ABSTRACT
The COVID-19 pandemic has exposed the extent of global connectivity and collective vulnerability to emerging diseases. From its suspected origins in Wuhan, China, it spread to all corners of the world in a matter of months. The absence of high-performance, rapid diagnostic methods that could identify asymptomatic carriers contributed to its worldwide transmission. Serological tests offer numerous benefits compared to other assay platforms to screen large populations. First-generation assays contain targets that represent proteins from SARS-CoV-2. While they could be quickly produced, each actually has a mixture of specific and non-specific epitopes that vary in their reactivity for antibodies. To generate the next generation of the assay, epitopes were identified in three SARS-Cov-2 proteins (S, N, and Orf3a) by SPOT synthesis analysis. After their similarity to other pathogen sequences was analyzed, 11 epitopes outside of the receptor-binding domain (RBD) of the spike protein that showed high reactivity and uniqueness to the virus. These were incorporated into a ß-barrel protein core to create a highly chimeric protein. Another de novo protein was designed that contained only epitopes in the RBD. In-house ELISAs suggest that both multiepitope proteins can serve as targets for high-performance diagnostic tests. Our approach to bioengineer chimeric proteins is highly amenable to other pathogens and immunological uses.
ABSTRACT
Echinococcus granulosus is the parasite responsible for cystic echinococcosis (CE), an important worldwide-distributed zoonosis. New effective vaccines against CE could potentially have great economic and health benefits. Here, we describe an innovative vaccine design scheme starting from an antigenic fraction enriched in tegumental antigens from the protoscolex stage (termed PSEx) already known to induce protection against CE. We first used mass spectrometry to characterize the protein composition of PSEx followed by Gene Ontology analysis to study the potential Biological Processes, Molecular Functions, and Cellular Localizations of the identified proteins. Following, antigenicity predictions and determination of conservancy degree against other organisms were determined. Thus, nine novel proteins were identified as potential vaccine candidates. Furthermore, linear B cell epitopes free of posttranslational modifications were predicted in the whole PSEx proteome through colocalization of in silico predicted epitopes within peptide fragments identified by matrix-assisted laser desorption/ionization-TOF/TOF. Resulting peptides were termed "clean linear B cell epitopes," and through BLASTp scanning against all nonhelminth proteins, those with 100% identity against any other protein were discarded. Then, the secondary structure was predicted for peptides and their corresponding proteins. Peptides with highly similar secondary structure respect to their parental protein were selected, and those potentially toxic and/or allergenic were discarded. Finally, the selected clean linear B cell epitopes were mapped within their corresponding 3D-modeled protein to analyze their possible antibody accessibilities, resulting in 14 putative peptide vaccine candidates. We propose nine novel proteins and 14 peptides to be further tested as vaccine candidates against CE.
Subject(s)
Antigens, Helminth/isolation & purification , Echinococcosis/prevention & control , Echinococcus granulosus/immunology , Proteomics/methods , Animals , Antigens, Helminth/chemistry , Antigens, Helminth/immunology , Computational Biology/methods , Epitopes, B-Lymphocyte/immunology , Humans , Mass Spectrometry , Models, Molecular , Protein Structure, Secondary , Protozoan Vaccines/chemistry , Protozoan Vaccines/immunology , Protozoan Vaccines/isolation & purification , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Zoonoses/parasitology , Zoonoses/prevention & controlABSTRACT
Neglected tropical diseases caused by helminth infections currently affect millions of people worldwide. Among them, there are three tapeworm species of outstanding importance: Echinococcus granulosus, E. multilocularis, and Taenia solium, which are responsible for cystic echinococcosis, alveolar echinococcosis, and cysticercosis, respectively. Despite several attempts, there is still a need for an effective and low-cost serological diagnostic test that can be used in endemic countries. In the present work, we described an innovative bioinformatic workflow for a rational prediction of putative peptide candidates for one-step serological diagnosis of any of these infections. First, we predicted the theoretical secretome shared by the three tapeworms starting from their full reported proteomes. Then, through immunoinformatics, we identified proteins within the shared secretome displaying high antigenicity scores and bearing T cell epitopes able to bind most human MHC-II alleles. Secondly, in such proteins, we identified linear B cell epitopes without post-translational modifications, and mapped them on 3D modelled structures to visualize their antibody accessibilities. As a result, we finally suggested two antigenic peptides shared between the secretomes of the three parasite species, which could be further tested for their immunodiagnostic potential.