Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
1.
Phytochem Anal ; 35(3): 540-551, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38053479

ABSTRACT

INTRODUCTION: Pancreatic lipase is one of the most important key targets in the treatment of obesity. Inhibition of pancreatic lipase can effectively reduce lipid absorption and treat obesity and other related metabolic disorders. OBJECTIVES: The goal of this study is the efficient screening of pancreatic lipase inhibitors in the root and rhizome of Rheum palmatum using affinity ultrafiltration-high-performance liquid chromatography (AUF-HPLC) combined with high-resolution inhibition profiling (HRIP). METHODS: Potential pancreatic lipase ligands and pancreatic lipase inhibitors in ethyl acetate fraction of R. palmatum were screened using AUF-HPLC and HRIP, respectively. All screened compounds were identified by HPLC- quadrupole time-of-flight (Q-TOF)/MS. Eight compounds were screened out by both AUF-HPLC and HRIP, and six compounds were screened out by either AUF-HPLC or HRIP alone. The pancreatic lipase inhibitory activities of all screened compounds were verified by enzyme inhibition assay and molecular docking. RESULTS: Five new potent pancreatic lipase inhibitors were discovered, namely procyanidin B5 3,3'-di-O-gallate (IC50 = 0.06 ± 0.01 µM), 1,6-di-O-galloyl-2-O-cinnamoyl-ß-D-glucoside (IC50 = 12.83 ± 0.67 µM), 1-O-(1,3,5-trihydroxy)phenyl-2-O-galloyl-6-O-cinnamoyl-ß-D-glucoside (IC50 = 17.84 ± 1.33 µM), 1,2-di-O-galloyl-6-O-cinnamoyl-ß-D-glucoside (IC50 = 18.39 ± 1.52 µM), and 4-(4'-hydroxyphenyl)-2-butanone-4'-O-ß-D-(2"-O-galloyl-6"-O-cinnamoyl)-glucoside (IC50 = 2.91 ± 0.40 µM). It was found that procyanidin B5 3,3'-di-O-gallate showed higher pancreatic lipase inhibitory activity than the positive control orlistat (IC50 = 0.12 ± 0.02 µM). CONCLUSION: The combination of affinity ultrafiltration-high-performance liquid chromatography (AUF-HPLC) and high-resolution inhibition profiling (HRIP) could reduce the risk of false-negative screening and missed screening and could achieve more efficient screening of bioactive compounds in complex natural products.


Subject(s)
Rheum , Rheum/chemistry , Chromatography, High Pressure Liquid/methods , Ultrafiltration/methods , Molecular Docking Simulation , Glucosides , Lipase , Obesity , Enzyme Inhibitors/pharmacology
2.
Adv Colloid Interface Sci ; 321: 103011, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37826977

ABSTRACT

Although fat is one of the indispensable components of food flavor, excessive fat consumption could cause obesity, metabolism syndromes and an imbalance in the intestinal flora. In the pursuit of a healthy diet, designing fat reducing foods by inhibiting lipid digestion and calorie intake is a promising strategy. Altering the gastric emptying rates of lipids as well as acting on the lipase by suppressing the enzymatic activity or limiting lipase diffusion via interfacial modulation can effectively decrease lipolysis rates. In this review, we provide a comprehensive overview of colloid-based strategies that can be employed to retard lipid hydrolysis, including pancreatic lipase inhibitors, emulsion-based interfacial modulation and fat substitutes. Plants-/microorganisms-derived lipase inhibitors bind to catalytic active sites and change the enzymatic conformation to inhibit lipase activity. Introducing oil-in-water Pickering emulsions into the food can effectively delay lipolysis via steric hindrance of interfacial particulates. Regulating stability and physical states of emulsions can also affect the rate of hydrolysis by altering the active hydrolysis surface. 3D network structure assembled by fat substitutes with high viscosity can not only slow down the peristole and obstruct the diffusion of lipase to the oil droplets but also impede the transportation of lipolysis products to epithelial cells for adsorption. Their applications in low-calorie bakery, dairy and meat products were also discussed, emphasizing fat intake reduction, structure and flavor retention and potential health benefits. However, further application of these strategies in large-scale food production still requires more optimization on cost and lipid reducing effects. This review provides a comprehensive review on colloidal approaches, design, principles and applications of fat reducing strategies to meet the growing demand for healthier diet and offer practical insights for the low-calorie food industry.


