Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
1.
Se Pu ; 42(7): 646-657, 2024 Jul.
Article in Chinese | MEDLINE | ID: mdl-38966973

ABSTRACT

Glycomics, an emerging "omics" technology that was developed after genomics and proteomics, is a discipline that studies the composition, structure, and functions of glycomes in cells, tissues, and organisms. Glycomics plays key roles in understanding the laws of major life activities, disease prevention and treatment, and drug quality control and development. At present, the structural analysis of glycans relies mainly on mass spectrometry. However, glycans have low abundance in biological samples. In addition, factors such as variable monosaccharide compositions, differences in glycosidic bond positions and modes, diverse branching structures, contribute to the complexity of the compositions and structures of glycans, posing great challenges to glycomics research. Liquid chromatography can effectively remove matrix interferences and enhance glycan separation to improve the mass spectrometric response of glycans. Thus, liquid chromatography and liquid chromatography coupled with mass spectrometry are important technical tools that have been actively applied to solve these problems; these technologies play indispensable roles in glycomics research. Different studies have highlighted similarities and differences in the applications of various types of liquid chromatography, which also reflects the versatility and flexibility of this technology. In this review, we first discuss the enrichment methods for glycans and their applications in glycomics research from the perspective of chromatographic separation mechanisms. We then compare the advantages and disadvantages of these methods. Some glycan-enrichment modes include affinity, hydrophilic interactions, size exclusion, and porous graphitized carbon adsorption. A number of newly developed materials exhibit excellent glycan-enrichment ability. We enumerate the separation mechanisms of reversed-phase high performance liquid chromatography (RP-HPLC), high performance anion-exchange chromatography (HPAEC), hydrophilic interaction chromatography (HILIC), and porous graphitic carbon (PGC) chromatography in the separation and analysis of glycans, and describe the applications of these methods in the separation of glycans, glycoconjugates, and glyco-derivatives. Among these methods, HILIC and PGC chromatography are the most widely used, whereas HPAEC and RP-HPLC are less commonly used. The HILIC and RP-HPLC modes are often used for the separation of derived glycans. The ionization efficiency and detectability of glycans are significantly improved after derivatization. However, the derivatization process is relatively cumbersome, and byproducts inevitably affect the accuracy and completeness of the detection results. HPAEC and PGC chromatography exhibit good separation effects on nonderivative glycans, but issues related to the detection integrity of low-abundance glycans owing to their poor detection effect continue to persist. Therefore, the appropriate analytical method for a specific sample or target analyte or mutual verification must be selected. Finally, we highlight the research progress in various chromatographic methods coupled with mass spectrometry for glycomics analysis. Significant progress has been made in glycomics research in recent years owing to advancements in the development of chromatographic separation techniques. However, several significant challenges remain. As the development of novel separation materials and methods continues, chromatographic techniques may be expected to play a critical role in future glycomics research.


Subject(s)
Glycomics , Polysaccharides , Glycomics/methods , Polysaccharides/analysis , Polysaccharides/chemistry , Chromatography, Liquid/methods , Mass Spectrometry/methods
2.
Se Pu ; 42(2): 176-184, 2024 Feb.
Article in Chinese | MEDLINE | ID: mdl-38374598

ABSTRACT

Short-chain chlorinated paraffins (SCCPs) are an emerging class of persistent organic pollutants (POPs) that are widely detected in environmental matrices and human samples. Because of their environmental persistence, long-range transport potential, bioaccumulation potential, and biotoxicity, SCCPs pose a significant threat to human health. In this study, metabolomics technology was applied to reveal the metabolomic interference in human normal hepatic (L02) cells after exposure to low (1 µg/L), moderate (10 µg/L), and high (100 µg/L) doses of SCCPs. Principal component analysis (PCA) and metabolic effect level index (MELI) values showed that all three SCCP doses caused notable metabolic perturbations in L02 cells. A total of 72 metabolites that were annotated by MS/MS and matched with the experimental spectra in the Human Metabolome Database (HMDB) or validated by commercially available standards were selected as differential metabolites (DMs) across all groups. The low-dose exposure group shared 33 and 36 DMs with the moderate- and high-dose exposure groups, respectively. The moderate-dose exposure group shared 46 DMs with the high-dose exposure group. In addition, 33 DMs were shared among the three exposure groups. Among the 72 DMs, 9, 9, and 45 metabolites participated in the amino acid, nucleotide, and lipid metabolism pathways, respectively. The results of pathway enrichment analysis showed that the most relevant metabolic pathways affected by SCCPs were the lipid metabolism, fatty acid ß-oxidation, and nucleotide metabolism pathways, and that compared with low-dose exposure, moderate- and high-dose SCCP exposures caused more notable perturbations of these metabolic pathways in L02 cells. Exposure to SCCPs perturbed glycerophospholipid and sphingolipid metabolism. Significant alterations in the levels of phosphatidylcholines, phosphatidylethanolamines, and sphingomyelins indicated SCCP-induced biomembrane damage. SCCPs inhibited fatty acid ß-oxidation by decreasing the levels of short- and medium-chain acylcarnitines in L02 cells, indicating that the energy supplied by fatty acid oxidation was reduced in these cells. Furthermore, compared with low- and moderate-dose SCCPs, high-dose SCCPs produced a significantly stronger inhibition of fatty acid ß-oxidation. In addition, SCCPs perturbed nucleotide metabolism. The higher hypoxanthine levels observed in L02 cells after SCCP exposures indicate that SCCPs may induce several adverse effects, including hypoxia, reactive oxygen species production, and mutagenesis in L02 cells.


