothermal effect and strong POD-mimic activity; and the generated hyperthermia and •OH radicals synergistically trigger immunogenic cell death in tumors, releasing abundant dsDNA, while the delivered Mn2+ augments the sensitivity of cGAS to dsDNA and activates the cGAS-STING pathway, thereby triggering downstream immunostimulatory signals to kill primary and distant metastatic tumors. Our study demonstrates the potential of metal-based nanozyme for STING-mediated tumor polymetallic-immunotherapy and may inspire the development of more effective strategies for cancer immunotherapy.


Subject(s)
Immunotherapy , Infrared Rays , Membrane Proteins , Animals , Mice , Membrane Proteins/metabolism , Manganese/chemistry , Manganese/pharmacology , Nucleotidyltransferases/metabolism , Porosity , Signal Transduction/drug effects , Humans , Tumor Hypoxia/drug effects , Gold/chemistry , Gold/pharmacology , Cell Line, Tumor , Palladium/chemistry , Palladium/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Female
7.
Sensors (Basel) ; 24(15)2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39123932

ABSTRACT

To study the physical property effects of the laser on GaInP/GaAs/Ge solar cells and their sub-cell layers, a pulsed laser with a wavelength of 532 nm was used to irradiate the solar cells under various energy conditions. The working performance of the cell was measured with a source meter. The electroluminescence (EL) characteristics were assessed using an ordinary and an infrared camera. Based on the detailed balance theory, in the voltage characteristics of an ideal pristine cell, the GaInP layer made the most significant voltage contribution, followed by the GaAs layer, with the Ge layer contributing the least. When a bias voltage was applied to the pristine cell, the top GaInP cell emitted red light at 670 nm, the middle GaAs cell emitted near-infrared light at 926 nm, and the bottom Ge cell emitted infrared light at 1852 nm. In the experiment, the 532 nm laser wavelength within the response spectrum bands of the GaInP layer and the laser passed through the glass cover slip and directly interacted with the GaInP layer. The experimental results indicated that the GaInP layer first exhibited different degrees of damage under laser irradiation, and the cell voltage was substantially attenuated. The GaInP/GaAs/Ge solar cell showed a decrease in electrical and light emission characteristics. As the laser energy increased, the cell's damage intensified, gradually leading to a loss of photoelectric conversion capability, the near-complete disappearance of red light emission, and a gradual degradation of near-infrared emission properties. The EL imaging revealed varying damage states across the triple-junction gallium arsenide solar cell's sub-cells.

8.
Eur J Obstet Gynecol Reprod Biol ; 300: 12-16, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38972161

ABSTRACT

OBJECTIVE: In preimplantation genetic testing for aneuploidy, opinions regarding the handling of mosaic embryos vary. In this study, we aimed to investigate the effects of freeze-thawing, the number of cells obtained, and the number of laser irradiation cycles on the degree of embryonic mosaicism. STUDY DESIGN: This study was conducted in three parts. First, we classified specimens into the normal biopsy (control) (119 patients, 304 blastocysts) and thawed-biopsy (TB group) (26 patients, 72 blastocysts)) groups. The control and TB groups were then classified into three categories (euploidy, mosaic and aneuploidy) according to next-generation sequencing (NGS) results, and the number of cells collected and laser irradiation cycles were compared for each category. Subsequently, the effects of differences in the number of cells collected and laser irradiation cycles on NGS results were investigated in the control and TB groups. Finally, data on cell collection and laser irradiation cycles and NGS analysis results for the groups were compared. RESULTS: The TB group had a significantly higher incidence of chromosomal mosaicism than the control group. Neither the number of cells collected nor the laser irradiation cycles affected the percentage of chromosomal mosaicism. However, the freeze-thaw process increased the occurrence of mosaicism. CONCLUSIONS: This study showed that repeated freeze-thaw cycles increase the incidence of mosaicism, but the embryos are not aneuploid and are therefore suitable for transfer.