Subject(s)
Fat Substitutes , Lipids , Lipids/chemistry , Colloids , Lipase/chemistry , Emulsions/chemistry , Digestion
3.
Obes Res Clin Pract ; 17(5): 411-420, 2023.
Article in English | MEDLINE | ID: mdl-37679239

ABSTRACT

Orlistat, an anti-obesity agent, inhibits the metabolism and absorption of dietary fat by inactivating pancreatic lipase in the gut. The effect of orlistat on the gut microbiota of Japanese individuals with obesity is unknown. This study aimed to explore the effects of orlistat on the gut microbiota and fatty acid metabolism of Japanese individuals with obesity. Fourteen subjects with visceral fat obesity (waist circumference ≥85 cm) took orlistat orally at a dose of 60 mg, 3 times a day for 8 weeks. Body weight; waist circumference; visceral fat area; levels of short-chain fatty acids, gut microbiota, fatty acid metabolites in the feces, and gastrointestinal hormones; and adverse events were evaluated. Body weight, waist circumference, and blood leptin concentrations were significantly lower after orlistat treatment (mean ± standard deviation, 77.8 ± 9.1 kg; 91.9 ± 8.7 cm; and 4546 ± 3211 pg/mL, respectively) compared with before treatment (79.4 ± 9.0 kg; 94.4 ± 8.0 cm; and 5881 ± 3526 pg/mL, respectively). Significant increases in fecal levels of fatty acid metabolites (10-hydroxy-cis-12-octadecenoic acid, 10-oxo-cis-12-octadecenoic acid, and 10-oxo-trans-11-octadecenoic acid) were detected. Meanwhile, no significant changes were found in abdominal computed tomography parameters, blood marker levels, or short-chain fatty acid levels in the feces. Gut microbiota analysis revealed that some study subjects had decreased abundance of Firmicutes, increased abundance of Bacteroidetes, and increased α-diversity indices (Chao1 and ACE) after 8 weeks of treatment. The levels of Lactobacillus genus and Lactobacillus gasseri were significantly higher after 8 weeks of treatment. None of the subjects discontinued treatment or experienced severe adverse events. This study suggested that orlistat might alter gut microbiota composition and affect the body through fatty acid metabolites produced by the modified gut bacteria.


Subject(s)
Gastrointestinal Microbiome , Humans , Orlistat/pharmacology , Obesity , Body Weight , Fatty Acids , Lipase
4.
Nutrients ; 15(7)2023 Apr 03.
Article in English | MEDLINE | ID: mdl-37049588

ABSTRACT

A great number of chemically diverse pancreatic lipase (PL) inhibitors have been identified to tackle obesity; however, very few of them have entered clinical studies. The ethanolic extract of sesame meal is a potent PL inhibitor, and its activity hinges exclusively on two free fatty acids: linoleic acid and oleic acid, which were proven to reduce postprandial triglyceride excursion in rats. Herein, to investigate the clinical efficacy of the sesame meal extract, in a crossover trial, 30 healthy volunteers were randomized to receive the sesame meal extract containing experimental food or placebo along with a high-fat meal. Treatment with the sesame meal extract significantly lowered the incremental postprandial serum triglyceride concentration and reduced the incremental area under the curve (iAUC) by 16.8% (p-value = 0.03) compared to placebo. Significant decreases in postprandial remnant-like lipoprotein particle cholesterol and low-density lipoprotein particles were also observed, whereas high-density lipoprotein cholesterol was increased. These results suggest that treatment with the sesame meal extract significantly reduced the postprandial excursion of triglycerides and improved the lipidemic profile after high dietary fat intake in healthy individuals, indicating the substantial potential of free linoleic acid and oleic acid and natural products rich in these compounds for the management of obesity and related conditions.


Subject(s)
Oleic Acid , Sesamum , Animals , Rats , Humans , Cross-Over Studies , Oleic Acid/pharmacology , Linoleic Acid/pharmacology , Lipase , Healthy Volunteers , Triglycerides , Cholesterol , Obesity , Postprandial Period , Dietary Fats
5.
Int J Biol Macromol ; 230: 123427, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36706882

ABSTRACT

Dioscoreae nipponica Makino (D. nipponica) as the rhizome of dioscoreaceae rich in steroidal saponins, has been reported to have the hypolipidemic effects etc. However, it is still unclear which exact active components are primary responsible for the beneficial effects. This study was conducted to fish out the lipase inhibitors from D. nipponica, and evaluate the inhibitory activity on porcine pancreatic lipase (PPL) through in vitro kinetic assay using p-nitrophenyl palmitate as substrate. Accordingly, the ethanolic extract was subjected to D101 macroporous resin purification for spectrophotometric screening, high performance liquid chromatography (HPLC) separation and structural characterization by ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry. Through orlistat validation, the PPL inhibitory activity and IC50 value of the extract were respectively 68.34 ± 1.47 % and 107.05 µg/mL under the optimized inhibition conditions. From 6 steroidal saponins identified, the inhibitory components named the protodioscin, protogracillin, dioscin and gracillin were fished out by grouping separation and HPLC analysis. Furthermore, dioscin and gracillin with the parent structure of diogenin were confirmed as the major inhibitors by virtue of stability tests based on transformation of protodioscin and protogracillin. Finally, the inhibitory mechanism of the major inhibitors toward PPL was further clarified by kinetic analysis and molecular docking analysis. The proposed method not only revealed the PPL inhibitory components in D. nipponica, but also provided an effective approach to hierarchical screening of PPL inhibitors from natural plants.


