Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Type of study
Language
Publication year range
1.
Molecules ; 29(4)2024 Feb 10.
Article in English | MEDLINE | ID: mdl-38398572

ABSTRACT

Professor Carlos Gutiérrez-Merino, a prominent scientist working in the complex realm of biological membranes, has made significant theoretical and experimental contributions to the field. Contemporaneous with the development of the fluid-mosaic model of Singer and Nicolson, the Förster resonance energy transfer (FRET) approach has become an invaluable tool for studying molecular interactions in membranes, providing structural insights on a scale of 1-10 nm and remaining important alongside evolving perspectives on membrane structures. In the last few decades, Gutiérrez-Merino's work has covered multiple facets in the field of FRET, with his contributions producing significant advances in quantitative membrane biology. His more recent experimental work expanded the ground concepts of FRET to high-resolution cell imaging. Commencing in the late 1980s, a series of collaborations between Gutiérrez-Merino and the authors involved research visits and joint investigations focused on the nicotinic acetylcholine receptor and its relation to membrane lipids, fostering a lasting friendship.


Subject(s)
Membrane Lipids , Receptors, Nicotinic , Cell Membrane/metabolism , Membrane Lipids/chemistry , Fluorescence Resonance Energy Transfer , Membranes/metabolism , Receptors, Nicotinic/metabolism
2.
Front Mol Biosci ; 9: 1014659, 2022.
Article in English | MEDLINE | ID: mdl-36518846

ABSTRACT

Hampered by the diffraction phenomenon, as expressed in 1873 by Abbe, applications of optical microscopy to image biological structures were for a long time limited to resolutions above the ∼200 nm barrier and restricted to the observation of stained specimens. The introduction of fluorescence was a game changer, and since its inception it became the gold standard technique in biological microscopy. The plasma membrane is a tenuous envelope of 4 nm-10 nm in thickness surrounding the cell. Because of its highly versatile spectroscopic properties and availability of suitable instrumentation, fluorescence techniques epitomize the current approach to study this delicate structure and its molecular constituents. The wide spectral range covered by fluorescence, intimately linked to the availability of appropriate intrinsic and extrinsic probes, provides the ability to dissect membrane constituents at the molecular scale in the spatial domain. In addition, the time resolution capabilities of fluorescence methods provide complementary high precision for studying the behavior of membrane molecules in the time domain. This review illustrates the value of various fluorescence techniques to extract information on the topography and motion of plasma membrane receptors. To this end I resort to a paradigmatic membrane-bound neurotransmitter receptor, the nicotinic acetylcholine receptor (nAChR). The structural and dynamic picture emerging from studies of this prototypic pentameric ligand-gated ion channel can be extrapolated not only to other members of this superfamily of ion channels but to other membrane-bound proteins. I also briefly discuss the various emerging techniques in the field of biomembrane labeling with new organic chemistry strategies oriented to applications in fluorescence nanoscopy, the form of fluorescence microscopy that is expanding the depth and scope of interrogation of membrane-associated phenomena.

3.
J Membr Biol ; 255(4-5): 563-574, 2022 10.
Article in English | MEDLINE | ID: mdl-35534578

ABSTRACT

Erwin London dedicated considerable effort to understanding lipid interactions with membrane-resident proteins and how these interactions shaped the formation and maintenance of lipid phases and domains. In this endeavor, he developed ad hoc techniques that greatly contributed to advancements in the field. We have employed and/or modified/extended some of his methodological approaches and applied them to investigate lipid interaction with the nicotinic acetylcholine receptor (nAChR) protein, the paradigm member of the superfamily of rapid pentameric ligand-gated ion channels (pLGIC). Our experimental systems ranged from purified receptor protein reconstituted into synthetic lipid membranes having known effects on receptor function, to cellular systems subjected to modification of their lipid content, e.g., varying cholesterol levels. We have often employed fluorescence techniques, including fluorescence quenching of diphenylhexatriene (DPH) extrinsic fluorescence and of nAChR intrinsic fluorescence by nitroxide spin-labeled phospholipids, DPH anisotropy, excimer formation of pyrene-phosphatidylcholine, and Förster resonance energy transfer (FRET) from the protein moiety to the extrinsic probes Laurdan, DPH, or pyrene-phospholipid to characterize various biophysical properties of lipid-receptor interactions. Some of these strategies are revisited in this review. Special attention is devoted to the anionic phospholipid phosphatidic acid (PA), which stabilizes the functional resting form of the nAChR. The receptor protein was shown to organize its PA-containing immediate microenvironment into microdomains with high lateral packing density and rigidity. PA and cholesterol appear to compete for the same binding sites on the nAChR protein.