Subject(s)
Aneuploidy , Cryopreservation , Mosaicism , Preimplantation Diagnosis , Humans , Mosaicism/embryology , Preimplantation Diagnosis/methods , Female , Adult , Genetic Testing/methods , Blastocyst/radiation effects , Pregnancy , Lasers
9.
Sensors (Basel) ; 24(12)2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38931752

ABSTRACT

To study the interference effect of the laser in motion mode on a CCD, the continuous laser with the wavelength of 532 nm at different motion speeds was used to scan the CCD. The experimental results show that the crosstalk phenomenon produced by static and dynamic irradiation is significantly different. When the continuous laser statically radiates the CCD, the vertical crosstalk line is observed in the output image. The gray values of the crosstalk line are divided into two stages, with the increase of the laser fluence: linear increase and saturation, which correspond to different formation mechanisms of the crosstalk lines, respectively. In addition, when the irradiation duration of the static laser is less than the integration time of CCD, the effect of delay time on the spatial distribution of the crosstalk line is identified. In addition, when the laser irradiates the CCD at different scanning speeds, crosstalk lines with certain slopes are observed. The slope of the crosstalk line is determined by the scanning speed of the continuous laser and the integration time of the CCD. The results show that the delay time and the irradiation position have important effects on the spatial distribution of the laser spot and crosstalk lines.

10.
ACS Nano ; 18(26): 17339-17348, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38905021

ABSTRACT

In recent years, two-dimensional (2D) transition metal dichalcogenides (TMDCs) have been widely recognized as an ideal platform for surface-enhanced Raman scattering (SERS). Given their rich structural phases, phase transformation in 2D TMDCs is an efficient strategy to tailor their SERS performance. In this paper, we present the great SERS performance of multilayer 2M-WS2 and then investigate the effect of its phase transformation on SERS performance. It is observed that multilayer 2M-WS2 nanosheets undergo a thermally induced single-crystal phase transition from 2M-WS2 to 2H-WS2 upon thermal annealing or laser treatment. Distinguishing from the commercially available pure 2H-WS2 (P-2H-WS2), 2H-WS2 obtained by annealing and laser treatment still retain SERS properties comparable to those of 2M-WS2, among which the detection limits for CV molecules (10-8 M) are 3 orders of magnitude lower than that of P-2H-WS2 and the Raman intensity enhancements are ∼10-37 times higher. In contrast to the charge transfer (CT) mechanism governed by the Fermi level in metallic-phase 2M-WS2, 2H-WS2 obtained by phase transition exhibits accelerated CT facilitated by the bandgap reduction and reorganization resulting from the abundance of vacancies. This study introduces an interesting perspective and potential avenue for enhancing SERS through metal-to-semiconductor phase transitions in 2D TMDCs materials.

11.
Adv Sci (Weinh) ; 11(31): e2400462, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38885361

ABSTRACT

Activatable type I photosensitizers are an effective way to overcome the insufficiency and imprecision of photodynamic therapy in the treatment of hypoxic tumors, however, the incompletely inhibited photoactivity of pro-photosensitizer and the limited oxidative phototoxicity of post-photosensitizer are major limitations. It is still a great challenge to address these issues using a single and facile design. Herein, a series of totally caged type I pro-photosensitizers (Pro-I-PSs) are rationally developed that are only activated in tumor hypoxic environment and combine two oxygen-independent therapeutic mechanisms under single-pulse laser irradiation to enhance the phototherapeutic efficacy. Specifically, five benzophenothiazine-based dyes modified with different nitroaromatic groups, BPN 1-5, are designed and explored as latent hypoxia-activatable Pro-I-PSs. By comparing their optical responses to nitroreductase (NTR), it is identified that the 2-methoxy-4-nitrophenyl decorated dye (BPN 2) is the optimal Pro-I-PSs, which can achieve NTR-activated background-free fluorescence/photoacoustic dual-modality tumor imaging. Furthermore, upon activation, BPN 2 can simultaneously produce an oxygen-independent photoacoustic cavitation effect and a photodynamic type I process at single-pulse laser irradiation. Detailed studies in vitro and in vivo indicated that BPN 2 can effectively induce cancer cell apoptosis through synergistic effects. This study provides promising potential for overcoming the pitfalls of hypoxic-tumor photodynamic therapy.