Subject(s)
Dioscorea , Saponins , Animals , Chromatography, High Pressure Liquid/methods , Dioscorea/chemistry , Kinetics , Lipase , Molecular Docking Simulation , Plant Extracts/chemistry , Saponins/chemistry , Swine , Tandem Mass Spectrometry , Enzyme Inhibitors/pharmacology
6.
Molecules ; 27(15)2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35956860

ABSTRACT

Pancreatic lipase catalyzes the cleavage of triacylglycerols at the oil-water interface, and is known as the dominant determiner of dietary fat digestion. Reducing dietary fat digestion and absorption by modulating the activity of pancreatic lipase has become a favorable strategy to tackle obesity. Orlistat is, at present, the only pancreatic lipase inhibitor approved for the treatment of obesity; however, an array of gastrointestinal adverse effects associated with orlistat limits its tolerability. As a safe alternative to orlistat, a number of natural product-derived compounds with varying degrees of pancreatic lipase inhibitory activity have been reported. We herein reported that bioactivity-guided fractionation of sesame meal led to the identification of free linoleic acid and oleic acid as potent inhibitors of porcine pancreatic lipase in vitro with an IC50 of 23.1 µg/mL (82.4 µM) and 11.7 µg/mL (41.4 µM), respectively. In rats, a single oral dose of the mixture of these fatty acids significantly suppressed the elevation of blood triacylglycerol level following fat intake. These results substantiate the role of free linoleic acid and oleic acid as a novel class of natural product-derived functional molecules that act as pancreatic lipase inhibitors, and their potential for healthy, routine-based weight management.


Subject(s)
Biological Products , Sesamum , Animals , Biological Products/therapeutic use , Dietary Fats , Digestion , Linoleic Acid/pharmacology , Lipase , Obesity/drug therapy , Oleic Acid/pharmacology , Orlistat/pharmacology , Rats , Swine , Triglycerides
7.
Front Nutr ; 9: 969558, 2022.
Article in English | MEDLINE | ID: mdl-36034931

ABSTRACT

Obesity has become an increasingly serious public health problem. Pancreatic lipase (PL) is identified as a ideal target for the prevention and treatment of obesity. Orlistat, the only approved PL inhibitor (PLI), is a powerful weight loss drug but has many side effects. Therefore, there is an urgent need to discover powerful PLIs with high safety. Protein hydrolysate has been demonstrated to be a treasure trove of PLIs, but recognizing responsible functional peptides from them is like looking for a needle in a haystack. In this work, we synthesized and optimized a PL ligand fishing model (PLLFM) using magnetic nanoparticles (MNPs), then PLLFM was used to quickly fish out potential PLIs from the Cod meat hydrolysate (CMH). Finally, two new PLIs, GSPPPSG and KLEGDLK were identified with IC50 of 0.60 and 1.08 mg/mL, respectively. The Lineweaver-Burk diagram showed that GSPPPSG is a non-competitively dominant mixed-type PLI, whereas KLEGDLK is a competitive inhibitory-type PLI. Moreover, molecular docking suggested that both peptides can stably bind to the key amino acid residues of the PL active site, mainly through hydrogen bonding, hydrophobic, and electrostatic interactions. In general, we not only established a method to rapidly fish out potential PLIs from protein hydrolysate, but also provided safe and efficient lead compounds for the development of novel diet foods or drugs.

8.
Molecules ; 27(11)2022 May 27.
Article in English | MEDLINE | ID: mdl-35684413

ABSTRACT

As for ligand fishing, the current immobilization approaches have some potential drawbacks such as the small protein loading capacity and difficult recycle process. The core-shell metal-organic frameworks composite (Fe3O4-COOH@UiO-66-NH2), which exhibited both magnetic characteristics and large specific surface area, was herein fabricated and used as magnetic support for the covalent immobilization of porcine pancreatic lipase (PPL). The resultant composite Fe3O4-COOH@UiO-66-NH2@PPL manifested a high loading capacity (247.8 mg/g) and relative activity recovery (101.5%). In addition, PPL exhibited enhanced tolerance to temperature and pH after immobilization. Then, the composite Fe3O4-COOH@UiO-66-NH2@PPL was incubated with the extract of Scutellaria baicalensis to fish out the ligands. Eight lipase inhibitors were obtained and identified by UPLC-Q-TOF-MS/MS. The feasibility of the method was further confirmed through an in vitro inhibitory assay and molecular docking. The proposed ligand fishing technique based on Fe3O4-COOH@UiO-66-NH2@PPL provided a feasible, selective, and effective platform for discovering enzyme inhibitors from natural products.


