Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
Add more filters










Publication year range
1.
J Photochem Photobiol B ; 256: 112939, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38761748

ABSTRACT

The visible light spectrum (400-700 nm) powers plant photosynthesis and innumerable other biological processes. Photosynthesis curves plotted by pioneering photobiologists show that amber light (590-620 nm) induces the highest photosynthetic rates in this spectrum. Yet, both red and blue light are viewed superior in their influence over plant growth. Here we report two approaches for quantifying how light wavelength photosynthesis and plant growth using light emitting diodes (LEDs). Resolved quantum yield spectra of tomato and lettuce plants resemble those acquired earlier, showing high quantum utilization efficiencies in the 420-430 nm and 590-620 nm regions. Tomato plants grown under blue (445 nm), amber (595 nm), red (635 nm), and combined red-blue-amber light for 14 days show that amber light yields higher fresh and dry mass, by at least 20%. Principle component analysis shows that amber light has a more pronounced and direct effect on fresh mass, whereas red light has a major effect on dry mass. These data clarify amber light's primary role in photosynthesis and suggest that bandwidth determines plant growth and productivity under sole amber lighting. Findings set precedence for future work aimed at maximizing plant productivity, with widespread implications for controlled environment agriculture.


Subject(s)
Light , Photosynthesis , Solanum lycopersicum , Photosynthesis/radiation effects , Solanum lycopersicum/growth & development , Solanum lycopersicum/radiation effects , Solanum lycopersicum/metabolism , Lactuca/growth & development , Lactuca/radiation effects , Lactuca/metabolism
2.
Int J Food Microbiol ; 419: 110750, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38776709

ABSTRACT

Brown rot symptoms may be linked to alterations in the gene expression pattern of genes associated with cell wall degradation. In this study, we identify key carbohydrate-active enzymes (CAZymes) involved in cell wall degradation by Monilinia fructicola, including pme2 and pme3 (pectin methylesterases), cut1 (cutinase) and nep2 (necrosis-inducing factor). The expression of these genes is significantly modulated by red and blue light during early nectarine infection. The polygalacturonase gene pg1 and the cellulase gene cel1 also exhibit photoinduction albeit to a lesser extent. Red and blue light cause an acceleration in the initial stages of brown rot development caused by M. fructicola on nectarines. Disease symptoms like tissue maceration were evident after an incubation period of 24 h followed by 14 h of light exposition, in contrast to the usual incubation period of 48 to 72 h. Furthermore, the culture media exerts an impact on gene regulation, suggesting a complex interplay between light and nutrient signalling pathways in M. fructicola. In addition, we observe that red light promotes colony growth on a 12 h photoperiod and consistently reduces conidiation. In contrast, blue light hampers growth rate on both the 12 h and the 8 h photoperiod but only diminishes conidiation on the 12 h photoperiod. These findings enhance our comprehension of genes associated with cell wall degradation and the environmental factors influencing brown rot development.


Subject(s)
Ascomycota , Cell Wall , Cell Wall/metabolism , Ascomycota/genetics , Ascomycota/metabolism , Plant Diseases/microbiology , Light , Gene Expression Regulation, Fungal , Fungal Proteins/genetics , Fungal Proteins/metabolism
3.
Bioresour Technol ; 397: 130489, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38403170

ABSTRACT

Microalgae are photosynthetic microorganisms with the potential to mitigate the atmospheric greenhouse effect by carbon fixation. However, their growth is typically limited by light availability. A wavelength converter utilizing red, blue, and green quantum dots (QDs) was developed to optimize light quality for enhancing microalgal production. The growth, lipid content, and eicosapentaenoic acid titer of Nannochloropsis increased by 11.2%, 9.5%, and 15.5% with red QDs, respectively. The biomass and triacylglycerol content of Phaeodactylum tricornutum increased by 8.6% and 35.0%, respectively. Simultaneously, biodiesel production was accelerated in Nannochloropsis (20.2%) and P. tricornutum (11.6%), and improved with increased cetane number and reduced iodine value. Furthermore, red QDs increased the growth and biomass accumulation of Nannochloropsis under low light, while green QDs shielded Nannochloropsis from photoinhibition under high light. This customizable QD-based methodology overcomes microalgal light limitations, demonstrating a universally applicable approach to improve microalgal cultivation and biochemical component production.