Subject(s)
Photosensitizing Agents , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Animals , Mice , Humans , Cell Line, Tumor , Oxygen/metabolism , Photochemotherapy/methods , Neoplasms/therapy , Neoplasms/drug therapy , Disease Models, Animal , Phototherapy/methods
12.
World J Clin Cases ; 12(15): 2522-2528, 2024 May 26.
Article in English | MEDLINE | ID: mdl-38817227

ABSTRACT

BACKGROUND: Lumbar radiculopathy spondylosis is a relatively common orthopedic disease with a high incidence rate. It most commonly occurs in the lumbar 4-5 and lumbar 5-sacral 1 vertebrae, which account for approximately 95% of cases. It mostly occurs in people aged 30-50 years old and greatly affects their quality of life. AIM: To determine the effect of triple-voltage acupuncture combined with helium-neon laser irradiation on the quality of care and improvement of symptoms in patients with lumbar radiculopathy spondylolisthesis. METHODS: In this study, we selected 120 patients with lumbar radiculopathy spondylosis who were treated at our hospital between June 2019 to June 2020. The patients were divided into control and observation groups according to the random number table method, with 60 patients in each group. Patients in the observation group were treated with three-volt moxibustion combined with helium-neon laser irradiation, and those in the control group were treated with lumbar traction. After 1 month of treatment, the lumbar pain scores, lumbar spine motor functions, clinical treatment effects, and nursing satisfaction of the two groups were compared. RESULTS: The results showed that acupuncture combined with laser irradiation significantly improved the patients' clinical symptoms, i.e., reduced their low back pain, significantly lower numerical rating scale pain scores in the observation group than in the control group, and better lumbar spine motility than in the control group, compared to lumbar traction. In addition, they were cared for. The treatment effectiveness rate of the observation group was 95.5%, which was significantly higher than that of the control group (81.67%). Satisfaction with care was higher than 90 points in both groups, but the difference was not statistically significant. CONCLUSION: Our study provides a clinical rationale for the future treatment of patients with lumbar spine disease. However, further extensive research is needed for validation.

13.
Materials (Basel) ; 17(8)2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38673231

ABSTRACT

The preparation of electrocatalysts with high performance for the ethanol oxidation reaction is vital for the large-scale commercialization of direct ethanol fuel cells. Here, we successfully synthesized a high-performance electrocatalyst of a AuPd alloy with a decreased alloying degree via pulsed laser irradiation in liquids. As indicated by the experimental results, the photochemical effect-induced surficial deposition of Pd atoms, combined with the photothermal effect-induced interdiffusion of Au and Pd atoms, resulted in the formation of AuPd alloys with a decreased alloying degree. Structural characterization reveals that L-AuPd exhibits a lower degree of alloying compared to C-AuPd prepared via the conventional co-reduction method. This distinct structure endows L-AuPd with outstanding catalytic activity and stability in EOR, achieving mass and specific activities as high as 16.01 A mgPd-1 and 20.69 mA cm-2, 9.1 and 5.2 times than that of the commercial Pd/C respectively. Furthermore, L-AuPd retains 90.1% of its initial mass activity after 300 cycles. This work offers guidance for laser-assisted fabrication of efficient Pd-based catalysts in EOR.

14.
Article in English | MEDLINE | ID: mdl-38594957

ABSTRACT

Laser lighting devices, comprising an ultraviolet (UV) laser chip and a phosphor material, have emerged as a highly efficient approach for generating high-brightness light sources. However, the high power density of laser excitation may exacerbate thermal quenching in conventional polycrystalline or amorphous phosphors, leading to luminous saturation and the eventual failure of the device. Here, for the first time, we raise a single-crystal (SCs) material for laser lighting considering the absence of grain boundaries that scatter electrons and phonons, achieving high thermal conductivity (0.81 W m-1 K-1) and heat-resistance (575 °C). The SCs products exhibit a high photoluminescence quantum yield (89%) as well as excellent stability toward high-power lasers (>12.41 kW/cm2), superior to all previously reported amorphous or polycrystalline matrices. Finally, the laser lighting device was fabricated by assembling the SC with a UV laser chip (50 mW), and the device can maintain its performance even after continuous operation for 4 h. Double perovskite single crystals doped with Yb3+/Er3+ demonstrated multimodal luminescence with the irradiation of 355 and 980 nm lasers, respectively. This characteristic holds significant promise for applications in spectrally tunable laser lighting and multimodal anticounterfeiting.