Subject(s)
Lipase , Metal-Organic Frameworks , Animals , Enzymes, Immobilized/chemistry , Ligands , Lipase/chemistry , Magnetic Phenomena , Metal-Organic Frameworks/chemistry , Molecular Docking Simulation , Phthalic Acids , Plant Extracts/pharmacology , Scutellaria baicalensis , Swine , Tandem Mass Spectrometry
9.
Int J Pharm ; 623: 121958, 2022 Jul 25.
Article in English | MEDLINE | ID: mdl-35760262

ABSTRACT

Drug overdose connected to marketed pharmaceutical products, particularly opioids, occurs at an alarming rate. Novel strategies through innovative formulation approaches that reduce the likelihood of overdose while allowing safe therapeutic outcomes are urgently required. The current study provides a proof-of-concept for a new formulation approach by co-formulating drug with a lipase inhibitor within a solid lipid formulation in order to prevent or reduce the harmful effects of taking multiple doses of an oral solid dose form. Lipase inhibitor controlled-release (LICR) formulations were created using a simple hot melt method to co-formulate the inhibitor (orlistat) and ibuprofen, as the model drug, within the lipid matrix. The digestion and drug release kinetics were determined using an in vitro lipolysis model. Above a threshold level of orlistat there was decreased digestibility of multiple doses of the LICR formulations, leading to reduced drug release. Upon administration of the formulations in capsules to rats, the LICR formulation displayed the lowest exposure of ibuprofen during the pharmacokinetic studies. This novel formulation approach shows promise in preventing accidental drug overdose after oral administration of multiple doses of formulation.


Subject(s)
Drug Overdose , Lipids , Administration, Oral , Animals , Delayed-Action Preparations , Drug Liberation , Ibuprofen , Lipase/metabolism , Lipolysis , Orlistat , Rats , Solubility
10.
Cells ; 10(12)2021 12 08.
Article in English | MEDLINE | ID: mdl-34943962

ABSTRACT

Modulation of the endocannabinoid system has emerged as an effective approach for the treatment of many neurodegenerative and neuropsychological diseases. However, the underlying mechanisms are still uncertain. Using a repetitive mild traumatic brain injury (mTBI) mouse model, we found that there was an impairment in locomotor function and working memory within two weeks post-injury, and that treatment with MJN110, a novel inhibitor of the principal 2-arachidononyl glycerol (2-AG) hydrolytic enzyme monoacylglycerol lipase dose-dependently ameliorated those behavioral changes. Spatial learning and memory deficits examined by Morris water maze between three and four weeks post-TBI were also reversed in the drug treated animals. Administration of MJN110 selectively elevated the levels of 2-AG and reduced the production of arachidonic acid (AA) and prostaglandin E2 (PGE2) in the TBI mouse brain. The increased production of proinflammatory cytokines, accumulation of astrocytes and microglia in the TBI mouse ipsilateral cerebral cortex and hippocampus were significantly reduced by MJN110 treatment. Neuronal cell death was also attenuated in the drug treated animals. MJN110 treatment normalized the expression of the NMDA receptor subunits NR2A and NR2B, the AMPA receptor subunits GluR1 and GluR2, and the GABAA receptor subunits α1, ß2,3 and γ2, which were all reduced at 1, 2 and 4 weeks post-injury. The reduced inflammatory response and restored glutamate and GABA receptor expression likely contribute to the improved motor function, learning and memory in the MJN110 treated animals. The therapeutic effects of MJN110 were partially mediated by activation of CB1 and CB2 cannabinoid receptors and were eliminated when it was co-administered with DO34, a novel inhibitor of the 2-AG biosynthetic enzymes. Our results suggest that augmentation of the endogenous levels of 2-AG can be therapeutically useful in the treatment of TBI by suppressing neuroinflammation and maintaining the balance between excitatory and inhibitory neurotransmission.


