Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 17.044
Filter
1.
J Environ Sci (China) ; 147: 597-606, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39003074

ABSTRACT

Harnessing bacteria for superoxide production in bioremediation holds immense promise, yet its practical application is hindered by slow production rates and the relatively weak redox potential of superoxide. This study delves into a cost-effective approach to amplify superoxide production using an Arthrobacter strain, a prevalent soil bacterial genus. Our research reveals that introducing a carbon source along with specific iron-binding ligands, including deferoxamine (DFO), diethylenetriamine pentaacetate (DTPA), citrate, and oxalate, robustly augments microbial superoxide generation. Moreover, our findings suggest that these iron-binding ligands play a pivotal role in converting superoxide into hydroxyl radicals by modulating the electron transfer rate between Fe(III)/Fe(II) and superoxide. Remarkably, among the tested ligands, only DTPA emerges as a potent promoter of this conversion process when complexed with Fe(III). We identify an optimal Fe(III) to DTPA ratio of approximately 1:1 for enhancing hydroxyl radical production within the Arthrobacter culture. This research underscores the efficacy of simultaneously introducing carbon sources and DTPA in facilitating superoxide production and its subsequent conversion to hydroxyl radicals, significantly elevating bioremediation performance. Furthermore, our study reveals that DTPA augments superoxide production in cultures of diverse soils, with various soil microorganisms beyond Arthrobacter identified as contributors to superoxide generation. This emphasizes the universal applicability of DTPA across multiple bacterial genera. In conclusion, our study introduces a promising methodology for enhancing microbial superoxide production and its conversion into hydroxyl radicals. These findings hold substantial implications for the deployment of microbial reactive oxygen species in bioremediation, offering innovative solutions for addressing environmental contamination challenges.


Subject(s)
Arthrobacter , Biodegradation, Environmental , Hydroxyl Radical , Iron , Superoxides , Hydroxyl Radical/metabolism , Superoxides/metabolism , Arthrobacter/metabolism , Iron/metabolism , Ligands , Soil Microbiology , Soil Pollutants/metabolism , Deferoxamine/metabolism
2.
Front Immunol ; 15: 1424987, 2024.
Article in English | MEDLINE | ID: mdl-38979423

ABSTRACT

Mucosal-associated invariant T (MAIT) cells are a major subset of innate-like T cells that function at the interface between innate and acquired immunity. MAIT cells recognize vitamin B2-related metabolites produced by microbes, through semi-invariant T cell receptor (TCR) and contribute to protective immunity. These foreign-derived antigens are presented by a monomorphic antigen presenting molecule, MHC class I-related molecule 1 (MR1). MR1 contains a malleable ligand-binding pocket, allowing for the recognition of compounds with various structures. However, interactions between MR1 and self-derived antigens are not fully understood. Recently, bile acid metabolites were identified as host-derived ligands for MAIT cells. In this review, we will highlight recent findings regarding the recognition of self-antigens by MAIT cells.


Subject(s)
Histocompatibility Antigens Class I , Mucosal-Associated Invariant T Cells , Mucosal-Associated Invariant T Cells/immunology , Mucosal-Associated Invariant T Cells/metabolism , Humans , Animals , Histocompatibility Antigens Class I/immunology , Histocompatibility Antigens Class I/metabolism , Minor Histocompatibility Antigens/immunology , Minor Histocompatibility Antigens/metabolism , Autoantigens/immunology , Antigen Presentation/immunology , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/metabolism
3.
Angew Chem Int Ed Engl ; : e202408603, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38980976

ABSTRACT

Pd(II)-catalyzed enantioselective C-H activation has emerged as a versatile platform for constructing point, axial, and planar chirality. Herein, we present an unexpected discovery of a Pd-catalyzed enantioselective cascade ß,γ-methylene C(sp3)-H diarylation of free carboxylic acids using bidentate chiral mono-protected amino thioether ligands (MPAThio), enabling one-step synthesis of a complex chiral 9,10-dihydrophenanthrenes scaffolds with high enantioselectivity. In this process, two methylene C(sp3)-H bonds and three C(sp2)-H bonds were activated, leading to the formation of four C-C bonds and two chiral centers in one pot. A plausible catalytic pathway starts with enantioselective ß,γ-dehydrogenation to form chiral ß,γ-cyclohexene. Intriguingly, this olefin serves as a norbornene-type reagent (presumably assisted by the carboxyl directing effect), relaying two successive Catellani arylation reactions and a C-H alkylation reaction to furnish chiral 9,10-dihydrophenanthrenes along with meta-selective homocoupling products of iodoarene.