Subject(s)
Hydrocarbons, Chlorinated , Paraffin , Humans , Paraffin/toxicity , Paraffin/analysis , Tandem Mass Spectrometry , Hydrocarbons, Chlorinated/toxicity , Hydrocarbons, Chlorinated/analysis , Environmental Monitoring/methods , Fatty Acids , Nucleotides , Hepatocytes/chemistry , China
3.
Se Pu ; 41(12): 1115-1120, 2023 Dec.
Article in Chinese | MEDLINE | ID: mdl-38093541

ABSTRACT

The chemical constituents of volatile oils used in traditional Chinese medicine are highly complex. Thus, achieving the complete separation of volatile oils by one-dimensional chromatography is difficult owing to the low peak capacity of the technique. Although comprehensive two-dimensional gas chromatography provides an efficient means for separating volatile oils, it cannot be used to screen bioactive components because of its limitations. Therefore, developing a new method to separate volatile oils based on liquid chromatography is of great significance in efforts to obtain new approaches to screen bioactive components in volatile oil. The objectives of the present study are to establish an efficient method for separating the chemical constituents of Curcuma volatile oil using off-line comprehensive two-dimensional countercurrent chromatography-liquid chromatography (CCC-LC) and to investigate the two-dimensional peak capacity, orthogonality, and spatial coverage of this method. Both CCC and LC conditions were optimized. A biphasic n-hexane-methanol-water solvent system was selected via the colorimetric method, and the lower phase was used as the mobile phase in gradient-elution mode: 0-55 min, n-hexane-methanol-water (5∶2∶3 v/v/v); 55-170 min, n-hexane-methanol-water (5∶3∶2, v/v/v); 170-290 min, n-hexane-methanol-water (5∶4∶1, v/v/v). After gradient elution, elution-extrusion elution mode was applied within 290-375 min. Good resolution was achieved by the CCC separation process. The HPLC separation process was carried out with gradient elution using a mobile phase composed of acetonitrile (A)-water (B): 0-10 min, 50%A-65%A; 10-14 min, 65%A; 14-21 min, 65%A-85%A; 21-25 min, 85%A-95%A; 25-30 min, 95%A-55%A; 30-40 min, 55%A. Curcuma volatile oil was separated under the above optimized two-dimensional separation conditions, and the data obtained were drawn into a two-dimensional contour map using Matlab software. The calculated total peak capacity exceeded 954, which was 10 times more than that of one-dimensional chromatography. High orthogonality (r=0.17) and spatial coverage factor (68.1%) were also obtained. Our research provides a new methodology for separating volatile oils used in traditional Chinese medicine as well as an approach for evaluating the quality of traditional Chinese medicinal herbs using two-dimensional chromatographic fingerprints.


Subject(s)
Countercurrent Distribution , Oils, Volatile , Countercurrent Distribution/methods , Methanol , Curcuma/chemistry , Chromatography, Liquid , Chromatography, High Pressure Liquid , Water
4.
Se Pu ; 41(10): 825-834, 2023 Oct.
Article in Chinese | MEDLINE | ID: mdl-37875405

ABSTRACT

Chromatographic column is the core of chromatographic separation, and chromatographic separation material is considered the soul of the chromatographic column. The type and characteristics of the chromatographic separation material directly determine the separation mode and performance of chromatographic columns. The development and preparation of separation materials with novel structures and good separation performance is an ongoing hotspot in chromatography research. Given rapid developments in nanoscience and technology, nanomaterials with unique surface functional groups and large specific surface areas have attracted extensive attention and great interest from researchers in the field of separation science. Carbon dots (CDs), a new type of zero-dimensional fluorescent carbon nanomaterials, have been widely used in bioimaging, light-emitting diodes, sensing, catalysis, drug delivery, and other applications since they were first reported in 2004. These nanomaterials present several advantages over other types of separation materials, including a simple preparation process, low toxicity, easy functionalization, excellent biocompatibility, and photobleaching resistance. In addition, compared with traditional carbon nanomaterials such as graphene and carbon nanotubes, CDs have abundant surface functional groups, nanoscale sizes, and moderate adsorption properties. Hence, when CDs-based new materials are applied as a stationary phase for column chromatography, they can provide rich reaction sites and ensure the uniformity of the chromatographic packing process. The use of CDs can effectively avoid the peak-tailing phenomenon caused by the strong interaction of large π-conjugated systems with some analytes and improve the efficiency of the chromatographic column. As such, these nanomaterials show good application prospects in the field of chromatographic separation. In this review, the development history, classification, and synthesis strategies of CDs are briefly described. We then focus on the development of CDs-based chromatographic separation materials by systematically reviewing the recent advances in the use of CDs-based materials as a stationary phase for high-performance liquid chromatography (including hydrophilic interaction, reversed-phase, mixed-mode, and chiral chromatography), gas chromatography, and capillary electrochromatography, with special emphasis on the preparation methods and applications of various stationary phases. Finally, the development prospects of CDs and future research efforts on these materials are also analyzed and discussed. This review can provide guidance on the rational design and application of new CDs-based chromatographic separation materials.