Subject(s)
Brain Injuries, Traumatic/drug therapy , Carbamates/pharmacology , Monoacylglycerol Lipases/genetics , Neuroinflammatory Diseases/drug therapy , Succinimides/pharmacology , Animals , Behavior, Animal/drug effects , Brain Injuries, Traumatic/genetics , Brain Injuries, Traumatic/pathology , Disease Models, Animal , Endocannabinoids/genetics , Endocannabinoids/metabolism , Enzyme Inhibitors/pharmacology , Gene Expression Regulation/drug effects , Humans , Mice , Neuroinflammatory Diseases/genetics , Neuroinflammatory Diseases/pathology , Neurons/drug effects , Receptors, AMPA/genetics , Receptors, N-Methyl-D-Aspartate/genetics , Synapses/drug effects , Synapses/genetics
11.
Int J Pharm ; 607: 120960, 2021 Sep 25.
Article in English | MEDLINE | ID: mdl-34333022

ABSTRACT

In this study, ascorbyl tocopherol succinate (ATS) was designed, synthesized and characterized via FT-IR, HR-MS, H1 NMR and C13 NMR, to simultaneously confer biomimetic and dual responsive properties of an antibiotic nanosystem to enhance their antibacterial efficacy and reduce antimicrobial resistance. Therefore, an in silico-aided design (to mimic the natural substrate of bacterial lipase) was employed to demonstrate the binding potential of ATS to lipase (-32.93 kcal/mol binding free energy (ΔGbind) and bacterial efflux pumps blocking potential (NorA ΔGbind: -37.10 kcal/mol, NorB ΔGbind: -34.46 kcal/mol). ATS bound stronger to lipase than the natural substrate (35 times lower Kd value). The vancomycin loaded solid lipid nanoparticles (VM-ATS-SLN) had a hydrodynamic diameter, zeta potential, polydispersity index and entrapment efficiency of 106.9 ± 1.4 nm, -16.5 ± 0.93 mV, 0.11 ± 0.012 and 61.9 ± 1.31%, respectively. In vitro biocompatibility studies revealed VM-ATS-SLN biosafety and non-haemolytic activity. Significant enhancement in VM release was achieved in response to acidified pH and lipase enzyme, compared to controls. VM-ATS-SLN showed enhanced sustained in vitro antibacterial activity for 5 days, 2-fold greater MRSA biofilm growth inhibition and 3.44-fold reduction in bacterial burden in skin infected mice model compared to bare VM. Therefore, ATS shows potential as a novel multifunctional adjuvant for effective and targeted delivery of antibiotics.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Nanoparticles , Animals , Anti-Bacterial Agents , Biomimetics , Hydrogen-Ion Concentration , Lipase , Lipids , Mice , Particle Size , Spectroscopy, Fourier Transform Infrared , Vancomycin , Vitamins
12.
Biophys Chem ; 274: 106607, 2021 07.
Article in English | MEDLINE | ID: mdl-33957576

ABSTRACT

Obesity is a global health problem characterized by excessive fat deposition in adipose tissues and can be managed by targeting pancreatic lipase (PL) activity. In the present study, we investigated the in vitro antioxidant and anti-obesity potentials of methanolic leaf extract of Justicia carnea(MEJC) using lipase inhibition kinetics model. In silico evaluations of MEJC bioactive compounds as potential drug-like agents and inhibitors of PL were also investigated using SwissADME prediction tool, semi-empirical quantum mechanics(SQM), molecular electrostatic potential(MEP) and molecular docking analysis. Gas chromatography-mass spectrometry(GC-MS) revealed presence of campesterol, stigmasterol, beta-amyrin etc. MEJC scavenged reactive species and inhibited PL activity via a mixed inhibition pattern (Ki = 107.69 µg/mL; Kii = 398.00 µg/mL) with IC50 > orlistat's IC50. Molecular docking of GC-MS identified compounds with porcine PL showed compounds 8,10,12 and 14 having high PL-binding affinity and similar binding pose with orlistat. Hydrophobic interactions and van der Waals forces were predominantly involved in the ligands' interactions with some key catalytic site amino acid residues (Ser-153,His-264). Compounds 10,12,13 and 14 indicated high drug-likeness, bioavailability, electronegativity, ELUMO-EHOMO energy gaps and MEP. Our findings show that MEJC is a rich natural source of antioxidant and anti-obesity agents which could be optimized for development of new anti-obesity drugs.


