ABSTRACT
N-acetyl-L-cysteine (NAC), a derivative of the L-cysteine amino acid, presents antioxidant and mucolytic properties of pharmaceutical interest. This work reports the preparation of organic-inorganic nanophases aiming for the development of drug delivery systems based on NAC intercalation into layered double hydroxides (LDH) of zinc-aluminum (Zn2Al-NAC) and magnesium-aluminum (Mg2Al-NAC) compositions. A detailed characterization of the synthesized hybrid materials was performed, including X-ray diffraction (XRD) and pair distribution function (PDF) analysis, infrared and Raman spectroscopies, solid-state 13carbon and 27aluminum nuclear magnetic resonance (NMR), simultaneous thermogravimetric and differential scanning calorimetry coupled to mass spectrometry (TG/DSC-MS), scanning electron microscopy (SEM), and elemental chemical analysis to assess both chemical composition and structure of the samples. The experimental conditions allowed to isolate Zn2Al-NAC nanomaterial with good crystallinity and a loading capacity of 27.3 (m/m)%. On the other hand, NAC intercalation was not successful into Mg2Al-LDH, being oxidized instead. In vitro drug delivery kinetic studies were performed using cylindrical tablets of Zn2Al-NAC in a simulated physiological solution (extracellular matrix) to investigate the release profile. After 96 h, the tablet was analyzed by micro-Raman spectroscopy. NAC was replaced by anions such as hydrogen phosphate by a slow diffusion-controlled ion exchange process. Zn2Al-NAC fulfil basic requirements to be employed as a drug delivery system with a defined microscopic structure, appreciable loading capacity, and allowing a controlled release of NAC.
ABSTRACT
In this work, we report anab initiostudy of the structural and thermodynamic properties of two-dimensional transition-metal dichalcogenides (2D-TMDC) alloys, Mo(1-x)Wx(S, Se, Te)2, using the cluster expansion framework to compute the Helmholtz free energy of alloys as a function of alloy composition and temperature, in the framework of the generalized quasi-chemical approximation. We consider alloying only on the metal sublayer. Our results indicate a weak dependence of the structural properties (lattice constants, nearest-neighbor bond lengths, and layer width) on the alloy composition (i.e. concentrations of W and Mo atoms), in line with the very similar values of the atomic radii of Mo and W atoms. A stronger dependence on the chalcogen is obtained, a trend that reflects the larger variations in atomic radii among the three chalcogen species. As a function of composition, the structural parameters we examined show similar trends, with negligible bowing (i.e. deviations from a Vegard's law interpolation between end compounds), for the three alloys. Moreover, already at 300 K the behavior of these structural features as a function of composition is very similar to that of the standard-regular-solution (SRS) high-temperature limit. In contrast, the electronic band gaps of the the three alloys as a function of composition show small but significant bowing, as high as -1% to -2% near thex= 0.5 alloy composition. Similarly to the structural features, the band gaps attain the high-temperature SRS limit already at 300 K. Regarding thermodynamic properties, we obtain negative values of the internal energy of mixing for the three alloys over the full range of compositions. Therefore, the theoretical alloying phase diagram for the three alloys is featureless, with stability of a fully-mixed alloy at all temperatures and compositions, with no miscibility gap (hence no bimodal nor spinodal decomposition lines). The thermodynamic potentials (mixing internal energy, mixing entropy, and mixing free energy) reach the high-temperature limit at â¼1000 K, the temperature range of synthesis of 2D-TMDC alloys. These trends of structural and electronic properties of the 2D-TMDC alloys are due to the very similar atomic radii and the nearly identical coordination chemistry of Mo and W. Our results are in agreement with experimental work on the alloying of Mo and W atoms, for samples of Mo(1-x)WxS2monolayer alloys, that found that the random mixed alloy is the thermodynamically stable state for this alloy, with no segregation or phase separation.
ABSTRACT
The development of biomaterials has a substantial role in pharmaceutical and medical strategies for the enhancement of life quality. This review work focused on versatile biomaterials based on nanocomposites comprising organic polymers and a class of layered inorganic nanoparticles, aiming for drug delivery (oral, transdermal, and ocular delivery) and tissue engineering (skin and bone therapies). Layered double hydroxides (LDHs) are 2D nanomaterials that can intercalate anionic bioactive species between the layers. The layers can hold metal cations that confer intrinsic biological activity to LDHs as well as biocompatibility. The intercalation of bioactive species between the layers allows the formation of drug delivery systems with elevated loading capacity and modified release profiles promoted by ion exchange and/or solubilization. The capacity of tissue integration, antigenicity, and stimulation of collagen formation, among other beneficial characteristics of LDH, have been observed by in vivo assays. The association between the properties of biocompatible polymers and LDH-drug nanohybrids produces multifunctional nanocomposites compatible with living matter. Such nanocomposites are stimuli-responsive, show appropriate mechanical properties, and can be prepared by creative methods that allow a fine-tuning of drug release. They are processed in the end form of films, beads, gels, monoliths etc., to reach orientated therapeutic applications. Several studies attest to the higher performance of polymer/LDH-drug nanocomposite compared to the LDH-drug hybrid or the free drug.
ABSTRACT
Auxins are a class of organic substances known as plant-growth regulators, which act on plant physiology, promoting its full development. However, due to the great instability of these substances among the diversity of crops and cultivation environments, it is necessary to seek more efficient modes of application, which lead to a homogeneous distribution and promote a sustained release according to the plants demand. Seed coating, using films containing a biodegradable polymer and auxins intercalated into layered compounds, emerges as a very promising approach to a new form of growth regulator application. Thus, the presented work had three aims: (i) the synthesis and characterization of an organic-inorganic hybrid material containing a layered double hydroxide (LDH) of zinc and aluminum and the synthetic auxin 1-naphthalenoacetic acid (ZnAl-NAA-LDH), (ii) the coating of bean seeds (Phaseolus vulgaris L.) with composite films produced from mixtures of alginate polymer and ZnAl-NAA-LDH, and (iii) the evaluation of the plant response by bioassays. The hybrid ZnAl-NAA-LDH was characterized by a set of analytical techniques, including powder X-ray diffraction, thermogravimetric analysis coupled to differential scanning calorimetry and mass spectrometry, specific surface area measurement, and scanning electron microscopy. Bioassays were performed with the seeds coated with the composite film to assess the germination rate and germination speed index of the seeds, as well as biometric analyses including measurements of root area, root fresh matter, and shoot length of the plants. The bioassay performed in soil pots showed that the alginate film containing ZnAl-NAA-LDH yields an enhancement regarding root area, fresh root matter and shoot length of plants. Thus, films produced from a mixture of alginate and the hybrid material containing the growth regulator intercalated into LDH can be a viable alternative to enhance plant development, which can be included in seed management.