Subject(s)
Microalgae , Quantum Dots , Stramenopiles , Microalgae/metabolism , Light , Photosynthesis , Triglycerides , Biomass , Biofuels
4.
Lasers Med Sci ; 39(1): 26, 2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38214813

ABSTRACT

Photobiomodulation (PBM), an emerging and non-invasive intervention, has been shown to benefit the nervous system by modifying the mitochondrial cytochrome c-oxidase (CCO) enzyme, which has red (620-680 nm) or infrared (760-825 nm) spectral absorption peaks. The effect of a single 810-nm wavelength with a combination of 810 nm and 660 nm lights in the brain metabolic activity of male and female rats was compared. PBM, with a wavelength of 810 nm and a combination of 810 nm and 660 nm, was applied for 5 days on the prefrontal cortex. Then, brain metabolic activity in the prefrontal area, hippocampus, retrosplenial, and parietal cortex was explored. Sex differences were found in cortical and subcortical regions, indicating higher male brain oxidative metabolism, regardless of treatment. CCO activity in the cingulate and prelimbic area, dentate gyrus, retrosplenial and parietal cortex was enhanced in both treatments (810 + 660 nm and 810 nm). Moreover, using the combination of waves, CCO increased in the infralimbic area, and in CA1 and CA3 of the hippocampus. Thus, employment of a single NIR treatment or a combination of red to NIR treatment led to slight differences in CCO activity across the limbic system, suggesting that a combination of lights of the spectrum may be relevant.


Subject(s)
Low-Level Light Therapy , Rats , Male , Female , Animals , Electron Transport Complex IV/metabolism , Oxidation-Reduction , Brain/metabolism , Hippocampus/metabolism
5.
Food Chem ; 439: 138116, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38064830

ABSTRACT

The strong-fragrant rapeseed oil (SFRO) is a popular rapeseed oil in China with a low refining degree only degumming with hot water, which remarkably affects its storage stability. The present study compared the overall changes of physical/chemical/nutrient quality of FROs at various temperatures, light wavelengths and headspace volumes. Results showed that red light (680 nm) had a most significant adverse effect on the overall quality of SFRO with the higher correlation coefficients to PV and TOTOX of 0.71 and 0.70, and lower correlation coefficients to chlorophyll and tocopherol of -0.95 and -0.53, respectively. Further studies revealed that red light accelerated the oxidation of fragrant rapeseed oils by degrading chlorophyll to initiate the photo-oxidation process and synthesize high amount of secondary oxidation products including aliphatic and aromatic oxidized compounds from linolenic acid. These findings provided a reference to control the deterioration of FROs by preventing the transmittance of red light.


Subject(s)
Brassica napus , Rapeseed Oil , Oxidation-Reduction , Tocopherols , Chlorophyll , Plant Oils
6.
Article in English | MEDLINE | ID: mdl-37972916