5.
Se Pu ; 41(7): 572-581, 2023 Jul.
Article in Chinese | MEDLINE | ID: mdl-37387278

ABSTRACT

Neurotransmitters (NTs) are basic signaling chemicals used for communication between cells. The most well-known catecholamines (CAs) are epinephrine, norepinephrine, and dopamine. CAs are an important class of monoamine NTs that contain catechins and amine groups. The accurate determination of CAs in biological samples can provide essential information on potential pathogenic mechanisms. However, biological samples generally contain only trace levels of CAs. Therefore, sample pretreatment is necessary to separate and enrich CAs before instrument analysis. Dispersive solid-phase extraction (DSPE) technology combines the principles of liquid-liquid extraction and solid-phase extraction and is a useful method for purifying and enriching the target analytes in complex matrices. This method has the advantages of low solvent consumption, environmental safety, and high sensitivity and efficiency. In addition, the adsorbents used in DSPE do not need to be packed into a column and can simply be completely dispersed in the sample solution; this excellent feature greatly improves the extraction efficiency and simplifies the extraction process. Therefore, the development of new DSPE materials with high efficiency and adsorption capacity using simple preparation procedures has received wide attention from the research community. Carbon nitrides (MXenes) are a class of two-dimensional layered materials that possess good hydrophilicity, a large number of functional groups (-O, -OH, and -F), large layer spacing, different elemental compositions, excellent biocompatibility, and environmental friendliness. However, these materials have a small specific surface area and poor adsorption selectivity, which limits their applications in SPE. The separation selectivity of MXenes can be significantly improved by functional modification. Polyimide (PI) is a crosslinking product that is mainly formed by the condensation polymerization of binary anhydride and diamine. It has a unique crosslinked network structure, as well as a large number of carboxyl groups, and shows excellent characteristics. Therefore, the synthesis of new PI-functionalized Ti3C2Tx (Ti3C2Tx/PI) composites by growing a PI layer on the surface of two-dimensional MXene nanosheets in situ may not only overcome the adsorptive limitations of MXenes but also effectively improve their specific surface area and porous structure, thereby enhancing their mass transfer capacity, adsorption capacity, and selectivity. In this study, a Ti3C2Tx/PI nanocomposite was fabricated and successfully applied as a DSPE sorbent to enrich and concentrate trace CAs in urine samples. The prepared nanocomposite was examined using various characterization methods, including scanning electron microscopy, Fourier transform-infrared spectroscopy, X-ray diffraction, and zeta potential analysis. The effects of the extraction parameters on the extraction efficiency of Ti3C2Tx/PI were also investigated in detail. The adsorption performance of Ti3C2Tx/PI can be described by pseudo-second-order kinetics and the Freundlich isotherm model. The adsorption process appeared to occur on the outer surface, as well as surface voids, of the nanocomposite. The adsorption mechanism of Ti3C2Tx/PI indicated a chemical adsorption process based on multiple electrostatic, π-π, and hydrogen-bonding interactions. The optimal adsorption conditions included an adsorbent dosage of 20 mg, sample pH of 8, adsorption and elution times of 10 and 15 min, respectively, and eluent composed of acetic acid-acetonitrile-water (5∶47.5∶47.5, v/v/v). A sensitive method for detecting CAs in urine was subsequently developed by coupling Ti3C2Tx/PI as a DSPE sorbent with HPLC-FLD analysis. The CAs were separated on an Agilent ZORBAX ODS analytical column (250 mm×4.6 mm, 5 µm). Methanol and an aqueous solution of 20 mmol/L acetic acid were used as the mobile phases for isocratic elution. Under optimal conditions, the proposed DSPE-HPLC-FLD method exhibited good linearity in the range of 1-250 ng/mL with correlation coefficients >0.99. The limits of detection (LODs) and limits of quantification (LOQs) were calculated based on signal-to-noise ratios of 3 and 10 and found to be in the range of 0.20-0.32 and 0.7-1.0 ng/mL, respectively. The recoveries of the method were in the range of 82.50%-96.85% with RSDs≤9.96%. Finally, the proposed method was successfully applied to the quantification of CAs in urine samples from smokers and nonsmokers, thereby indicating its applicability for determining trace CAs.


Subject(s)
Catecholamines , Titanium , Chromatography, Liquid , Norepinephrine , Acetic Acid
6.
Talanta ; 257: 124324, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36780779

ABSTRACT

This review provides an overview of the online hyphenation of Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR MS) with separation methods to date. The online coupling between separation techniques (gas and liquid chromatography, capillary electrophoresis) and FT-ICR MS essentially raises questions of compromise and is not look as straightforward as hyphenation with other analyzers (QTOF-MS for instance). FT-ICR MS requires time to reach its highest resolving power and accuracy in mass measurement capabilities whereas chromatographic and electrophoretic peaks are transient. In many applications, the strengths and the weaknesses of each technique are balanced by their hyphenation. Untargeted "Omics" (e.g. proteomics, metabolomics, petroleomics, …) is one of the main areas of application for FT-ICR MS hyphenated to online separation techniques because of the complexity of the sample. FT-ICR MS achieves the required high mass measurement accuracy to determine accurate molecular formulae and resolution for isobar distinction. Meanwhile separation techniques highlight isomers and reduce the ion suppression effects extending the dynamic range. Even if the implementation of FT-ICR MS hyphenated with online separation methods is a little trickier (the art of compromise), this review shows that it provides unparalleled results to the scientific community (the art of the possible), along with raising the issue of its future in the field with the relentless technological progress.