4.
Angew Chem Int Ed Engl ; : e202410832, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38975967

ABSTRACT

Atomically precise supported nanocluster catalysts (APSNCs), which feature exact atomic composition, well-defined structures, and unique catalytic properties, offer an exceptional platform for understanding the structure-performance relationship at the atomic level. However, fabricating APSNCs with precisely controlled and uniform metal atom numbers, as well as maintaining a stable structure, remains a significant challenge due to uncontrollable dispersion and easy aggregation during synthetic and catalytic processes. Herein, we developed an effective ligand engineering strategy to construct a Pt6 nanocluster catalyst stabilized on oxidized carbon nanotubes (Pt6/OCNT). The structural analysis revealed that Pt6 nanoclusters in Pt6/OCNT were fully exposed and exhibited a planar structure. Furthermore, the obtained Pt6/OCNT exhibited outstanding acidic HOR performances with a high mass activity of 18.37 A·mgpt-1 along with excellent stability during a 24 h constant operation and good CO tolerance, surpassing those of the commercial Pt/C. Density functional theory (DFT) calculations demonstrated that the unique geometric and electronic structures of Pt6 nanoclusters on OCNT altered the hydrogen adsorption energies on catalytic sites and thus lowered the HOR theoretical overpotential. This work presents a new prospect for designing and synthesizing advanced APSNCs for efficient energy electrocatalysis.

5.
Res Sq ; 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38947028

ABSTRACT

Background-: Glaucoma is a complex multifactorial disease where apoptosis and inflammation represent two key pathogenic mechanisms. However, the relative contribution of apoptosis versus inflammation in axon degeneration and death of retinal ganglion cells (RGCs) is not well understood. In glaucoma, caspase-8 is linked to RGC apoptosis, as well as glial activation and neuroinflammation. To uncouple these two pathways and determine the extent to which caspase-8-mediated inflammation and/or apoptosis contributes to the death of RGCs, we used the caspase-8 D387A mutant mouse (Casp8 DA/DA ) in which a point mutation in the auto-cleavage site blocks caspase-8-mediated apoptosis but does not block caspase-8-mediated inflammation. Methods-: Intracameral injection of magnetic microbeads was used to elevate the intraocular pressure (IOP) in wild-type, Fas deficient Faslpr, and Casp8 DA/DA mice. IOP was monitored by rebound tonometry. Two weeks post microbead injection, retinas were collected for microglia activation analysis. Five weeks post microbead injection, visual acuity and RGC function were assessed by optometer reflex (OMR) and pattern electroretinogram (pERG), respectively. Retina and optic nerves were processed for RGC and axon quantification. Two- and five-weeks post microbead injection, expression of the necrosis marker, RIPK3, was assessed by qPCR. Results-: Wild-type, Faslpr, and Casp8 DA/DA mice showed similar IOP elevation as compared to saline controls. A significant reduction in both visual acuity and pERG that correlated with a significant loss of RGCs and axons was observed in wild-type but not in Faslpr mice. The Casp8 DA/DA mice displayed a significant reduction in visual acuity and pERG amplitude and loss of RGCs and axons similar to that in wild-type mice. Immunostaining revealed equal numbers of activated microglia, double positive for P2ry12 and IB4, in the retinas from microbead-injected wild-type and Casp8 DA/DA mutant mice. qPCR analysis revealed no induction of RIPK3 in wild-type or Casp8 DA/DA mice at two- or five-weeks post microbead injection. Conclusions-: Our results demonstrate that caspase-8-mediated extrinsic apoptosis is not involved in the death of RGCs in the microbead-induced mouse model of glaucoma implicating caspase-8-mediated inflammation, but not apoptosis, as the driving force in glaucoma progression. Taken together, these results identify the caspase-8-mediated inflammatory pathway as a potential target for neuroprotection in glaucoma.

