ABSTRACT
Within the frame of this article, briefly but comprehensively, we present the existing knowledge, perspectives, and challenges for the utilization of Layered Double Hydroxides (LDHs) as adsorbents against a plethora of pollutants in aquatic matrixes. The use of LDHs as adsorbents was established by considering their significant physicochemical features, including their textural, structural, morphological, and chemical composition, as well as their method of synthesis, followed by their advantages and disadvantages as remediation media. The utilization of LDHs towards the adsorptive removal of dyes, metals, oxyanions, and emerging pollutants is critically reviewed, while all the reported kinds of interactions that gather the removal are collectively presented. Finally, future perspectives on the topic are discussed. It is expected that this discussion will encourage researchers in the area to seek new ideas for the design, development, and applications of novel LDHs-based nanomaterials as selective adsorbents, and hence to further explore the potential of their utilization also for analytic approaches to detect and monitor various pollutants.
Subject(s)
Water Pollutants, Chemical , Water Purification , Adsorption , Hydroxides/chemistry , Water Pollutants, Chemical/chemistryABSTRACT
Auxins are a class of organic substances known as plant-growth regulators, which act on plant physiology, promoting its full development. However, due to the great instability of these substances among the diversity of crops and cultivation environments, it is necessary to seek more efficient modes of application, which lead to a homogeneous distribution and promote a sustained release according to the plants demand. Seed coating, using films containing a biodegradable polymer and auxins intercalated into layered compounds, emerges as a very promising approach to a new form of growth regulator application. Thus, the presented work had three aims: (i) the synthesis and characterization of an organic-inorganic hybrid material containing a layered double hydroxide (LDH) of zinc and aluminum and the synthetic auxin 1-naphthalenoacetic acid (ZnAl-NAA-LDH), (ii) the coating of bean seeds (Phaseolus vulgaris L.) with composite films produced from mixtures of alginate polymer and ZnAl-NAA-LDH, and (iii) the evaluation of the plant response by bioassays. The hybrid ZnAl-NAA-LDH was characterized by a set of analytical techniques, including powder X-ray diffraction, thermogravimetric analysis coupled to differential scanning calorimetry and mass spectrometry, specific surface area measurement, and scanning electron microscopy. Bioassays were performed with the seeds coated with the composite film to assess the germination rate and germination speed index of the seeds, as well as biometric analyses including measurements of root area, root fresh matter, and shoot length of the plants. The bioassay performed in soil pots showed that the alginate film containing ZnAl-NAA-LDH yields an enhancement regarding root area, fresh root matter and shoot length of plants. Thus, films produced from a mixture of alginate and the hybrid material containing the growth regulator intercalated into LDH can be a viable alternative to enhance plant development, which can be included in seed management.