Subject(s)
Ligand-Gated Ion Channels , Receptors, Nicotinic , Animals , Receptors, Nicotinic/chemistry , Torpedo/metabolism , Diphenylhexatriene , London , Phosphatidylcholines/metabolism , Cholesterol/chemistry , Phosphatidic Acids/metabolism , Pyrenes
4.
Biochim Biophys Acta Biomembr ; 1862(2): 183099, 2020 02 01.
Article in English | MEDLINE | ID: mdl-31697903

ABSTRACT

Despite decades of intense research to understand the phenomenon of anesthesia and its membrane-related changes in neural transmission, where lipids and proteins have been proposed as primary targets of anesthetics, the involved action mechanisms remain unclear. Based on the overall agreement that anesthetics and neurotransmitters induce particular modifications in the plasma membrane of neurons, triggering specific responses and changes in their energetic states, we present here a thermal study to investigate membrane effects in a lipid-protein model made of 1,2-dimyristoyl-sn-glycero-3-phosphocholine and albumin from chicken egg white under the influence of neurotransmitters and anesthetics. First, we observe how ovalbumin, ovotransferrin, and lysozyme (main albumin constituents from chicken egg white) interact with the lipid membrane enhancing their lipophilic character while exposing their hydrophobic domains. This produces a lipid separation and a more ordered hybrid lipid-protein assembly. Second, we measured the thermotropic changes of this assembly induced by acetylcholine, γ-aminobutiric acid, tetracaine, and pentobarbital. Although the protein in our study is not a receptor, our results are striking, for they give evidence of the great importance of non-specific interactions in the anesthesia mechanism.


Subject(s)
Anesthetics/pharmacology , Membranes, Artificial , Models, Biological , Neurotransmitter Agents/pharmacology , Temperature , Albumins , Animals , Chickens , Dimyristoylphosphatidylcholine , Egg Proteins , Hydrophobic and Hydrophilic Interactions , Membrane Lipids , Membrane Proteins
5.
Channels (Austin) ; 13(1): 207-226, 2019 12.
Article in English | MEDLINE | ID: mdl-31184289

ABSTRACT

Ion channels display conformational changes in response to binding of their agonists and antagonists. The study of the relationships between the structure and the function of these proteins has witnessed considerable advances in the last two decades using a combination of techniques, which include electrophysiology, optical approaches (i.e. patch clamp fluorometry, incorporation of non-canonic amino acids, etc.), molecular biology (mutations in different regions of ion channels to determine their role in function) and those that have permitted the resolution of their structures in detail (X-ray crystallography and cryo-electron microscopy). The possibility of making correlations among structural components and functional traits in ion channels has allowed for more refined conclusions on how these proteins work at the molecular level. With the cloning and description of the family of Transient Receptor Potential (TRP) channels, our understanding of several sensory-related processes has also greatly moved forward. The response of these proteins to several agonists, their regulation by signaling pathways as well as by protein-protein and lipid-protein interactions and, in some cases, their biophysical characteristics have been studied thoroughly and, recently, with the resolution of their structures, the field has experienced a new boom. This review article focuses on the conformational changes in the pores, concentrating on some members of the TRP family of ion channels (TRPV and TRPA subfamilies) that result in changes in their single-channel conductances, a phenomenon that may lead to fine-tuning the electrical response to a given agonist in a cell.


Subject(s)
Transient Receptor Potential Channels/chemistry , Transient Receptor Potential Channels/metabolism , Animals , Humans , Multigene Family , Protein Conformation , Signal Transduction , Transient Receptor Potential Channels/genetics
SELECTION OF CITATIONS
SEARCH DETAIL