6.
Chempluschem ; : e202400410, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38950125

ABSTRACT

Rh(III) and Ru(II) complexes, [RhCl2(κ4-N2N'P-L)][SbF6] (1) and [RuCl2(κ4-N2N'P-L)] (2), were synthesised using the tetradentate ligand L (L = N,N-bis[(pyridin-2-yl)methyl]-[2-(diphenylphosphino)phenyl]methanamine). The chloride ligand trans to pyridine can be selectively abstracted by AgSbF6, with the ruthenium complex (2) reacting more readily at room temperature compared to the rhodium complex (1) which requires elevated temperatures. Rhodium complexes avoid the second chloride abstraction, whereas ruthenium complexes can form the chiral bisacetonitrile complex [Ru(κ4-N2N'P-L)(NCMe)2][SbF6]2 (5) upon corresponding treatment with AgSbF6. The complex [RhCl2(κ4-N2N'P-L)][SbF6] (1) has also been used to synthesise polymetallic species, such as the tetrametallic complex [{RhCl2(κ4-N2N'P-L)}2(µ-Ag)2][SbF6]4 (6) which was formed with complete diastereoselectivity and chiral molecular self-recognition. In addition, a stable bimetallic mixed-valence complex [{Rh(κ4-N2N'P-L)}{Rh(COD)}(µ-Cl)2][SbF6]2 (7) (COD = cyclooctadiene) was synthesised. These results highlight the significant differences in chloride lability between Rh3+ and Ru2+ complexes and demonstrate the potential for complexes to act as catalyst precursors and ligands in further chemistry applications.

7.
Pain Ther ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963656

ABSTRACT

INTRODUCTION: Central post-stroke pain (CPSP) is a common type of central neuropathic pain (CNeP) that can occur following the onset of stroke. The oral gabapentinoid mirogabalin besylate (mirogabalin) is a selective α2δ ligand that is effective for the treatment of CNeP, including CPSP. However, it is unknown whether the analgesic effect of mirogabalin on CPSP varies in patients with different background factors. METHODS: This was a post hoc subgroup analysis of a multinational, open-label, long-term phase 3 study of mirogabalin for the treatment of CNeP conducted between March 2019 and December 2020. Data from patients with CPSP were stratified by type of stroke (ischemic or hemorrhagic), stroke location (thalamus, putamen, brainstem, or other), presence/absence of motor weakness, median time since stroke (≥ 59 or < 59 months), and median duration of CPSP (≥ 55.5 or < 55.5 months). Efficacy was assessed with the short-form McGill Pain Questionnaire (SF-MPQ), and treatment-emergent adverse events (TEAEs) and adverse drug reactions (ADRs) were recorded. RESULTS: This subanalysis included all 94 patients with CPSP from the phase 3 study; all were Japanese, and the mean age was 65.3 years. The least squares mean change [95% confidence interval] in SF-MPQ visual analog scale (VAS) score from baseline at week 52 (last observation carried forward) was - 17.0 [- 22.1, - 11.9] mm. Among the subgroups, least squares mean changes in SF-MPQ VAS scores were not different. Most TEAEs were mild or moderate; severe TEAEs occurred in six patients (6.4%). Somnolence (25.5%), peripheral edema (13.8%), dizziness (11.7%), and weight gain (6.4%) were the most common ADRs, and the types and frequencies of ADRs were similar among subgroups. CONCLUSION: Mirogabalin was generally effective and well tolerated in patients with CPSP, regardless of background factors such as stroke type or location, presence/absence of motor weakness, time since stroke, and duration of CPSP. TRIAL REGISTRATION: Trial registration number NCT03901352.

8.
Synthesis (Stuttg) ; 56(13): 1967-1978, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38962497

ABSTRACT

The absorption of light by photosensitizers has been shown to offer novel reactive pathways through electronic excited state intermediates, complementing ground state mechanisms. Such strategies have been applied in both photocatalysis and photoredox catalysis, driven by generating reactive intermediates from their long-lived excited states. One developing area is photoinduced ligand-to-metal charge transfer (LMCT) catalysis, in which coordination of a ligand to a metal center and subsequent excitation with light results in the formation of a reactive radical and a reduced metal center. This mini review concerns the foundations and recent developments in ligand-to-metal charge transfer in transition metal catalysis focusing on the organic transformations made possible through this mechanism.