Subject(s)
Anti-Obesity Agents/pharmacology , Antioxidants/pharmacology , Enzyme Inhibitors/pharmacology , Lipase/antagonists & inhibitors , Obesity/drug therapy , Plant Extracts/pharmacology , Anti-Obesity Agents/chemistry , Anti-Obesity Agents/isolation & purification , Antioxidants/chemistry , Antioxidants/isolation & purification , Biphenyl Compounds/antagonists & inhibitors , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/isolation & purification , Humans , Justicia/chemistry , Kinetics , Lipase/metabolism , Molecular Docking Simulation , Obesity/metabolism , Picrates/antagonists & inhibitors , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Plant Leaves/chemistry , Quantum Theory
13.
Biosci Biotechnol Biochem ; 85(8): 1885-1889, 2021 Jul 23.
Article in English | MEDLINE | ID: mdl-34048530

ABSTRACT

Young barley leaves (Hordeum vulgare L.) have various health effects and are employed as an ingredient in the production of health-promoting foods. Promoting antiobesity is one such health effect; however, the mechanism and bioactive compounds are unclear. In this research, young barley leaf extract (YB) was demonstrated to possess pancreatic lipase inhibitory activity. The addition of YB to a high-fat diet in mice increased fecal lipid content, indicating reduced absorption of lipids as the mechanism underlying antiobesity effect. The investigation of bioactive compounds in YB resulted in the identification of fructose-bisphosphate aldolase as a proteinous lipase inhibitor. Maximum inhibition of the protein was 45%, but inhibition was displayed at a concentration as low as 16 ng/mL, which is a characteristic inhibition compared with other reported proteinous lipase inhibitors.


Subject(s)
Anti-Obesity Agents/pharmacology , Enzyme Inhibitors/pharmacology , Hordeum/chemistry , Lipase/antagonists & inhibitors , Pancreas/enzymology , Plant Extracts/pharmacology , Plant Leaves/chemistry , Animals , Diet, High-Fat , Male , Mice , Mice, Inbred BALB C
14.
Talanta ; 231: 122374, 2021 Aug 15.
Article in English | MEDLINE | ID: mdl-33965038

ABSTRACT

With a dramatic increase in the incidence of obesity, it is significant to screen lipase inhibitors from traditional herbal medicines as drugs to treat obesity. Lipase inhibitors currently used to treat obesity possess the defects of toxicity and off-target effects. Thus, there is an urgent need to explore more safe, effective and targeted anti-obesity drugs from traditional herbal medicines. In this work, amino functionalized magnetic cellulose microsphere was employed as a novel support to immobilize lipase through covalent bonding. Characterizations from fourier transform infrared spectroscopy, transmission electron microscopy and X-ray diffraction demonstrated the successful preparation of the support. In comparison with the free lipase, the immobilized lipase manifested the excellent properties of a wider range for pH and temperature endurance, better pH, thermal, storage stability and reusability. Through investigating the kinetics performances of the immobilized lipase, the Michaelis-Menten constant was calculated to be 2.05 mM and its inhibition constant for orlistat was ascertained to be 40.74 µM. Eventually, the established strategy was applied to screen lipase inhibitors from 7 traditional herbal medicines and Crataegus pinnatifida Bunge was screened out due to its significant lipase inhibitory activity. To sum up, our newly established method not only developed a platform for efficiently discovering novel anti-obesity drugs from traditional herbal medicines, but also laid a solid foundation for successfully exploring undiscovered medicinal value of the traditional herbal medicines.


Subject(s)
Enzymes, Immobilized , Lipase , Cellulose , Hydrogen-Ion Concentration , Magnetic Phenomena , Microspheres , Temperature
15.
Int J Biol Macromol ; 175: 270-280, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33561462

ABSTRACT

The burden of obesity is increasing all over the world. Except for Orlistat, no effective anti-obesity drug is currently available. Therefore, a search for the new anti-obesity compound is need of time. This study demonstrates macromolecular interaction and inhibitory effect of pentacyclic triterpenoids (PTT) on pancreatic lipase (PL). In the present study PTTs from endophytic Colletotrichum gigasporum were found to show significant inhibitory activity against PL with IC50 of 16.62 ± 1.43 µg/mL. The PTT isolated through bioassay-guided isolation showed a dose-dependent (R2 = 0.915) inhibition against porcine PL and the results were comparable with the standard (Orlistat). Based on inhibition kinetic data, the gradual increase in Km (app) with increasing PTT concentration indicated that the mode of interaction of PTT with PL was a competitive type, and it directly competed with the substrate (pNPB) for the active site of PL. In vivo studies in Wistar rats at the oral dose (100 mg/kg body weight) of PTT significantly decreased (p < 0.05) incremental plasma triglyceride levels as compared to group B and TG absorption was down-regulated up to 49.18% vis a vis group D animals. The isolated PTT was identified as lupeol based on chromatographic and spectral data. The endophytic isolate was identified as Colletotrichum gigasporum based on morphology and ITS gene sequencing. The present study indicated that PTT had the potential to be used as a natural PL inhibitor in the treatment of obesity and the isolated endophyte can be a valuable bioresource for it.