ABSTRACT

Light is a strong stimulus for the sensory and endocrine systems. The opsins constitute a large family of proteins that can respond to specific light wavelengths. Hippocampus reidi is a near-threatened seahorse that has a diverse color pattern and sexual dimorphism. Over the years, H. reidi's unique characteristics, coupled with its high demand and over-exploitation for the aquarium trade, have raised concerns about its conservation, primarily due to their significant impact on wild populations. Here, we characterized chromatophore types in juvenile and adult H. reidi in captivity, and the effects of specific light wavelengths with the same irradiance (1.20 mW/cm2) on color change, growth, and survival rate. The xanthophores and melanophores were the major components of H. reidi pigmentation with differences in density and distribution between life stages and sexes. In the eye and skin of juveniles, the yellow (585 nm) wavelength induced a substantial increase in melanin levels compared to the individuals kept under white light (WL), blue (442 nm), or red (650 nm) wavelengths. In addition, blue and yellow wavelengths led to a higher juvenile mortality rate in comparison to the other treatments. Adult seahorses showed a rhythmic color change over 24 h, the highest reflectance values were obtained in the light phase, representing a daytime skin lightening for individuals under WL, blue and yellow wavelength, with changes in the acrophase. The yellow wavelength was more effective on juvenile seahorse pigmentation, while the blue wavelength exerted a stronger effect on the regulation of adult physiological color change. Dramatic changes in the opsin mRNA levels were life stage-dependent, which may infer ontogenetic opsin functions throughout seahorses' development. Exposure to specific wavelengths differentially affected the opsins mRNA levels in the skin and eyes of juveniles. In the juveniles, skin transcripts of visual (rh1, rh2, and lws) and non-visual opsins (opn3 and opn4x) were higher in individuals under yellow light. While in the juvenile's eyes, only rh1 and rh2 had increased transcripts influenced by yellow light; the lws and opn3 mRNA levels were higher in juveniles' eyes under WL. Prolonged exposure to yellow wavelength stimulates a robust increase in the antioxidant enzymes sod1 and sod2 mRNA levels. Our findings indicate that changes in the visible light spectrum alter physiological processes at different stages of life in H. reidi and may serve as the basis for a broader discussion about the implications of artificial light for aquatic species in captivity.


Subject(s)
Opsins , Smegmamorpha , Humans , Animals , Opsins/genetics , Opsins/metabolism , Skin Pigmentation , Smegmamorpha/genetics , Smegmamorpha/metabolism , Oxidation-Reduction , RNA, Messenger/metabolism
7.
Bioresour Technol ; 394: 130222, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38109981

ABSTRACT

Purple non-sulphur bacteria can only capture up to 10 % light spectra and only 1-5 % of light is converted efficiently for biohydrogen production. To enhance light capture and conversion efficiencies, it is necessary to understand the impact of various light spectra on light harvesting pigments. During photo-fermentation, Rhodobacter sphaeroides KKU-PS1 cultivated at 30 °C and 150 rpm under different light spectra has been investigated. Results revealed that red light is more beneficial for biomass accumulation, whereas green light showed the greatest impact on photo-fermentative biohydrogen production. Light conversion efficiency by green light is 2-folds of that under control white light, hence photo-hydrogen productivity is ranked as green > red > orange > violet > blue > yellow. These experimental data demonstrated that green and red lights are essential for photo-hydrogen and biomass productions of R. sphaeroides and a clearer understanding that possibly pave the way for further photosynthetic enhancement research.


Subject(s)
Rhodobacter sphaeroides , Fermentation , Light , Hydrogen , Green Light
8.
Photochem Photobiol Sci ; 22(11): 2687-2698, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37642905

ABSTRACT

Microalgae are a source of highly valuable bioactive metabolites and a high-potential feedstock for environmentally friendly and sustainable biofuel production. Recent research has shown that microalgae benefit the environment using less water than conventional crops while increasing oxygen production and lowering CO2 emissions. Microalgae are an excellent source of value-added compounds, such as proteins, pigments, lipids, and polysaccharides, as well as a high-potential feedstock for environmentally friendly and sustainable biofuel production. Various factors, such as nutrient concentration, temperature, light, pH, and cultivation method, effect the biomass cultivation and accumulation of high-value-added compounds in microalgae. Among the aforementioned factors, light is a key and essential factor for microalgae growth. Since photoautotrophic microalgae rely on light to absorb energy and transform it into chemical energy, light has a significant impact on algal growth. During micro-algal culture, spectral quality may be tailored to improve biomass composition for use in downstream bio-refineries and boost production. The light regime, which includes changes in intensity and photoperiod, has an impact on the growth and metabolic composition of microalgae. In this review, we investigate the effects of red, blue, and UV light wavelengths, different photoperiod, and different lighting systems on micro-algal growth and their valuable compounds. It also focuses on different micro-algal growth, photosynthesis systems, cultivation methods, and current market shares.