7.
J Chromatogr A ; 1692: 463843, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36780845

ABSTRACT

The combination of hydrophilic interaction chromatography (HILIC) and reversed-phase liquid chromatography (RP-LC) has proved effective in the LC × LC analysis of polyphenols due to the high degree of orthogonality associated with these separation modes for various classes of phenolic compounds. However, despite the growing number of such applications, HILIC is almost exclusively used as the first dimension (1D) separation mode, and RP-LC in the second dimension (2D). This is somewhat surprising in light of the potential advantages of swapping these separation modes. In this contribution, we present a detailed evaluation of the potential of online RP-LC × HILIC-MS for the analysis of phenolic compounds, comparing the performance of this system to the more established HILIC × RP-LC-MS configuration. Method development was performed using a predictive optimisation program, and fixed solvent modulation was employed to combat the solvent incompatibility between HILIC and RP-LC mobile phases. Red wine, rooibos tea, Protea and chestnut phenolic extracts containing a large diversity of phenolic compound classes were analysed by both HILIC × RP-LC- and RP-LC × HILIC-MS in order to compare the separation performance. Overall, the kinetic performance of HILIC × RP-LC was found to be clearly superior, with higher peak capacities and better resolution obtained for the majority of samples compared to RP-LC × HILIC analyses using similar column dimensions. Dilution of the 1D solvent combined with large volume injections proved insufficient to focus especially phenolic acids in the 2D HILIC separation, which resulted in severe 2D peak distortion for these compounds, and negatively impacted on method performance. On the other hand, a noteworthy improvement in the sensitivity of RP-LC × HILIC-MS analyses was observed due to higher ESI-MS response for the 2D HILIC mobile phase and greater sample loading capacity of the 1D RP-LC column, brought on by the high solubility of phenolic samples in aqueous solutions. As a result, a significantly higher number of compounds were detected in the RP-LC × HILIC-MS separations. These findings point to the potential advantage of RP-LC × HILIC as a complementary configuration to HILIC × RP-LC for phenolic analysis.


Subject(s)
Chromatography, Reverse-Phase , Phenols , Chromatography, Reverse-Phase/methods , Phenols/analysis , Hydrophobic and Hydrophilic Interactions , Solvents
8.
Front Biosci (Landmark Ed) ; 27(10): 290, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36336868

ABSTRACT

BACKGROUND: Native mass spectrometry (nMS) approaches appear attractive to complement bottom-up strategies traditionally used in biopharmaceutical industries thanks to their quite straightforward and rapid workflows, especially through online hyphenation of non-denaturing liquid chromatography (LC) to nMS. The present work provides an overview of the state-of-the-art chromatographic tools available for the detailed characterization of monoclonal antibody (mAb) formats, exemplified on the antibody-drug conjugate (ADC) trastuzumab deruxtecan (T-DXd). METHODS: T-DXd was first characterized by conventional reversed phase LC (rpLC) and peptide mapping. Couplings of size exclusion chromatography (SEC), cation exchange chromatography (CEX), and hydrophobic interaction chromatography (HIC) to nMS were used to gain further insights into size, hydrophobic, and charge variants of T-DXd and its parental mAb trastuzumab, at intact and middle-up levels. RESULTS: SEC-nMS first offered a direct snapshot of the homogeneous conjugation of T-DXd, with an average drug-to-antibody ratio (DAR) of 8 in agreement with a conjugation on cysteines after reduction of all interchain disulfide bonds. Moreover, SEC-nMS afforded precise identification and quantification of aggregates and fragments. Middle-up level experiments performed after IdeS digestion confirmed that drug conjugation occurs in the Fab region of the mAb, as seen with rpLC. HIC separated two DAR8 species that could not be differentiated by nMS. Although middle-up HIC-nMS proved to be more informative for oxidized forms, the identification of minor variants was still difficult because of poor MS signal quality, showing how the coupling of HIC to nMS remains challenging. Lastly, middle-up CEX-nMS provided accurate determination and localization of post-translational modifications, with several acidic/basic variants within Fab and Fc regions of T-DXd that were also identified by peptide mapping. CONCLUSIONS: This study illustrates the strengths and drawbacks of each LC-nMS coupling. By combining SEC-, HIC-, and CEX-nMS, we were able to achieve a comprehensive characterization of T-DXd without extensive sample preparation prior to MS analysis.