15.
Small ; 20(29): e2400538, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38600896

ABSTRACT

This research adopts a new method combining calcination and pulsed laser irradiation in liquids to induce a controlled phase transformation of Fe, Co, Ni, Cu, and Mn transition-metal-based high-entropy Prussian blue analogs into single-phase spinel high-entropy oxide and face-centered cubic high-entropy alloy (HEA). The synthesized HEA, characterized by its highly conductive nature and reactive surface, demonstrates exceptional performance in capturing low-level nitrite (NO2 -) in an electrolyte, which leads to its efficient conversion into ammonium (NH4 +) with a Faradaic efficiency of 79.77% and N selectivity of 61.49% at -0.8 V versus Ag/AgCl. In addition, the HEA exhibits remarkable durability in the continuous nitrite reduction reaction (NO2 -RR), converting 79.35% of the initial NO2 - into NH4 + with an impressive yield of 1101.48 µm h-1 cm-2. By employing advanced X-ray absorption and in situ electrochemical Raman techniques, this study provides insights into the indirect NO2 -RR, highlighting the versatility and efficacy of HEA in sustainable electrochemical applications.

16.
Sci Bull (Beijing) ; 69(11): 1716-1727, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38627135

ABSTRACT

The advancement of flexible electronics demands improved components, necessitating heat dissipation membranes (HDMs) to exhibit high thermal conductivity while maintaining structural integrity and performance stability even after extensive deformation. Herein, we have devised a laser-modulated reduction technique for graphene oxide (GO), enabling the fabrication of high-quality, large-scale, low-defect graphene, which yields high-performance HDMs after orderly deposition. The work underscores the crucial role of the laser wavelength and dispersion liquid's coupling intensity in influencing the morphology and properties of graphene. Optimal coupling effect and energy conversion are realized when a laser of 1064 nm wavelength irradiates a triethylene glycol (TEG)/N,N-Dimethylformamide (DMF) dispersion. This unique synergy generates high transient energy, which facilitates the deprotonation process and ensures a swift, comprehensive GO reduction. In contrast to conventional water-based laser reduction methods, the accelerated reaction magnifies the size of the graphene sheets by mitigating the ablation effect. After membrane construction with an ordered structure, the corresponding membrane exhibits a high thermal conductivity of 1632 W m-1 K-1, requiring only ∼1/10 of the total preparation time required by other reported methods. Remarkably, the resulting HDM demonstrates superior resilience against creasing and folding, maintaining excellent smoothness and negligible reduction in thermal conductivity after violent rubbing. The combination of exceptional flexibility and thermal conductivity in HDMs paves the way for long-term practical use in the flexible electronics industry.

17.
Clin Oral Investig ; 28(3): 202, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38453707

ABSTRACT

OBJECTIVES: To evaluate the effects of Nd:YAG laser irradiation on the microstructures of dentin surfaces and the long-term bond strength of dentin under simulated pulpal pressure. MATERIALS AND METHODS: Under simulated pulp pressure, 30 freshly extracted caries-free third molars were cut into 2-mm-thick dentin samples and then divided into five groups: the control and laser groups (93.3 J/cm2; 124.4 J/cm2; 155.5 J/cm2; 186.6 J/cm2). Scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), and Vickers hardness were used to analyze the surface morphology, composition, and mechanical properties of the dentin before and after laser irradiation. Another 80 caries-free third molars were removed and treated as described above, and the resin was bonded to the dentin surface with Single Bond Universal (SBU) adhesive in self-etch mode to make stick specimens. Microtensile bond strength (µTBS), confocal laser scanning microscopy (CLSM), and interfacial silver nanoleakage tests before and after 10,000 times thermocycling were then performed to analyze the bonding properties and interfacial durability of each group. RESULTS: SEM observations revealed that the surfaces of all laser group specimens were rough with open dentin tubules. Laser irradiation altered the surface composition of dentin while removing some collagen fibers but did not affect its surface hardness or crystallographic characteristics. Furthermore, laser irradiation with an energy density of 124.4 J/cm2 significantly promoted the immediate and aging bond strengths and reduced nanoleakage compared to those of the control group. CONCLUSIONS: Under simulated pulp pressure, Nd:YAG laser pretreatment altered the chemical composition of dentin and improved the immediate and long-term bond strength. CLINICAL RELEVANCE: This study investigated the optimal parameters for Nd:YAG laser pretreatment of dentin, which has potential as a clinical method to strengthen bonding.