Subject(s)
Microalgae , Microalgae/metabolism , Biofuels , Photoperiod , Photosynthesis , Biomass
9.
Insects ; 14(5)2023 May 15.
Article in English | MEDLINE | ID: mdl-37233093

ABSTRACT

Light traps play a crucial role in monitoring pest populations. However, the phototactic behavior of adult Asian longhorned beetle (ALB) remains enigmatic. To provide a theoretical foundation to select the suitable light emitting diode (LED)-based light sources used for monitoring ALB, we compared the effect of exposure time on the phototactic response rates of adults at wavelengths of 365 nm, 420 nm, 435 nm, and 515 nm, and found that the phototactic rate increased gradually when the exposure time was prolonged, but there was no significant difference between different exposure times. We evaluated the effect of diel rhythm and found the highest phototactic rate at night (0:00-2:00) under 420 nm and 435 nm illumination (74-82%). Finally, we determined the phototactic behavioral response of adults to 14 different wavelengths and found both females and males showed a preference for violet wavelengths (420 nm and 435 nm). Furthermore, the effect of the light intensity experiments showed that there were no significant differences in the trapping rate between different light intensities at 120 min exposure time. Our findings demonstrate that ALB is a positively phototactic insect, showing that 420 nm and 435 nm are the most suitable wavelengths for attracting adults.

10.
Cells ; 12(9)2023 04 23.
Article in English | MEDLINE | ID: mdl-37174623

ABSTRACT

Different light wavelengths display diverse effects on fruit quality formation and anthocyanin biosynthesis. Blueberry is a kind of fruit rich in anthocyanin with important economic and nutritional values. This study explored the effects of different light wavelengths (white (W), red (R), blue (B) and yellow (Y)) on fruit quality and gene expression of anthocyanin biosynthesis in blueberry. We found that the B and W treatments attained the maximum values of fruit width, fruit height and fruit weight in blueberry fruits. The R treatment attained the maximum activities of superoxide dismutase (SOD) and peroxidase (POD), and the Y treatment displayed the maximum contents of ascorbic acid (AsA), glutathione (GSH) and total phenol in fruits, thus improving blueberry-fruit antioxidant capacity. Interestingly, there were differences in the solidity-acid ratio of fruit under different light-wavelength treatments. Moreover, blue light could significantly improve the expression levels of anthocyanin biosynthesis genes and anthocyanin content in fruits. Correlation and principal component analysis showed that total acid content and antioxidant enzymes were significantly negatively correlated with anthocyanin content in blueberry fruits. These results provide new insights for the application of light wavelength to improve blueberry fruit quality and anthocyanin content.


Subject(s)
Blueberry Plants , Vaccinium , Antioxidants/metabolism , Blueberry Plants/genetics , Blueberry Plants/metabolism , Anthocyanins/metabolism , Vaccinium/genetics , Vaccinium/metabolism , Fruit/metabolism , Acids/metabolism , Glutathione/metabolism , Gene Expression
11.
Water Res ; 232: 119434, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36746030

ABSTRACT

The low efficiency of conventional complete denitrification, as well as the unstable nitrite supply for partial-denitrification coupled anammox (PD/A) restrict the efficient removal of nitrogen from industrial wastewaters. Herein, we proposed an optical strategy to bidirectionally regulate denitrification by introducing lights at different wavelengths, and the underlying mechanisms were elucidated accordingly. It turned out that yellow light at wavelength of 590 nm accelerated denitrification by 35.4%, while blue light delayed denitrification with stable nitrite accumulation above 86.9% and high nitrate removal (99.8%). Microbial physiology and viability further supported the positive effects of yellow light on microbial activity. Additionally, despite the sluggish denitrification aroused by blue light, negligible cellular damage was observed. Antioxidant capability divergence, microbial community shifting and metabolic flux redirection contributed to the wavelength-dependent effects. Halomonas and Pseudomonas were identified as high-credit taxonomic biomarkers of yellow and blue light. As revealed by metabolomics, pantothenate and CoA biosynthesis, glutamate metabolism and alkaloid biosynthesis presented high impact values. Co-analysis of metabolomics and metagenomics based on microbial topology further distinguished pivotal metabolic pathways and genes. Oxidative phosphorylation contributed to the divergent denitrification performance through electron transfer chains, whereas glutamate and glutathione metabolism contributed to oxidative stress alleviation and mediated the metabolic flux between peroxisome and nitrogen metabolism. This study shed a light on the application of optical strategy to regulate denitrification performance and achieve either complete denitrification or PD/A.