Subject(s)
Immunoconjugates , Tandem Mass Spectrometry , Chromatography, Liquid/methods , Immunoconjugates/analysis , Immunoconjugates/chemistry , Trastuzumab , Antibodies, Monoclonal/chemistry
9.
Se Pu ; 40(11): 1014-1021, 2022 Nov.
Article in Chinese | MEDLINE | ID: mdl-36351810

ABSTRACT

Biogenic amines (BAs) represent a class of potentially harmful substances in foods and medicines. Their content is thus an important indicator of proper hygiene in food preparation, and purity of medicines. It is of great practical significance to establish accurate and sensitive detection of BAs in food and drugs. In this study, a high performance liquid chromatography (HPLC) method was developed for the simultaneous detection of multiple BAs in fish, pork and antibiotics based on aptamer signal replacement and cyclic amplification strategy. First, non-fluorescent targets were converted into fluorescent nucleic acid probes using a two-step replacement process. Subsequently, a large number of nucleic acid probes with different lengths and base sequences were generated using a double-stranded specific nuclease-assisted signal amplification strategy. Finally, various BAs in real samples were accurately identified using an HPLC platform. The influence of base sequence and nucleic acid probe length on separation via HPLC was studied to improve discrimination among fluorescent signals. Four different sequences were selected as tails to the DNA probe, and their retention times increased in turn. Experimental conditions, including column temperature, flow rate, gradient elution process, reaction temperature, and incubation time, were optimized by orthogonal experiments to further improve signal separation efficiency. Specifically, the methanol gradient was changed from 10% to 20% during 0-20 min, 35 ℃ of column temperature and 1.0 mL/min of flow rate were chosen as the HPLC conditions. The final resolution of chromatographic peaks was 3.44, 3.59 and 2.37, indicating complete separation between peaks. Optimal incubation time for BA capture by aptamer was 120 min, and optimal dosage of duplex specific nuclease (DSN) and Mg2+were 0.9 U and 30 mmol/L. The optimal pH, incubation temperature, and DSN incubation time were 7.0, 40 ℃ and 210 min, respectively. The proposed method exhibited high sensitivity towards BAs, with a linear range of 1 pmol/L-1 µmol/L, and the limits of detection of tyramine, histamine, spermine, and tryptamine were 0.25, 0.21, 0.27 and 0.19 pmol/L, respectively. The feasibility of this method was verified, and contrast experiments indicated that it could achieve highly selective detection of four BAs in one run. The applicability of this integrated method was also investigated for the detection of real samples (gentamycin sulfate, fish and pork). To assess the matrix effect, each BA with different concentrations were spiked into real fish and pork samples. Relative recoveries and relative standard deviations (RSDs) ranged from 101.2% to 104.5% and from 1.5% to 4.3%, respectively. The above detection results for real samples showed that this method could accurately capture, separate, and identify BAs in complex matrix samples. This strategy can effectively improve analyte selectivity and reduce the matrix effect. This assay is thus expected to provide a new approach for food and drug analyses.


Subject(s)
Biogenic Amines , Histamine , Animals , Biogenic Amines/analysis , Chromatography, Liquid , Chromatography, High Pressure Liquid , Histamine/analysis , Fishes
10.
Methods Enzymol ; 677: 1-39, 2022.
Article in English | MEDLINE | ID: mdl-36410946

ABSTRACT

In this chapter, we discuss the various sample delivery systems that are available at most biological SAXS beamlines. The focus is laid on the EMBL Biosaxs beamline P12 at the Petra 3 storage ring on the DESY site in Hamburg, Germany. The minimal requirements necessary to prepare samples are described specifically for macromolecular samples in solution and the background is given on how the physical properties of the scattering process itself determine the sample requirements. We provide a number of exemplary applications as well as guidelines for selecting and performing the right data collection strategy depending on the scientific question at hand. This chapter is aimed at novices to the SAXS technique with biochemical background as well as more experienced users setting out to employ more advanced SAXS set-ups.


Subject(s)
Synchrotrons , Scattering, Small Angle , X-Ray Diffraction , Macromolecular Substances/chemistry
11.
Environ Int ; 170: 107623, 2022 12.
Article in English | MEDLINE | ID: mdl-36379200

ABSTRACT

Apex predators are good indicators of environmental pollution since they are relatively long-lived and their high trophic position and spatiotemporal exposure to chemicals provides insights into the persistent, bioaccumulative and toxic (PBT) properties of chemicals. Although monitoring data from apex predators can considerably support chemicals' management, there is a lack of pan-European studies, and longer-term monitoring of chemicals in organisms from higher trophic levels. The present study investigated the occurrence of contaminants of emerging concern (CECs) in 67 freshwater, marine and terrestrial apex predators and in freshwater and marine prey, gathered from four European countries. Generic sample preparation protocols for the extraction of CECs with a broad range of physicochemical properties and the purification of the extracts were used. The analysis was performed utilizing liquid (LC) chromatography coupled to high resolution mass spectrometry (HRMS), while the acquired chromatograms were screened for the presence of more than 2,200 CECs through wide-scope target analysis. In total, 145 CECs were determined in the apex predator and their prey samples belonging in different categories, such as pharmaceuticals, plant protection products, per- and polyfluoroalkyl substances, their metabolites and transformation products. Higher concentration levels were measured in predators compared to prey, suggesting that biomagnification of chemicals through the food chain occurs. The compounds were prioritized for further regulatory risk assessment based on their frequency of detection and their concentration levels. The majority of the prioritized CECs were lipophilic, although the presence of more polar contaminants should not be neglected. This indicates that holistic analytical approaches are required to fully characterize the chemical universe of biota samples. Therefore, the present survey is an attempt to systematically investigate the presence of thousands of chemicals at a European level, aiming to use these data for better chemicals management and contribute to EU Zero Pollution Ambition.