Subject(s)
Colletotrichum/metabolism , Lipase/antagonists & inhibitors , Pentacyclic Triterpenes/pharmacology , Animals , Anti-Obesity Agents/pharmacology , Catalytic Domain , Endophytes , Enzyme Inhibitors/pharmacology , Humans , Inhibitory Concentration 50 , Kinetics , Lipase/chemistry , Lipase/metabolism , Male , Molecular Structure , Obesity/drug therapy , Orlistat/pharmacology , Pancreas/metabolism , Pentacyclic Triterpenes/chemistry , Pentacyclic Triterpenes/metabolism , Rats , Rats, Wistar , Structure-Activity Relationship , Swine , Triterpenes/pharmacology
16.
Int J Pharm ; 596: 120247, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33486039

ABSTRACT

Orlistat is a pancreatic lipase (PL) inhibitor that inhibits dietary lipid absorption and is used to treat obesity. The oral bioavailability of orlistat is considered zero after administration in standard formulations. This is advantageous in the treatment of obesity. However, if orlistat absorption could be improved it has the potential to treat diseases such as acute and critical illnesses where PL transport to the systemic circulation via gut lymph promotes organ failure. Orlistat is highly lipophilic and may associate with intestinal lipid absorption pathways into lymph. Here we investigate the potential to improve orlistat lymph and systemic uptake through intestinal administration in lipid formulations (LFs). The effect of lipid type, lipid dose, orlistat dose, and infusion time on lymph and systemic availability of orlistat was investigated. After administration in all LFs, orlistat concentrations in lymph were greater than in plasma, suggesting direct transport via lymph. Lymph and plasma orlistat derivative concentrations were ~8-fold greater after administration in a long-chain fatty acid (LC-FA) compared to a lipid-free, LC triglyceride (LC-TG) or medium-chain FA (MC-FA) formulation. Overall, administration of orlistat in a LC-FA formulation promotes lymph and systemic uptake which may enable treatment of diseases associated with elevated systemic PL activity.


Subject(s)
Fatty Acids , Lymph , Biological Availability , Intestinal Absorption , Orlistat
17.
Biotechnol Biofuels ; 14(1): 247, 2021 Dec 31.
Article in English | MEDLINE | ID: mdl-34972534

ABSTRACT

BACKGROUND: The oleaginous microorganism Schizochytrium sp. is widely used in scientific research and commercial lipid production processes. However, low glucose-to-lipid conversion rate (GLCR) and low lipid productivity of Schizochytrium sp. restrict the feasibility of its use. RESULTS: Orlistat is a lipase inhibitor, which avoids triacylglycerols (TAGs) from hydrolysis by lipase. TAGs are the main storage forms of fatty acids in Schizochytrium sp. In this study, the usage of orlistat increased the GLCR by 21.88% in the middle stage of fermentation. Whereas the productivity of lipid increased 1.34 times reaching 0.73 g/L/h, the saturated fatty acid and polyunsaturated fatty acid yield increased from 21.2 and 39.1 to 34.9 and 48.5 g/L, respectively, indicating the advantages of using a lipase inhibitor in microbial lipids fermentation. Similarly, the system was also successful in Thraustochytrid Aurantiochytrium. The metabolic regulatory mechanisms stimulated by orlistat in Schizochytrium sp. were further investigated using transcriptomics and metabolomics. The results showed that orlistat redistributed carbon allocation and enhanced the energy supply when inhibiting the TAGs' degradation pathway. Therefore, lipase in Schizochytrium sp. prefers to hydrolyze saturated fatty acid TAGs into the ß-oxidation pathway. CONCLUSIONS: This study provides a simple and effective approach to improve lipid production, and makes us understand the mechanism of lipid accumulation and decomposition in Schizochytrium sp., offering new guidance for the exploitation of oleaginous microorganisms.