Subject(s)
Microbiota , Nitrites , Denitrification , Oxidation-Reduction , Bioreactors , Nitrogen , Sewage
12.
J Sleep Res ; 32(4): e13837, 2023 08.
Article in English | MEDLINE | ID: mdl-36793180

ABSTRACT

The manipulation of light exposure in the evening has been shown to modulate sleep, and may be beneficial in a military setting where sleep is reported to be problematic. This study investigated the efficacy of low-temperature lighting on objective sleep measures and physical performance in military trainees. Sixty-four officer-trainees (52 male/12 female, mean ± SD age: 25 ± 5 years) wore wrist-actigraphs for 6 weeks during military training to quantify sleep metrics. Trainee 2.4-km run time and upper-body muscular-endurance were assessed before and after the training course. Participants were randomly assigned to either: low-temperature lighting (LOW, n = 19), standard-temperature lighting with a placebo "sleep-enhancing" device (PLA, n = 17), or standard-temperature lighting (CON, n = 28) groups in their military barracks for the duration of the course. Repeated-measures ANOVAs were run to identify significant differences with post hoc analyses and effect size calculations performed where indicated. No significant interaction effect was observed for the sleep metrics; however, there was a significant effect of time for average sleep duration, and small benefits of LOW when compared with CON (d = 0.41-0.44). A significant interaction was observed for the 2.4-km run, with the improvement in LOW (Δ92.3 s) associated with a large improvement when compared with CON (Δ35.9 s; p = 0.003; d = 0.95 ± 0.60), but not PLA (Δ68.6 s). Similarly, curl-up improvement resulted in a moderate effect in favour of LOW (Δ14 repetitions) compared with CON (Δ6; p = 0.063; d = 0.68 ± 0.72). Chronic exposure to low-temperature lighting was associated with benefits to aerobic fitness across a 6-week training period, with minimal effects on sleep measures.


Subject(s)
Military Personnel , Humans , Male , Female , Young Adult , Adult , Sleep , Exercise , Circadian Rhythm
13.
Plants (Basel) ; 11(21)2022 Nov 04.
Article in English | MEDLINE | ID: mdl-36365435

ABSTRACT

Light is one of the most crucial parameters for enclosed cannabis (Cannabis sativa) production, as it highly influences growth, secondary metabolite production, and operational costs. The objective of this study was to investigate and evaluate the impact of six light spectra on C. sativa ('Babbas Erkle Cookies' accession) growth traits and secondary metabolite (cannabinoid and terpene) profiles. The light spectra evaluated included blue (430 nm), red (630 nm), rose (430 + 630 nm, ratio 1:10), purple (430 + 630 nm, ratio 2:1), and amber (595 nm) LED treatments, in addition to a high-pressure sodium (HPS, amber-rich light) treatment as a control. All the LED light treatments had lower fresh mean inflorescence mass than the control (HPS, 133.59 g plant-1), and monochromatic blue light yielded the least fresh inflorescence mass (76.39 g plant-1). Measurement of Δ9-tetrahydrocannabinol (THC) concentration (%) and total yield (g plant-1) showed how inflorescence mass and THC concentration need to be analyzed conjointly. Blue treatment resulted in the highest THC concentration (10.17% m/m), yet the lowest THC concentration per plant (1.44 g plant-1). The highest THC concentration per plant was achieved with HPS (2.54 g plant-1). As with THC, blue light increased cannabigerol (CBG) and terpene concentration. Conversely, blue light had a lesser impact on cannabidiol (CBD) biosynthesis in this C. sativa chemotype. As the combined effects of the light spectrum on both growth traits and secondary metabolites have important ramifications for the industry, the inappropriate spectral design could cause a reduction in cannabinoid production (20-40%). These findings show promise in helping producers choose spectral designs that meet specific C. sativa production goals.