Subject(s)
Mass Spectrometry , Europe
12.
J Proteome Res ; 21(10): 2493-2503, 2022 Oct 07.
Article in English | MEDLINE | ID: mdl-36043517

ABSTRACT

The direct correlation between proteoforms and biological phenotype necessitates the exploration of mass spectrometry (MS)-based methods more suitable for proteoform detection and characterization. Here, we couple nano-hydrophobic interaction chromatography (nano-HIC) to ultraviolet photodissociation MS (UVPD-MS) for separation and characterization of intact proteins and proteoforms. High linearity, sensitivity, and sequence coverage are obtained with this method for a variety of proteins. Investigation of collisional cross sections of intact proteins during nano-HIC indicates semifolded conformations in low charge states, enabling a different dimension of separation in comparison to traditional, fully denaturing reversed-phase separations. This method is demonstrated for a mixture of intact proteins from Escherichia coli ribosomes; high sequence coverage is obtained for a variety of modified and unmodified proteoforms.


Subject(s)
Proteins , Tandem Mass Spectrometry , Chromatography, Liquid/methods , Escherichia coli/genetics , Hydrophobic and Hydrophilic Interactions , Spectrophotometry, Ultraviolet/methods , Tandem Mass Spectrometry/methods , Ultraviolet Rays
13.
Se Pu ; 40(8): 704-711, 2022 Aug.
Article in Chinese | MEDLINE | ID: mdl-35903837

ABSTRACT

This study aimed to establish a method for the rapid determination of trace estrogens in honey samples by high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) using imine-linked porous covalent organic framework material (IL-COF-1) as the adsorbent for solid-phase extraction (SPE). Estradiol (E1), diethylstilbestrol (DES), estriol (E3), ß-estradiol (E2), and ethinylestradiol (EE2) were used as the target analytes. A single factor optimization method was performed to optimize the extraction effect by adding estrogens to honey samples. The optimal conditions were as follows. A total of 30 mg IL-COF-1 was filled in the SPE column. The sample pH was adjusted to 7. The sample was loaded at a flow rate of 3 mL/min and eluted with 5 mL of a 1% (v/v) NH3·H2O-methanol solution. The flow rate of the eluent was 0.4 mL/min. NaCl was not added in the extraction process. HPLC coupled to electrospray ionization and triple quadrupole mass spectrometry was introduced to quantify the estrogens in the extracts. The estrogens were separated on a Thermo Fisher Scientific C18 analytical column (100 mm×2.1 mm, 5 µm). Acetonitrile and 5 mmol/L ammonium acetate solution were used as the mobile phases for gradient elution. The column temperature was set at 40 ℃, and the autosampler temperature was maintained at 10 ℃. The rapid qualitative and quantitative analysis of the five estrogens in the honey samples was operated under multiple reaction monitoring mode in a negative electrospray ion source mode. IL-COF-1 prepared in six batches was used as a filler for the SPE column. The relative standard deviations (RSDs) of the recoveries of the estrogens among different batches were 5.2%-9.1%. The reusability of IL-COF-1 material was assessed. After six SPE cycles on the same solid-phase extraction column, the RSDs of the estrogen recoveries were 2.5%-6.1%, indicating that IL-COF-1 has good reusability. The recoveries of estrogens obtained on an IL-COF-1 solid-phase extraction column within 6 days (tested once a day) were 95.1%-107.4%, and the RSDs were 6.2%-8.9%. These results confirmed that the SPE filler had good stability. The method validation results showed that the linear detection ranges were 1-500 ng/g for E3, E2, and EE2, and 0.1-100 ng/g for E1 and DES withe the correlation coefficients of 0.9934-0.9972. The limits of detection (LODs, S/N=3) were 0.01-0.30 ng/g, and the limits of quantification (LOQs, S/N=10) were 0.05-0.95 ng/g. Five estrogens were added (50 ng/g) for the repeated experiments. The RSDs of the intra-day precision were 3.2%-6.6%. The RSDs of the inter-day precision were 4.2%-7.9%. This method was applied to determine the estrogen levels in four honey samples, and no estrogen was found. The recoveries of the five estrogens in sample spiked at three levels including low, middle, and high levels were investigated, and satisfactory recoveries (80.1%-115.2%) were obtained. The SPE-HPLC-MS/MS method based on IL-COF-1 is rapid, accurate, and sensitive, making it suitable for analyzing and detecting estrogen in honey. Further exploration of the use of IL-COF-1 for the extraction processes is in progress.