9.
Explor Target Antitumor Ther ; 5(3): 568-580, 2024.
Article in English | MEDLINE | ID: mdl-38966165

ABSTRACT

Background: This article is based on our previous research, which was presented at the 2023 ASCO Annual Meeting I and published in Journal of Clinical Oncology as Conference Abstract (JCO. 2023;41:e16148. doi: 10.1200/JCO.2023.41.16_suppl.e16148). Both anti-programmed death 1/ligand-1 (PD-1/L1) antibody + anti-vascular endothelial growth factor (VEGF) antibody (A + A) and anti-PD-1/L1 antibody + VEGF receptor (VEGFR)-targeted tyrosine kinase inhibitor (A + T) are effective first-line therapies for unresectable hepatocellular carcinoma. However, there lacks evidence from head-to-head comparisons between these two treatments. We conducted a network meta-analysis on the efficacy and safety of them. Methods: After a rigorous literature research, 6 phase III trials were identified for the final analysis, including IMbrave150, ORIENT-32, COSMIC-312, CARES-310, LEAP-002, and REFLECT. The experiments were classified into three groups: A + A, A + T, and intermediate reference group. The primary endpoint was overall survival (OS), and secondary endpoints included progression-free survival (PFS), objective response rate (ORR), and incidence of treatment-related adverse events (TRAEs). Hazard ratio (HR) with 95% confidence intervals (CI) for OS and PFS, odds ratio (OR) for ORR, and relative risk (RR) for all grade and grade ≥3 TRAEs were calculated. Under Bayesian framework, the meta-analysis was conducted using sorafenib as intermediate reference. Results: With the rank probability of 96%, A + A showed the greatest reduction in the risk of death, without significant difference from A + T (HR: 0.82, 95% CI: 0.65-1.04). A + T showed the greatest effect in prolonging PFS and improving ORR with the rank probability of 77%, but there were no statistical differences with A + A. A + A was safer than A + T in terms of all grade of TRAEs (RR: 0.91, 95% CI: 0.82-1.00) and particularly in those grade ≥3 (RR: 0.65, 95% CI: 0.54-0.77). Conclusions: A + A had the greatest probability of delivering the longest OS, while A + T was correlated with larger PFS benefits at the cost of a lower safety rate.

10.
J Neurol Surg B Skull Base ; 85(4): 340-346, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38966297

ABSTRACT

Introduction Pituitary neuroendocrine tumors (PitNETs) are rare skull base tumors which can impart significant disability owing to their locally invasive potential. To date, the gamut of PitNET subtypes remains ill-understood at the ligand-receptor (LR) interactome level, potentially limiting therapeutic options. Here, we present findings from in silico analysis of LR complexes formed by PitNETs with clinical presentations of acromegaly, Cushing's disease, high prolactin production, and without symptoms of hormone hypersecretion. Methods Previously published PitNET gene expression data was acquired from ArrayExpress. These data represented all secretion types. LR interactions were analyzed via a crosstalk score approach. Results Cortisol (CORT) ligand was significantly involved in tumor-to-tumor signaling across all PitNET subtypes but prolactinomas, which evidenced active CORT depletion. Likewise, CCL25 ligand was implicated in 20% of the top LR complex interactions along the tumor-to-stroma signaling axis, but silent PitNETs reported unique depletion of the CCL25 ligand. Along the stroma-to-tumor signaling axis, all clinical PitNET subtypes enriched stromal vasoactive intestinal polypeptide ligand interactions with tumor secretin receptor. All clinical PitNET subtypes enriched stromal DEFB103B (human ß-defensin 103B) ligand interactions with stromal chemokine receptors along the stroma-to-stroma signaling axis. In PitNETs causing Cushing's disease, immune checkpoint ligand CD274 reported high stromal expression, and prolactinomas reported low stromal expression. Moreover, prolactinomas evidenced distinctly high stromal expression of immune-exhausted T cell response marker IL10RA compared with other clinical subtypes. Conclusion Relative crosstalk score analysis revealed a great diversity of LR complex interactions across clinical PitNET subtypes and between solid tumor compartments. More data are needed to validate these findings and exact clinical importance.