14.
Chemosphere ; 307(Pt 1): 135533, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35787884

ABSTRACT

Microalgae biomass production with starch wastewater (SW) is a promising approach to realize waste recovery and cost reduction due to the inherent copious nutrients and nontoxic compounds in SW. However, the application of this technique is significantly hindered by low biomass production on account of the poor photosynthetic efficiency of microalgae. In this regard, we proposed a photo-regulation strategy characterized by the adjusting of numbers of light/dark (L/D) cycles, and compositions of light wavelength, which was proved to be an effective method for stimulating intracellular photo electron transfer and enhancing photosynthetic efficiency, to boost microalgae biomass accumulation. Additionally, responses of the microalgae photo-biochemical conversion, and the wastewater treatment performance at various number of L/D cycles and light wavelengths were discussed. The experimental results indicated that the biomass production increased when the L/D period was increased from 2 h:2 h-12 h:12 h. When the L/D period was 2 h:2 h, the biomass production reached a maximum value of 1.28 g L-1, which was 19.6% higher than that of the control group when the L/D period was 12 h:12 h. Furthermore, with respect to microalgae growth under monochromatic light, the maximum biomass concentration (1.25 g L-1) and lipid content (32.2%) of Chlorella were achieved under blue light; whereas, the minimum values were attained under red light (1.05 g L-1 and 19.3%, respectively). When the red light and blue light were mixed and supplied, the microalgae biomass productivity was higher than that under white light, and the highest lipid productivity was 109.0 mg-1 L-1 d under a blue: red ratio of 2:1. Moreover, gas chromatography analysis demonstrated that the methyl in the range of C16-C18 in the system was higher than 70%. Fatty acid methyl esters (FAMEs) containing palmitic acid (C16:0) and oleic acid (C18:1) are beneficial for production of biodiesel, and the quality of fatty acid methyl ester used in biodiesel production can be improved using microalgae cultured under the mixed wavelengths of blue and red. Finally, Chlorella was cultured in PBR and reached the peak concentration of 2.45 g L-1 by semi-continuous process with the HRT regulation.


Subject(s)
Chlorella vulgaris , Microalgae , Biofuels/analysis , Biomass , Esters , Fatty Acids/analysis , Oleic Acid , Palmitic Acid , Starch , Wastewater/analysis
15.
Molecules ; 27(10)2022 May 18.
Article in English | MEDLINE | ID: mdl-35630699

ABSTRACT

Light quality has been reported to influence the phytochemical profile of broccoli sprouts/microgreens; however, few studies have researched the influence on mature broccoli. This is the first study to investigate how exposing a mature glasshouse grown vegetable brassica, Tenderstem® broccoli, to different light wavelengths before harvest influences the phytochemical content. Sixty broccoli plants were grown in a controlled environment glasshouse under ambient light until axial meristems reached >1 cm diameter, whereupon a third were placed under either green/red/far-red LED, blue LED, or remained in the original compartment. Primary and secondary spears were harvested after one and three weeks, respectively. Plant morphology, glucosinolate, carotenoid, tocopherol, and total polyphenol content were determined for each sample. Exposure to green/red/far-red light increased the total polyphenol content by up to 13% and maintained a comparable total glucosinolate content to the control. Blue light increased three of the four indole glucosinolates studied. The effect of light treatments on carotenoid and tocopherol content was inconclusive due to inconsistencies between trials, indicating that they are more sensitive to other environmental factors. These results have shown that by carefully selecting the wavelength, the nutritional content of mature broccoli prior to harvest could be manipulated according to demand.


Subject(s)
Brassica , Brassica/chemistry , Carotenoids , Glucosinolates/chemistry , Lighting , Phytochemicals , Polyphenols , Tocopherols
16.
J Fungi (Basel) ; 8(1)2022 Jan 05.
Article in English | MEDLINE | ID: mdl-35049990

ABSTRACT

Light is perceived by photoreceptors in fungi and further integrated into the stress-activated MAPK HOG pathway, and thereby potentially activates the expression of genes for stress responses. This indicates that the precise control of light conditions can likely improve the conidial yield and stress resistance to guarantee the low cost and long shelf life of Trichoderma-based biocontrol agents and biofertilizers. In this study, effects of wavelengths and intensities of light on conidial yield and stress tolerance to osmotic, oxidative and pH stresses in Trichoderma guizhouense were investigated. We found that 2 µmol photons/(m2 × s) of blue light increased the conidial yield more than 1000 folds as compared to dark condition and simultaneously enhanced conidial stress resistance. The enhanced conidial stress resistance is probably due to the upregulated stress-related genes in blue light, which is under the control of the blue light receptor BLR1 and the MAP kinase HOG1.