Subject(s)
Honey , Metal-Organic Frameworks , Chromatography, High Pressure Liquid , Chromatography, Liquid , Estradiol , Estrogens/analysis , Honey/analysis , Imines , Porosity , Solid Phase Extraction/methods , Tandem Mass Spectrometry/methods
14.
Anal Bioanal Chem ; 414(25): 7399-7419, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35829770

ABSTRACT

Parkinson's disease (PD) is the second most prevalent neurodegenerative disease, with an increasing incidence in recent years due to the aging population. Genetic mutations alone only explain <10% of PD cases, while environmental factors, including small molecules, may play a significant role in PD. In the present work, 22 plasma (11 PD, 11 control) and 19 feces samples (10 PD, 9 control) were analyzed by non-target high-resolution mass spectrometry (NT-HRMS) coupled to two liquid chromatography (LC) methods (reversed-phase (RP) and hydrophilic interaction liquid chromatography (HILIC)). A cheminformatics workflow was optimized using open software (MS-DIAL and patRoon) and open databases (all public MSP-formatted spectral libraries for MS-DIAL, PubChemLite for Exposomics, and the LITMINEDNEURO list for patRoon). Furthermore, five disease-specific databases and three suspect lists (on PD and related disorders) were developed, using PubChem functionality to identifying relevant unknown chemicals. The results showed that non-target screening with the larger databases generally provided better results compared with smaller suspect lists. However, two suspect screening approaches with patRoon were also good options to study specific chemicals in PD. The combination of chromatographic methods (RP and HILIC) as well as two ionization modes (positive and negative) enhanced the coverage of chemicals in the biological samples. While most metabolomics studies in PD have focused on blood and cerebrospinal fluid, we found a higher number of relevant features in feces, such as alanine betaine or nicotinamide, which can be directly metabolized by gut microbiota. This highlights the potential role of gut dysbiosis in PD development.


Subject(s)
Exposome , Neurodegenerative Diseases , Parkinson Disease , Aged , Alanine , Betaine , Cheminformatics , Humans , Metabolome , Metabolomics/methods , Niacinamide , Pilot Projects
15.
MethodsX ; 9: 101730, 2022.
Article in English | MEDLINE | ID: mdl-35664042

ABSTRACT

The herbicide glyphosate (GLY) and its metabolite aminophosphonic acid (AMPA) are troublesome compounds for analysis in the environment. Here we report a reliable technique for GLY and AMPA determination in freshwater and soils by means of derivatization with 9-fluorenylmethoxycarbonyl chloride (FMOC-Cl) and further liquid chromatography with fluorescence detection (FLD) and tandem mass spectrometry (MS/MS) analysis. Selected experiments were carried out to evaluate selectivity, sensitivity, repeatability, linearity and quantification performance in both matrices.

16.
Foods ; 11(10)2022 May 13.
Article in English | MEDLINE | ID: mdl-35626995

ABSTRACT

Polyphenols, the most abundant components in tea, determine the quality and health function of tea. The analysis of polyphenols in tea is a topic of increasing interest. However, the complexity of the tea matrix, the wide variety of teas, and the difference in determination purposes puts forward higher requirements for the detection of tea polyphenols. Many efforts have been made to provide a highly sensitive and selective analytical method for the determination and characterization of tea polyphenols. In order to provide new insight for the further development of polyphenols in tea, in the present review we summarize the recent literature for the detection of tea polyphenols from the perspectives of determining total polyphenols and individual polyphenols in tea. There are a variety of methods for the analysis of total tea polyphenols, which range from the traditional titration method, to the widely used spectrophotometry based on the color reaction of Folin-Ciocalteu, and then to the current electrochemical sensor for rapid on-site detection. Additionally, the application of improved liquid chromatography (LC) and high-resolution mass spectrometry (HRMS) were emphasized for the simultaneous determination of multiple polyphenols and the identification of novel polyphenols. Finally, a brief outline of future development trends are discussed.

17.
Front Nutr ; 9: 825519, 2022.
Article in English | MEDLINE | ID: mdl-35257008

ABSTRACT

For a long time, the importance of sample preparation and extraction in the analytical performance of the most diverse methodologies have been neglected. Cumbersome techniques, involving high sample and solvent volumes have been gradually miniaturized from solid-phase and liquid-liquid extractions formats and microextractions approaches are becoming the standard in different fields of research. In this context, this review is devoted to the analysis of bioactive compounds in foods using different microextraction approaches reported in the literature since 2015. But microextraction also represents an opportunity to mitigate the environmental impact of organic solvents usage, as well as lab equipment. For this reason, in the recent literature, phenolics and alkaloids extraction from fruits, medicinal herbs, juices, and coffee using different miniaturized formats of solid-phase extraction and liquid-liquid microextraction are the most popular applications. However, more ambitious analytical limits are continuously being reported and emergent sorbents based on carbon nanotubes and magnetic nanoparticles will certainly contribute to this trend. Additionally, ionic liquids and deep eutectic solvents constitute already the most recent forefront of innovation, substituting organic solvents and further improving the current microextraction approaches.

