Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Sensors (Basel) ; 23(8)2023 Apr 09.
Article in English | MEDLINE | ID: mdl-37112184

ABSTRACT

Leaf optical properties can be used to identify environmental conditions, the effect of light intensities, plant hormone levels, pigment concentrations, and cellular structures. However, the reflectance factors can affect the accuracy of predictions for chlorophyll and carotenoid concentrations. In this study, we tested the hypothesis that technology using two hyperspectral sensors for both reflectance and absorbance data would result in more accurate predictions of absorbance spectra. Our findings indicated that the green/yellow regions (500-600 nm) had a greater impact on photosynthetic pigment predictions, while the blue (440-485 nm) and red (626-700 nm) regions had a minor impact. Strong correlations were found between absorbance (R2 = 0.87 and 0.91) and reflectance (R2 = 0.80 and 0.78) for chlorophyll and carotenoids, respectively. Carotenoids showed particularly high and significant correlation coefficients using the partial least squares regression (PLSR) method (R2C = 0.91, R2cv = 0.85, and R2P = 0.90) when associated with hyperspectral absorbance data. Our hypothesis was supported, and these results demonstrate the effectiveness of using two hyperspectral sensors for optical leaf profile analysis and predicting the concentration of photosynthetic pigments using multivariate statistical methods. This method for two sensors is more efficient and shows better results compared to traditional single sensor techniques for measuring chloroplast changes and pigment phenotyping in plants.


Subject(s)
Carotenoids , Chlorophyll , Chlorophyll/analysis , Carotenoids/analysis , Photosynthesis , Least-Squares Analysis , Plants/metabolism , Plant Leaves/chemistry
2.
New Phytol ; 204(1): 127-139, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24942328

ABSTRACT

Spectral properties of foliage express fundamental chemical interactions of canopies with solar radiation. However, the degree to which leaf spectra track chemical traits across environmental gradients in tropical forests is unknown. We analyzed leaf reflectance and transmittance spectra in 2567 tropical canopy trees comprising 1449 species in 17 forests along a 3400-m elevation and soil fertility gradient from the Amazonian lowlands to the Andean treeline. We developed quantitative links between 21 leaf traits and 400-2500-nm spectra, and developed classifications of tree taxa based on spectral traits. Our results reveal enormous inter-specific variation in spectral and chemical traits among canopy trees of the western Amazon. Chemical traits mediating primary production were tightly linked to elevational changes in foliar spectral signatures. By contrast, defense compounds and rock-derived nutrients tracked foliar spectral variation with changing soil fertility in the lowlands. Despite the effects of abiotic filtering on mean foliar spectral properties of tree communities, the spectra were dominated by phylogeny within any given community, and spectroscopy accurately classified 85-93% of Amazonian tree species. Our findings quantify how tropical tree canopies interact with sunlight, and indicate how to measure the functional and biological diversity of forests with spectroscopy.


Subject(s)
Plant Leaves/chemistry , Plant Leaves/physiology , Trees , Altitude , Carotenoids/analysis , Carotenoids/metabolism , Chlorophyll/analysis , Chlorophyll/metabolism , Chlorophyll A , Forests , Phylogeny , Quantitative Trait, Heritable , Soil , South America , Spectrum Analysis/methods , Tropical Climate
SELECTION OF CITATIONS
SEARCH DETAIL