17.
Planta ; 255(1): 11, 2021 Dec 02.
Article in English | MEDLINE | ID: mdl-34855030

ABSTRACT

MAIN CONCLUSION: Red light (RL) accelerated starch accumulation in S. polyrhiza, but higher protein content under blue light (BL) was associated with the upregulation of most DEGs enriched for specific GO terms and KEGG pathways. Red light (RL) and blue light (BL) greatly influence the growth and physiological processes of duckweed. Physiological and molecular mechanisms underlying the response of duckweed to different light qualities remain unclear. This study employed physiological and transcriptomic analyses on duckweed, Spirodela polyrhiza "5510", to elucidate its differential response mechanisms under RL, BL, and white light conditions. Changes in growth indicators, ultrastructure alterations, metabolite accumulations, and differentially expressed genes (DEGs) were measured. The results showed that BL promoted both biomass and protein accumulations, while RL promoted starch accumulation. A total of 633, 518, and 985 DEGs were found in white-vs-red, white-vs-blue, and red-vs-blue comparison groups, respectively. In Gene Ontology (GO) enrichment analysis, the DEGs in all three comparison groups were significantly enriched in two GO terms, carboxylic acid metabolic process and lyase activity. In Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, the DEGs were greatly enriched in two pathways, histidine metabolism and isoquinoline alkaloid biosynthesis. Higher protein content under BL was associated with the upregulation of most DEGs enriched with the GO terms and KEGG pathways. Furthermore, the light qualities influenced the gene expression patterns of other metabolic pathways, like carotenoid biosynthesis, and the regulation of these genes may explain the level of photosynthetic pigment content. The results revealed the physiological changes and transcriptome-level responses of duckweed to three light qualities, thereby providing bases for further research studies on the ability of duckweed as a biomass energy source.


Subject(s)
Araceae , Gene Expression Profiling , Araceae/genetics , Gene Ontology , Light , Transcriptome
18.
Antioxidants (Basel) ; 10(8)2021 Jul 26.
Article in English | MEDLINE | ID: mdl-34439431

ABSTRACT

The effect of salt treatment on Brassica carinata (BC) microgreens grown under different light wavelengths on glucosinolates (GLs) and phenolic compounds were evaluated. Quantifiable GLs were identified using ultra-high performance-quadrupole time of flight mass spectrometry. Extracts' ability to activate antioxidant enzymes (superoxide dismutase (SOD) and catalase (CAT)) was evaluated on human colorectal carcinoma cells (HCT116). Furthermore, BC compounds' ability to activate expression of nuclear transcription factor-erythroid 2 related factor (Nrf2) and heme-oxygenase-1 (HO-1) proteins was examined using specific antibodies on HCT116 cells. Sinigrin (SIN) was the abundant GLs of the six compounds identified and its content together with total aliphatic GLs increased in saline conditions. Fluorescent (FL) and blue plus red (B1R1) lights were identified as stable cultivation conditions for microgreens, promoting biomass and glucobrassicin contents, whereas other identified individual and total indole GLs behaved differently in saline and non-saline environments. Blue light-emitting diodes and FL light in saline treatments mostly enhanced SIN, phenolics and antioxidant activities. The increased SOD and CAT activities render the BC microgreens suitable for lowering oxidative stress. Additionally, activation of Nrf2, and HO-1 protein expression by the GLs rich extracts, demonstrate their potential to treat and prevent oxidative stress and inflammatory disorders. Therefore, effective salt treatments and light exposure to BC microgreens present an opportunity for targeted regulation of growth and accumulation of bioactive metabolites.