18.
BMC Biotechnol ; 20(1): 52, 2020 10 02.
Article in English | MEDLINE | ID: mdl-33008398

ABSTRACT

BACKGROUND: Obesity and its related diseases are increasing worldwide. One of the best therapeutic strategies for obesity management is through the inhibition of pancreatic lipase (PL) enzyme. So far orlistat is the only FDA approved PL inhibitor, but with unpleasant side effects. New efficacious anti-obesity drugs are needed to achieve a successful reduction in the incidence and prevalence of obesity. Many microbial metabolites have PL inhibitory activity. Screening soil inhabitants for PL inhibitors could help in increasing the available anti-obesity drugs. We aimed to isolate and identify alternative PL inhibitors from soil flora. RESULTS: We screened the crude mycelial methanolic extracts of 39 soil samples for PL inhibitory activity by the quantitative lipase colorimetric assay, using the substrate p-nitrophenyl palmitate and orlistat as positive control. AspsarO, a PL inhibitor producer, was isolated from an agricultural field soil in Giza, Egypt. It was identified as Aspergillus oryzae using colony morphology, microscopical characteristics, 18S rDNA sequencing, and molecular phylogeny. Increasing the PL inhibitor activity, in AspsarO cultures, from 25.9 ± 2% to 61.4 ± 1.8% was achieved by optimizing the fermentation process using a Placket-Burman design. The dried 100% methanolic fraction of the AspsarO culture had an IC50 of 7.48 µg/ml compared to 3.72 µg/ml for orlistat. It decreased the percent weight gain, significantly reduced the food intake and serum triglycerides levels in high-fat diet-fed Sprague-Dawley rats. Kojic acid, the active metabolite, was identified using several biological guided chromatographic and 1H and 13C NMR techniques and had an IC50 of 6.62 µg/ml. Docking pattern attributed this effect to the interaction of kojic acid with the key amino acids (Lys80, Trp252, and Asn84) in PL enzyme binding site. CONCLUSION: Combining the results of the induced obesity animal model, in silico molecular docking and the lipase inhibitory assay, suggests that kojic acid can be a new therapeutic option for obesity management. Besides, it can lower serum triglycerides in obese patients.


Subject(s)
Aspergillus oryzae/isolation & purification , Aspergillus oryzae/metabolism , Drug Repositioning , Enzyme Inhibitors/pharmacology , Lipase/drug effects , Pancreas/enzymology , Pyrones/pharmacology , Animals , Anti-Obesity Agents/pharmacology , Anti-Obesity Agents/therapeutic use , Aspergillus oryzae/genetics , Egypt , Enzyme Inhibitors/therapeutic use , Obesity/drug therapy , Orlistat/pharmacology , Orlistat/therapeutic use , Pyrones/therapeutic use , Rats , Rats, Sprague-Dawley , Soil , Soil Microbiology , Triglycerides
19.
Biomed Pharmacother ; 128: 110314, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32485574

ABSTRACT

With the rapid increase in the population of obese individuals, obesity has become a global problem. Many kinds of chronic metabolic diseases easily caused by obesity have received increasing attention from researchers. People are also striving to find various safe and effective treatment methods as well as anti-obesity medicines. Pancreatic lipase (PL) inhibitors have received substantial attention from researchers in recent years, and PL inhibitors from natural products have attracted much attention due to their structural diversity, low toxicity and wide range of sources. They have been used in the intestinal tract, blood, and the central nervous system with no side effects, and these advantages could lead to a new generation of diet pills or health care products with great development potential. This article is mainly aimed at discussing the research of obesity drug treatment with PL inhibitors and offers a brief review of related properties and the use of PL inhibitors in the field of weight loss.


Subject(s)
Adiposity/drug effects , Anti-Obesity Agents/therapeutic use , Enzyme Inhibitors/therapeutic use , Lipase/antagonists & inhibitors , Lipid Metabolism/drug effects , Obesity/drug therapy , Weight Loss/drug effects , Animals , Anti-Obesity Agents/adverse effects , Enzyme Inhibitors/adverse effects , Humans , Lipase/metabolism , Obesity/enzymology , Obesity/physiopathology
20.
Biomed Chromatogr ; 34(8): e4860, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32311767

ABSTRACT

Cetilistat (CET) is a pancreatic lipase inhibitor approved for management of obesity after the serious adverse effects exhibited by its analogue orlistat. Exhaustive literature review reveals lack of comprehensive reports on its biotransformation. With a view to study the same, the present study reports the identification and characterization of metabolites of CET in rats using UPLC-MS/MS. As the small intestine is the site of action for CET, it is important that the role of microbial flora in the metabolism of CET be explored. To achieve this, the metabolic profile of CET was compared between normal and pseudo-germ-free rats. The study involved the administration of a drug suspension to male Sprague-Dawley pseudo-germ-free and normal untreated rats followed by collection of urine, feces, and blood at specific intervals. Sample preparation was performed using liquid-liquid extraction and concentration of samples followed by analysis using LC-MS/MS. Finally, an in silico study was performed on the drug and metabolites to predict their toxicological properties using ADMET PredictorTM software. Four metabolites of CET were observed in in vivo matrices. As expected, significant changes were observed both qualitatively and quantitatively, implying that formation of metabolites was both CYP enzymes and gut microflora mediated.


Subject(s)
Benzoxazines , Chromatography, High Pressure Liquid/methods , Tandem Mass Spectrometry/methods , Animals , Benzoxazines/blood , Benzoxazines/chemistry , Benzoxazines/pharmacokinetics , Benzoxazines/toxicity , Germ-Free Life , Male , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...