11.
Oncol Lett ; 28(2): 388, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38966587

ABSTRACT

Atezolizumab/bevacizumab is the first line of treatment for unresectable hepatocellular carcinoma (HCC), combining immune checkpoint inhibitor and anti-VEGF monoclonal antibodies. Hepatic arterial infusion chemotherapy (HAIC) is administered when the above-described combination fails to confer sufficient clinical benefit. The present study aimed to explore the association between tumor programmed cell death-ligand 1 (PD-L1) positivity and HAIC response. A total of 40 patients with HCC who had undergone HAIC with available biopsy samples obtained between January 2020 and May 2023 were retrospectively enrolled. Tumor response, progression-free survival (PFS), disease control rate (DCR) and overall survival (OS) were evaluated. PD-L1 expression in tumor samples was assessed using a combined positivity score. The response rates of HAIC-treated patients with advanced HCC after failure of atezolizumab/bevacizumab combination therapy were recorded. OS (P=0.9717) and PFS (P=0.4194) did not differ between patients with and without PD-L1 positivity. The objective response rate (P=0.7830) and DCR (P=0.7020) also did not differ based on PD-L1 status. In conclusion, the current findings highlight the consistent efficacy of HAIC, regardless of PD-L1 positivity.

12.
Arch Oral Biol ; 166: 106043, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38968906

ABSTRACT

OBJECTIVE: Combing PD-1/PD-L1 immune checkpoint inhibitors with natural products has exhibited better efficacy than monotherapy. Hence, the purpose of this research was to examine the anti-cancer effects of brusatol, a natural quassinoid-terpenoid derived from Brucea javanica, when used in conjunction with an anti-mouse-PD-1 antibody in a murine head and neck squamous cell carcinoma (HNSCC) model and elucidate underlying mechanisms. DESIGN: A murine HNSCC model and an SCC-15 cell xenograft nude mouse model were established to investigate the anti-cancer effects of brusatol and anti-PD-1 antibody. Mechanistic studies were performed using immunohistochemistry. Cell proliferation, migration, colony formation, and invasion were evaluated by MTT, migration, colony formation, and transwell invasion assays. PD-L1 levels in oral squamous cell carcinoma (OSCC) cells were assessed through qRT-PCR, flow cytometry, and western blotting assays. The impact of brusatol on Jurkat T cell function was assessed by an OSCC/Jurkat co-culture assay. RESULTS: Brusatol improved tumor suppression by anti-PD-1 antibody in HNSCC mouse models. Mechanistic studies revealed brusatol inhibited tumor cell growth and angiogenesis, induced apoptosis, increased T lymphocyte infiltration, and reduced PD-L1 expression in tumors. Furthermore, in vitro assays confirmed brusatol inhibited PD-L1 expression in OSCC cells and suppressed cell migration, colony formation, and invasion. Co-culture assays indicated that brusatol's PD-L1 inhibition enhanced Jurkat T cell-mediated OSCC cell death and reversed the inhibitory effect induced by OSCC cells. CONCLUSIONS: Brusatol improves anti-PD-1 antibody efficacy by targeting PD-L1, suggesting its potential as an adjuvant in anti-PD-1 immunotherapy.