19.
Microbiol Spectr ; 9(1): e0021321, 2021 09 03.
Article in English | MEDLINE | ID: mdl-34346745

ABSTRACT

Aspergillus oryzae is a safe filamentous fungus widely used in the food, medicine, and feed industries, but there is currently not enough research on the light response of A. oryzae. In this study, 12 different light conditions were set and A. oryzae GDMCC 3.31 was continuously irradiated for 72 h to investigate the effect of light on mycelial growth and conidium production. Specifically, each light condition was the combination of one light wavelength (475, 520, or 630 nm) and one light intensity (20, 40, 60, or 80 µmol photon m-2 s-1). The results show that mycelium growth was inhibited significantly by green light (wavelength of 520 nm and intensities of 20 and 60 µmol photon m-2 s-1) and blue light (wavelength of 475 nm and intensity of 80 µmol photon m-2 s-1). The production of conidia was suppressed only by blue light (wavelength of 475 nm and intensities of 40, 60, and 80 µmol photon m-2 s-1), and those levels of inhibition increased when the intensity of blue light increased. When the strain was irradiated by blue light (80 µmol photon m-2 s-1), the number of conidia was 57.4% less than that of the darkness group. However, within our set range of light intensities, A. oryzae GDMCC 3.31 was insensitive to red light (wavelength of 630 nm) in terms of mycelium growth and conidium production. Moreover, interaction effects between light wavelength and intensity were found to exist in terms of colony diameter and the number of conidia. This research investigated the light response of A. oryzae, which may provide a new method to regulate mixed strains in fermented foods by light. IMPORTANCE Studies on the monochromatic light response of Aspergillus nidulans and Neurospora crassa have gone deep into the molecular mechanism. However, research methods for the light response of A. oryzae remain in the use of white light sources. In this study, we first demonstrated that A. oryzae GDMCC 3.31 was sensitive to light wavelength and intensity. We have observed that blue light inhibited its growth and sporulation and the inhibitory effect increased with intensity. This research not only adds new content to the study of the photoreaction of Aspergillus but also brings new possibilities for the use of light to regulate mixed strains and ultimately improve the flavor quality of fermented foods.


Subject(s)
Aspergillus oryzae/radiation effects , Mycelium/radiation effects , Aspergillus oryzae/growth & development , Light , Mycelium/growth & development , Spores, Fungal/growth & development , Spores, Fungal/radiation effects
20.
Enzyme Microb Technol ; 149: 109860, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34311876

ABSTRACT

The influence of green light on mycelium biomass growth and extracellular enzyme activities of edible mushrooms from the Pleurotus genus, which is popularly cultivated all over the world, were investigated. The mycelium of seven strains of five species of Pleurotus (P. citrinopileatus, P. djamor, P. eryngii, P. ostreatus, and P. pulmonarius) was grown in liquid medium at 28 °C in the dark or under green light (515-530 nm). The light source was light-emitting diodes (LED) with photon flux density adjusted to 20 µmol m-2 s-1 that was kept on throughout the cultivation period. After 12 days of growth, the mycelium was recovered and used for biomass determination and the cultivation medium was used to total cellulase, endoglucanase, xylanase, and laccase activities determination. Green light reduced the mycelial biomass growth of Pleurotus spp. but increased the cellulolytic and xylanolytic activities. The cellulolytic activity of most strains increased in the presence of green light with increases ranging from 1.5 times (P. ostreatus endoglucanase) to 8 times (P. citrinopileatus total cellulase and endoglucanase). Green light reduced laccase activity for most strains with the greatest reduction for P. eryngii (2.2 times lower). The specific enzymatic activity of cellulase and endoglucanase from P. citrinopileatus, increased by 31 times and 30 times, respectively, compared to the dark. Also, the specific laccase and xylanase activities of P. pulmonarius increased 4.4 times and 6.8 times, respectively, under green light. The use of light at particular wavelengths can be a viable strategy to increase the production of enzymes for different biotechnological applications and species of Pleurotus are particularly interesting for this purpose.


Subject(s)
Pleurotus , Laccase , Lignin , Mycelium
SELECTION OF CITATIONS
SEARCH DETAIL
...