18.
MAbs ; 14(1): 2004982, 2022.
Article in English | MEDLINE | ID: mdl-34978527

ABSTRACT

Antibodies facilitate targeted cell killing by engaging with immune cells such as natural killer cells through weak binding interactions with Fcγ receptors on the cell surface. Here, we evaluate the binding affinity of the receptor FcγRIIIa V158 (CD16a) for several therapeutic antibody classes, isoforms, and Fc-fusion proteins using an immobilized receptor affinity liquid chromatography (LC) approach coupled with online mass spectrometry (MS) detection. Aglycosylated FcγRIIIa was used in the affinity chromatography and compared with published affinities using glycosylated receptors. Affinity LC-MS differentiated the IgG1 antibodies primarily according to their Fc glycosylation patterns, with highly galactosylated species having greater affinity for the immobilized receptors and thus eluting later from the column (M5< G0F < G0 afucosylated ≅ G1F < G2F). Sialylated species bound weaker to their asialylated counterparts as reported previously. High mannose glycoforms bound weaker than G0F, contrary to previously published studies using glycosylated receptors. Also, increased receptor binding affinity associated with afucosylated antibodies was not observed with the aglycosylated FcγRIIIa. This apparent difference from previous findings highlighted the importance of the glycans on the receptors for mediating stronger binding interactions. Characterization of temperature-stressed samples by LC-MS peptide mapping revealed over 200 chemical and post-translational modifications, but only the Fc glycans, deamidation of EU N325, and an unknown modification to either proline or cysteine residues of the hinge region were found to have a statistically significant impact on binding.Abbreviations: Antibody-dependent cell-mediated cytotoxicity (ADCC), chimeric antigen receptor (CAR), Chinese hamster ovary (CHO), dithiothreitol (DTT), electrospray ionization (ESI), hydrogen-deuterium exchange (HDX), filter aided-sample preparation (FASP), Fcγ receptor (FcγR), fragment crystallizable (Fc), high-pressure liquid chromatography (HPLC), immunoglobulin G (IgG), liquid chromatography (LC), monoclonal antibody (mAb), mass spectrometry (MS), natural killer (NK), N-glycolylneuraminic acid (NGNA), N-acetylneuraminic acid (NANA), principal component analysis (PCA), surface plasmon resonance (SPR), trifluoroacetic acid (TFA), and extracted mass chromatogram (XMC).


Subject(s)
Chromatography, Affinity , Immunoglobulin Fc Fragments/chemistry , Mass Spectrometry , Receptors, IgG/chemistry , Recombinant Fusion Proteins/chemistry , Animals , CHO Cells , Cricetulus , Humans , Immunoglobulin Fc Fragments/genetics , Immunoglobulin Fc Fragments/immunology , Receptors, IgG/genetics , Receptors, IgG/immunology , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology
19.
Talanta ; 236: 122889, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34635268

ABSTRACT

Phenolic compounds are an interesting class of natural products because of their proposed contribution to health benefits of foods and beverages and as a bio-source of organic (aromatic) building blocks. Phenolic extracts from natural products are often highly complex and contain compounds covering a broad range in molecular properties. While many 1D-LC and mass spectrometric approaches have been proposed for the analysis of phenolics, this complexity inevitably leads to challenging identification and purification. New insights into the composition of phenolic extracts can be obtained through online comprehensive two-dimensional liquid chromatography (LC × LC) coupled to photodiode array and mass spectrometric detection. However, several practical hurdles must be overcome to achieve high peak capacities and to obtain robust methods with this technique. In many LC × LC configurations, refocusing of analytes at the head of the 2D column is hindered by the high eluotropic strength of the solvent transferred from the 1D to the 2D, leading to peak breakthrough or broadening. LC × LC combinations whereby a purely aqueous mobile phase is used in the 1D and RPLC is used in the 2D are unaffected by these phenomena, leading to more robust methods. In this contribution, the combination of temperature-responsive liquid chromatography (TRLC) with RPLC is used for the first time for the analysis of phenolic extracts of natural origin to illustrate the potential of this alternative combination for natural product analyses. The possibilities of the combination are investigated through analysis of wine extracts by TRLC × RPLC-DAD and TRLC × RPLC-ESI-MS.


Subject(s)
Chromatography, Reverse-Phase , Wine , Chromatography, Liquid , Phenols/analysis , Temperature
20.
J Chromatogr A ; 1657: 462569, 2021 Nov 08.
Article in English | MEDLINE | ID: mdl-34614471

ABSTRACT

Metal-Organic Framework (MOF) MIL-101 and three amino-modified MIL-101s were synthesized and used as adsorbents for solid-phase extraction of trace-level polar phenoxycarboxylic acids (PCAs) from environmental water samples for quantification by liquid chromatography. The four MOFs were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, N2 adsorption-desorption isotherm, pore structure analysis and powder X-ray diffraction analysis. Parameters which play important roles in the process of solid phase extraction were optimized. MIL-101-ethylenediamine (ED) was chosen as the optimum adsorbent for the extraction of PCAs due to electron donation of alkyl groups in aliphatic amino groups and the smaller steric hindrance. The extraction efficiency using MIL-101-ED compacted column was compared with three commercial columns and the influence of humic acid (HA) on extraction was investigated. The merits of newly-built SPE-LC method based on MIL-101-ED are as follows: (a) low limits of detection (0.052-0.160 ng mL-1), (b) wide linear ranges (0.5-1000 ng mL-1), (c) good repeatabilities (1.33-3.35%) and reproducibilities (2.51-3.49%) and (d) excludability of HA. This method has been applied to the determination of PCAs in environmental water samples successfully.


Subject(s)
Metal-Organic Frameworks , Adsorption , Chromatography, High Pressure Liquid , Chromatography, Liquid , Solid Phase Extraction
SELECTION OF CITATIONS
SEARCH DETAIL
...