13.
Cancer Lett ; : 217100, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38969158

ABSTRACT

Immune checkpoint inhibitors (ICIs) cause immune-related adverse events (irAEs) across various organ systems including oral health complications such as dry mouth and stomatitis. In this study, we aimed to determine the risk of periodontitis among patients on immune checkpoint inhibitors (ICIs) and to test the associations between ICI-associated periodontitis and other immune-related adverse events (irAEs). We performed a retrospective cohort study involving adult cancer patients between January 2010 and November 2021. Patients on an ICI were propensity score-matched to patients not on an ICI. The primary outcome was the occurrence of periodontitis. ICIs included programmed cell death 1 (PD-1) inhibitors programmed cell death ligand 1 (PD-L1) inhibitors, and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) inhibitors. The risk of periodontitis following ICI use was derived through a Cox proportional hazard model and Kaplan-Meier survival analysis. Overall, 868 patients on an ICI were matched to patients not on an ICI. Among the ICI cohort, 41 (4.7%) patients developed periodontitis. The incidence rate of periodontitis was significantly higher in patients on an ICI than in patients not on an ICI (55.3 vs 25.8 per 100 patient-years, incidence rate ratio=2.14, 95% CI=1.38-3.33). Both the use of PD-L1 inhibitors (multivariate HR=2.5, 95%CI=1.3-4.7) and PD-1 inhibitors (multivariate HR=2.0, 95%CI=1.2-3.2) were associated with the risk of periodontitis. The presence of immune-related periodontitis was associated with better overall survival (not reached vs 17 months, log-rank p-value<0.001), progression-free survival (14.9 vs 5.6 months, log-rank p-value=0.01), and other concomitant immune-related cutaneous adverse events. In conclusion, ICI was associated with an increased risk of periodontitis. Immune-related periodontitis as an irAE was associated with better cancer survival and concomitant cutaneous irAEs.

14.
Biochim Biophys Acta Biomembr ; : 184367, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38969202

ABSTRACT

The natural product curcumin and some of its analogs are known inhibitors of the transmembrane enzyme sarco/endoplasmic reticulum calcium ATPase (SERCA). Despite their widespread use, the curcuminoids' binding site in SERCA and their relevant interactions with the enzyme remain elusive. This lack of knowledge has prevented the development of curcuminoids into valuable experimental tools or into agents of therapeutic value. We used the crystal structures of SERCA in its E1 conformation in conjunction with computational tools such as docking and surface screens to determine the most likely curcumin binding site, along with key enzyme/inhibitor interactions. Additionally, we determined the inhibitory potencies and binding affinities for a small set of curcumin analogs. The predicted curcumin binding site is a narrow cleft in the transmembrane section of SERCA, close to the transmembrane/cytosol interface. In addition to pronounced complementarity in shape and hydrophobicity profiles between curcumin and the binding pocket, several hydrogen bonds were observed that were spread over the entire curcumin scaffold, involving residues on several transmembrane helices. Docking-predicted interactions were compatible with experimental observations for inhibitory potencies and binding affinities. Based on these findings, we propose an inhibition mechanism that assumes that the presence of a curcuminoid in the binding site arrests the catalytic cycle of SERCA by preventing it from converting from the E1 to the E2 conformation. This blockage of conformational change is accomplished by a combination of steric hinderance and hydrogen-bond-based cross-linking of transmembrane helices that require flexibility throughout the catalytic cycle.

15.
J Thorac Dis ; 16(6): 3583-3592, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38983180

ABSTRACT

Background: Limited reports exist regarding postoperative recurrent non-small cell lung cancer (NSCLC) without major driver mutations [epidermal growth factor receptor (EGFR) mutations or anaplastic lymphoma kinase (ALK) rearrangements] treated with immune checkpoint inhibitors (ICIs) when programmed cell death ligand 1 (PD-L1) is expressed in a real-world setting. The aim of this study was to evaluate the effect of ICIs for those NSCLC. Methods: We enrolled 255 patients with postoperative recurrent NSCLC lacking EGFR mutations or ALK rearrangements who underwent lobectomy or more extensive resection between 2012 and 2021. Factors associated with post-recurrence survival (PRS) were determined using the Cox proportional hazards model. PRS was analyzed using Kaplan-Meier curves and compared using the log-rank test. Results: Multivariable analysis demonstrated that squamous cell carcinoma, pathological stage III, and an Eastern Cooperative Oncology Group (ECOG) performance status ≥2 were significantly associated with worse PRS. Conversely, ICI use at first line was associated with improved PRS. Patients who used ICIs during the first line and subsequent therapies had better PRS than those who received chemotherapy alone. Among patients who used ICIs, there was no significant difference in response rate at the first line, nor in PRS among those with PD-L1 expression ≥50%, 1-49%, and <1% in surgically resected specimens. Conclusions: ICI use at any treatment line improved the PRS of NSCLC patients without major driver mutations, irrespective of PD-L1 expression, in a real-world setting.

16.
J Thorac Dis ; 16(6): 3909-3922, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38983179

ABSTRACT

Background: Immunochemotherapy was an emerging neoadjuvant treatment mode that can potentially benefit patients with esophageal carcinoma, but its synergistic mechanism and impact on the tumor immune microenvironment were still unclear. The purpose of this study was to investigate the outcomes of neoadjuvant chemotherapy (nCT) and neoadjuvant immunochemotherapy (nICT) in tumor microenvironment (TME) remodeling among patients with esophageal squamous cell carcinoma (ESCC) and to evaluate the prognostic value of immune-related biomarkers and clinicopathological characteristics. Methods: Patients with locally advanced ESCC who underwent neoadjuvant therapy followed by esophagectomy at the Fourth Hospital of Hebei Medical University between December 2019 and March 2022 were enrolled in this retrospective study. We examined TME features and immune antigen-related biomarkers before and after neoadjuvant therapy. Logistic and Cox regression model were used to evaluate the correlation between these factors and other clinical features and outcomes. Results: A total of 50 eligible participants were analyzed, including 31 males (62%), 25 patients of ≥65 years old, 4/28/18 of upper/middle/lower thoracic cancer, 25/17/8 of poor/moderate/high tumor differentiation, 8/42 of cT1+2/T3+4 stages and 30/20 of cN0/N+ stages. In the entire cohort, the rates of pathological complete response (pCR) and major pathological response (MPR) were 18% and 30%, respectively. pCR rates were 7.1% and 22.2% (χ2=0.699; P=0.40) MPR rates were 7.1% and 38.9% (χ2=4.837; P=0.03) in the nCT and nICT groups, respectively. Compared with the non-pCR patients, the pCR patients had a higher baseline programmed cell death ligand-1 (PD-L1) tumor proportion score (TPS) positive expression rate (16.7% vs. 77.8%, χ2=13.089; P<0.001). Following neoadjuvant therapy, the expression rates of PD-L1, CD3+ T cells, and CD8+ T cells in the tumor tissue was higher in the nICT group compared to the nCT group (P<0.05). Deficient expression of mismatch repair (MMR) genes was only observed in one patient (2%). Among patient-related biomarkers, lymphocyte and neutrophil counts decreased after treatment, with no significant changes in the neutrophil-to-lymphocyte ratio or platelet-to-lymphocyte ratio (PLR). Cox regression analysis showed that pretreatment, well-differentiated tumors and positive PD-L1 status were positive predictors of MPR (P<0.05). MPR was an independent predictor of disease-free survival (DFS) (P=0.03). Conclusions: Compared to nCT, nICT could more significantly upregulates PD-L1 TPS, PD-L1 combined positive score (CPS), CD3+ T cells, and CD8+ T cells. Pretreatment tumor differentiation and PD-L1 TPS level could be predictive of MPR. Our findings suggested that the combination of chemotherapy and immunotherapy may be more beneficial for activating anti-tumor immunity in the TME.

17.
J Pharm Biomed Anal ; 249: 116345, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38986348

ABSTRACT

Ophiocordyceps xuefengensis (O. xuefengensis), the sister taxon of Ophiocordyceps sinensis (O. sinensis), is consumed as a "tonic food" due to its health benefits. However, little is known regarding the chemistry and bioactivity of O. xuefengensis. In this study, we characterized 80 indole-based alkaloids in the ethyl acetate fraction of O. xuefengensis by high performance liquid chromatography-quadrupole time of flight mass spectrometry (HPLC-Q-TOF-MS/MS), of which 54 indole-based alkaloids were identified as possibly new compounds. Furthermore, 29 of these compounds were established as potential anti-cancer compounds by ligand fishing combined with HPLC-Q-TOF-MS/MS. Moreover, molecular docking identified the NH- and OH- groups of these compounds as the key active groups. The present study has expanded the knowledge on the characteristic indole-based alkaloids and anti-cancer activity of O. xuefengensis.

18.
J Chromatogr A ; 1730: 465141, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38986402

ABSTRACT

Functional protein immobilization forms the basis for bio-detections. A series of one-point, site-specific immobilization methods have been developed, however, it still remains as a challenge how to avoid the proteins to move in all directions as well as conveniently regenerate the bio-devices. Herein, we have developed a bivalent affinity binding-inspired method for PPARγ immobilization using DNA aptamer and nickel-nitrilotriacetic acid (Ni2+-NTA) chelation. The specific DNA aptamer (Apt 2) was selected by an on-column systematic evolution of ligands by exponential enrichment (SELEX) method with affinity of (1.57 ± 0.15) × 105 M-1, determined by isothermal titration calorimetry (ITC). Apt 2 and nickel-nitrilotriacetic acid (Ni2+-NTA) were modified on macroporous silica gels via L-α-allylglycine as a linker. They respectively interacted with PPARγ and 6×His tag via bivalent affinity binding for the receptor immobilization. After comprehensive surface characterization, PPARγ was proved to be successful immobilized. Chromatographic studies revealed that the immobilized PPARγ has conformation selectivity, which discriminated agonist and antagonist of the receptor. Ligand-binding parameters (affinity and rate constant) of four agonists (rosiglitazone, pioglitazone, troglitazone, and magnolol) with PPARγ were determined. Troglitazone showed the lowest dissociation rate constant. The binding affinities (3.28 × 107, 1.91 × 106, 2.25 × 107, and 2.43 × 107 M-1) were highly consistent with the data obtained using purified receptor in solution (2.16 × 107, 4.52 × 106, 1.20 × 107, and 1.56 × 107 M-1), offering reliable bio-detection method for PPARγ and its ligands. Due to the biocompatibility of nuclear receptor with DNA, it is conceivable that the bivalent affinity-based method will be a general method for the immobilization of other nuclear receptors, which may provide selective conformation and improved ligand-binding activity for the receptors.

19.
Int J Biol Macromol ; 275(Pt 2): 133716, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38977049

ABSTRACT

In the present study, one mononuclear Cu(II) [CuL(SCN)] (1) and one mononuclear Co(II) [CoLN3] (2) complexes, with a Schiff base ligand (HL) formed by condensation of 2-picolylamine and salicylaldehyde, have been successfully developed and structurally characterized. The square planer geometry of both complexes is fulfilled by the coordination of one deprotonated ligand and one ancillary ligand SCN-(1) or N3-(2) to the metal centre. Binding affinities of both complexes with deoxyribonucleic acid (DNA) and human serum albumin (HSA) are investigated using several biophysical and spectroscopic techniques. High values of the macromolecule-complex binding constants and other results confirm the effectiveness of both complexes towards binding with DNA and HSA. The determined values of the thermodynamic parameters support spontaneous interactions of both complexes with HSA, while fluorescence displacement and DNA melting studies establish groove-binding interactions with DNA for both complexes 1 and 2. The molecular modelling study validates the experimental findings. Both complexes are subjected to an MTT test establishing the anticancer property of complex 1 with lower risk to normal cells, confirmed by the IC50 values of the complex for HeLa cancer cells and HEK normal cells. Finally, a nuclear staining analysis reveals that the complexes have caused apoptotic cell death.

20.
Sci Rep ; 14(1): 15793, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982197

ABSTRACT

Crystals of YGa3(BO3)4, YAl3(BO3)4, EuGa3(BO3)4 and EuAl3(BO3)4 with copper alloy were studied by electron paramagnetic resonance and X-ray diffraction analysis. The lattice parameters and coordinates of copper-doped boron atoms were determined. The study of EPR spectra showed that copper is in the divalent state and replaces aluminum ions with C2 node symmetry. In YAl3(BO3)4:Cu crystals, a ligand structure exists due to the interaction of copper electrons with yttrium nuclei. The parameters of the spin Hamiltonian describing the behavior of the Cu2+ spectrum have been determined. The deviation of the Z-axis spectra from the C3 axis by 54(1)° is due to Jahn-Teller vibronic interaction and monoclinic distortion. In the EuGa3(BO3)4 crystal, a new spectrum 2 was found, which also belongs to divalent copper but is observed at an excited state 31 cm-1 away from the ground state. Above 70 K, an isotropic EPR line with a width of 450 Gs, g = 2.1, appears and exists up to room temperature.

SELECTION OF CITATIONS
SEARCH DETAIL
...