ABSTRACT
The development of palladium-catalyzed fluorination with biaryl monophosphine ligands has faced two important problems that limit its application for bromoarenes: the formation of regioisomers and insufficient catalysis for heteroaryl substrates as bromothiophene derivatives. Overcoming these problems requires more ligand design. In this work, reliable theoretical calculations were used to elucidate important ligand features necessary for achieving more rate acceleration and selectivity. These features include increasing the ligand-substrate repulsion and creating a negative charge in the space around the fluoride ion bonded to the palladium. The investigated L5 ligand presents these features, and the calculations predict that this ligand completely suppresses the regioisomer formation in the difficult case of 4-bromoanisole. In addition, the free energy barriers are decreased by 2-3 kcal mol-1 in comparison with the catalysis involving the AlPhos ligand. Thus, the present study points out a direction for new developments in palladium-catalyzed fluorination.
ABSTRACT
Herein, the synthesis and characterization of the first family of multipodal ligands with a Tröger's base framework designed for the preparation of luminescent lanthanide(III) complexes are reported. Eight ligands were designed and synthesized using different strategies, including alkylation reactions, amide couplings, and Ugi multicomponent reactions. All the ligands bear carboxylate groups for the coordination of the lanthanide(III) ions, with the lanthanide(III)-sensitizing units consisting of the Tröger's base framework itself or attached benzamides. Upon irradiation of the chromophoric ligands, green terbium(III) emission was efficiently generated, whereas europium(III) emission was negligible. The geometry and substitution pattern of the ligands allow control of the stoichiometry of the species formed and the TbIII luminescence sensitization efficiency, showing that para-substitution patterns are more efficient than meta substitution for the formation of coordination compounds with lower TbIII /ligand ratio. We propose that the species formed are self-assembled 2:2 or 2:4 metallosupramolecular structures.