Subject(s)
Dental Bonding , Dental Caries , Lasers, Solid-State , Humans , Dentin/radiation effects , Lasers, Solid-State/therapeutic use , Dental Cements , Dental Pulp , Microscopy, Electron, Scanning , Tensile Strength , Dentin-Bonding Agents/chemistry , Resin Cements/chemistry
18.
Dent J (Basel) ; 12(3)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38534283

ABSTRACT

This study aimed to assess the impact of different laser irradiation modes and photosensitizer types on the bactericidal efficacy of antimicrobial photodynamic therapy (aPDT). Dentin plates were prepared by sectioning the crown dentin of bovine teeth infected with Streptococcus sobrinus (n = 11). Nine aPDTs involving the combination of three 1% solutions of photosensitizers (brilliant blue, BB; acid red, AR; and methylene blue, MB) and three irradiation modes of semiconductor lasers (50 mW for 120 s, 100 mW for 60 s, and 200 mW for 30 s) were performed for each infected dentin plate, and the control consisted of the specimens not applied with aPDT. The bactericidal effects in 10 groups were evaluated using both assays of the colony count (colony-forming-unit: CFU) and adenosine triphosphate (ATP) (relative-light-unit: RLU). The data obtained were analyzed using the Kruskal-Wallis test (α = 0.05). The most aPDT groups exhibited significantly lower RLU and CFU values compared with the control (p < 0.05). The effect of irradiation modes on RLU and CFU values was significant in the aPDT group using BB (p < 0.05) but not in the aPDT group using AR or MB. The aPDT performed with AR or MB exerted a remarkable bactericidal effect.

19.
J Genet Eng Biotechnol ; 22(1): 100331, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38494247

ABSTRACT

BACKGROUND: Orthodontic relapse is a frequent problem that many patients experience. Although orthodontic therapy has advanced, recurrence rates can still reach 90%. We undertook a study to look at the possibilities of laser bio-stimulation and stem cells because they have showed promising outcomes in lowering recurrence rates. OBJECTIVES: Our objective was to analyze the effects of Low-level laser therapy (LLLT) and Mesenchymal stem cells (MSC) alone and collectively on the rate of orthodontic relapse in rats radiographically and histologically. METHODS: Rat maxillary central incisors were moved distally for two weeks. One week later, the incisors were retained. Animals (n = 40) were split into four groups. Control group (C); laser treatment Group (L), Bone marrow mesenchymal stem cells Group (BMSCs) and combination of Stem cells and laser-irradiation group (BMSCs-L). Removed retainer permitted relapse. Before stem cell application or laser irradiation, each animal underwent two CBCT scans. Rat maxillae were stained with Hx&E, Masson trichrome, and tartrate-resistant acid phosphatase antibody for histology, histochemistry, and immunohistochemistry. RESULTS AND CONCLUSIONS: LLLT could reduce the relapse tendency, as shown by increased bone density and enhanced remodeling of hetero-formed periodontal ligament (PDL). Furthermore, the transfer of BMMSCs on the pressure side had positive effects on PDL remodeling and decreased, but did not inhibit, the relapse rate. Finally, the synergistic effects of the application of LLLT and BMMSC were better than the control but still moderate and long-lasting. CLINICAL SIGNIFICANCE: Based on the improved relapse rate as proven in the present study, the Application of both LLLT and stem cells can be adopted to reduce the relapse tendency either lonely or collectively.

20.
Adv Mater ; 36(19): e2310218, 2024 May.
Article in English | MEDLINE | ID: mdl-38315577

ABSTRACT

The common clinical chemotherapy often brings serious side effects to patients, mainly due to the off-target and leakage of toxic drugs. However, this is fatal for some specific clinical tumors, such as brain tumors and neuroma. This study performs a drug-free approach by encapsulating black phosphorus (BP) and calcium peroxide (CaO2) in liposomes with surface-modified triphenylphosphonium (BCLT) to develop mitochondria targeting calcification for cancer therapy without damaging normal cells. BCLT preferentially accumulates inside tumor mitochondria and then is activated by near-infrared (NIR) laser irradiation to produce abundant PO4 3- and Ca2+ to accelerate in situ mitochondrial mineralization, leading to mitochondrial dysfunction and cancer cell death. More importantly, both PO4 3- and Ca2+ are essential components of metabolism in the body, and random gradient diffusion or premature leakage does not cause damage to adjacent normal cells. This achievement promises to be an alternative to conventional chemotherapy in clinical practice for many specific tumor types.


Subject(s)
Mitochondria , Phosphorus , Humans , Mitochondria/metabolism , Mitochondria/drug effects , Phosphorus/chemistry , Liposomes/chemistry , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/pathology , Biomineralization , Cell Line, Tumor , Animals , Peroxides/chemistry , Peroxides/metabolism , Organophosphorus Compounds/chemistry , Calcium Compounds/chemistry , Infrared Rays , Mice , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL