Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.937
Filter
1.
ACS Appl Mater Interfaces ; 16(36): 47416-47428, 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39219054

ABSTRACT

The hydroxyl groups on the surface of the cellulose-based gel polymer electrolyte lead to poor interfacial compatibility due to side reactions with lithium sheets. In this paper, a novel cellulose-based gel polymer electrolyte was prepared by uniformly coating the surface of a cellulose membrane with a nanohydrotalcite/PVDF-HFP composite using electrospinning technology. This cellulose-based gel polymer electrolyte exhibits good interfacial compatibility and excellent cycling stability (91.7% specific capacity retention after 500 cycles at 0.5C). Theory and experiments have shown that nanohydrotalcite on the surface of cellulose membrane can effectively prevent the contact of hydroxyl groups with lithium sheets to reduce the side reactions. In addition, nanohydrotalcite can also act as a Li+ transport redistributor to facilitate the uniform deposition of Li+ and reduce the formation of lithium dendrites to extend the cycle life.

2.
ACS Nano ; 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39323096

ABSTRACT

After charging to a high state-of-charge (SoC), layered oxide cathodes exhibit high capacities but suffer from gliding-induced structural distortions caused by deep Li depletion within alkali metal (AM) layers, especially for high-nickel candidates. In this study, we identify the essential structure of the detrimental H3 phase formed at high SoC to be an intergrowth structure characterized by random sequences of the O3 and O1 slabs, where the O3 slabs represent Li-rich layers and the O1 slabs denote Li-depleted (or empty) layers that glide from the O3 slabs. Moreover, we adopt two doping strategies targeting different doping sites to eliminate the formation of Li-vacant O1 slabs. First, we introduce direct transition metal (TM) pillars between TMO2 slabs achieved through dopants (e.g., Nb) positioned within AM layers, significantly improving the cycling stability. Second, we introduce indirect Li pillars achieved through dopants located at TM layers to adjust the Li-O bond strength. While this strategy can regulate the uniformity of Li at the slab level, it results in an uneven Li distribution at the particle scale, ultimately failing to enhance the electrochemical performance. Our established research strategy facilitates the realization of diverse pillars between TMO2 slabs through doping, thereby offering guidance for stabilizing high-capacity layered oxide cathodes at high SoC.

3.
Nanomicro Lett ; 17(1): 9, 2024 Sep 26.
Article in English | MEDLINE | ID: mdl-39325069

ABSTRACT

Lithium-ion batteries (LIBs) have dominated the portable electronic and electrochemical energy markets since their commercialisation, whose high cost and lithium scarcity have prompted the development of other alkali-ion batteries (AIBs) including sodium-ion batteries (SIBs) and potassium-ion batteries (PIBs). Owing to larger ion sizes of Na+ and K+ compared with Li+, nanocomposites with excellent crystallinity orientation and well-developed porosity show unprecedented potential for advanced lithium/sodium/potassium storage. With enticing open rigid framework structures, Prussian blue analogues (PBAs) remain promising self-sacrificial templates for the preparation of various nanocomposites, whose appeal originates from the well-retained porous structures and exceptional electrochemical activities after thermal decomposition. This review focuses on the recent progress of PBA-derived nanocomposites from their fabrication, lithium/sodium/potassium storage mechanism, and applications in AIBs (LIBs, SIBs, and PIBs). To distinguish various PBA derivatives, the working mechanism and applications of PBA-templated metal oxides, metal chalcogenides, metal phosphides, and other nanocomposites are systematically evaluated, facilitating the establishment of a structure-activity correlation for these materials. Based on the fruitful achievements of PBA-derived nanocomposites, perspectives for their future development are envisioned, aiming to narrow down the gap between laboratory study and industrial reality.

4.
Small ; : e2406947, 2024 Sep 27.
Article in English | MEDLINE | ID: mdl-39328017

ABSTRACT

Commercializing high-nickel, cobalt-free cathodes, such as LiNi0.9Mn0.1-xAlxO2 (NMA-90), hinges on effectively incorporating Al3+ during the hydroxide coprecipitation reaction. However, Al3+ coprecipitation is nontrivial as Al3+ possesses unique precipitation properties compared to Ni2+ and Mn2+, which impact the final precursor morphology and consequently the cathode properties. In this study, the nuance of Al3+ coprecipitation and its influence on the cycling stability of NMA with increasing Al3+ content is elucidated. While low reaction pH and ammonia concentration are suitable for producing Al-free LiNi0.9Mn0.1O2 (NM-90) effectively, the same coprecipitation environment leads to porous precursor morphology and poor cycle life in Al-containing LiNi0.9Mn0.08Al0.02O2 (NMA-900802) and LiNi0.9Mn0.05Al0.05O2 (NMA-900505). By systematically increasing the reaction pH and ammonia concentration for the Al-containing compositions, the precursor morphology becomes denser and the cathode cycling stability is greatly improved. It is hypothesized that the improvement in cycling stability stems from the reduction in Al(OH)3 nucleation, which promotes hydroxide particle growth with optimal Al3+ incorporation into the cathode lattice.

5.
Article in English | MEDLINE | ID: mdl-39315712

ABSTRACT

High theoretical capacity of Bi2S3 propels it toward an ideal anode material for lithium-ion batteries (LIBs); however, rapid capacity attenuation and poor long-term stability are major barriers to widespread application. In this work, an oxygen self-doping strategy was utilized to synthesize O-Bi2S3@C, significantly increasing the amount of active sites for lithium-ion storage. Meanwhile, sulfur vacancies were formed to improve the electrical conductivity and ionic transport efficiency, enhance the long-term stability, and accelerate the electrochemical kinetics of Bi2S3@C. O-BSC-S1:3 anode exhibits a reversible capacity of 673.1 mAh g-1 at 0.2 A g-1. It retains a long-term capacity of 596.3 mAh g-1 over 1100 cycles at a high density of 3 A g-1 in LIBs. Moreover, the installed O-Bi2S3@C//LiCoO2 full battery offers exceptional reversible capacity and remarkable cyclability (325.2 mAh g-1 after 200 cycles) at 0.2 A g-1. The combined strategy of oxygen self-doping and sulfur vacancy effectively enhances the reversible capacity and cycling life of Bi2S3, providing an approach for the design of high-performance transition metal sulfide anodes for LIBs.

6.
Small ; : e2405853, 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39268789

ABSTRACT

Building a stable cathode-electrolyte interface (CEI) is crucial for achieving high-performance layered metal oxide cathode materials LiNixCoyMn1-x-yO2 (NCM). In this work, a novel 4-fluorobenzene isocyanate (4-FBC) electrolyte additive that contains isocyanate and benzene ring functional groups is proposed, which can form robust and homogeneous N-rich and benzene ring skeleton CEI film on the cathode surface, leading to significant improvement in the electrochemical performance of lithium-ion batteries. Taking LiNi0.5Co0.2Mn0.3O2 (NCM523) as an example, the NCM523/SiO@Graphite pouch full cells with electrolytes containing a mass fraction of 1% 4-FBC additives demonstrate improved capacity retention after 200 cycles, retaining capacity retention rates of 81.3%, which is much higher than that of 39.1% without additive. The improvement can be ascribed to the mitigation of electrolyte decomposition and inhibition of transition metal ions the dissolution from the cathode material due to the stable CEI film. Moreover, the electrochemical performance enhancement can also be achieved in high voltage and Ni-rich cathode materials, indicating the universality and effectiveness of this strategy for the practical applications of high energy density lithium-ion batteries.

7.
Article in English | MEDLINE | ID: mdl-39288172

ABSTRACT

Quinones with a rapid reduction-oxidation rate are promising high-capacity cathodes for lithium-ion batteries. However, the high solubility of quinone molecules in polar organic electrolytes results in low cycle stability, while their low electric conductivity causes low utilization of electrode materials. In this article, a new p-benzoquinone derivative, poly(vinyl benzoquinone) (PVBQ), is designed and synthesized, and a solution-based method of preparing free-standing PVBQ/reduced graphene oxide (RGO) composite films is developed. PVBQ has a high theoretical specific capacity (400 mA h g-1) because of its low dead moiety mass. In the produced composite films, PVBQ nanoparticles are uniformly dispersed on RGO sheets, which endows the composite films with high electric conductivity and inhibits the dissolution of PVBQ through strong adsorption. As a result, the composite films show a high active material utilization, high practical specific capacity, and excellent cycling stability. PVBQ in the composite membrane containing 60.2 wt % RGO deliver 244 mA h g-1 capacity after 200 charge-discharge cycles at a current density of 300 mA g-1. At a current density of 1500 mA g-1, the reversible specific capacity is still 170 mA h g-1. This work provides a high-performance cathode material for lithium-ion batteries, and the molecular structure and electrode structure design ideas are also instructive for developing other organic electrode materials.

8.
Article in English | MEDLINE | ID: mdl-39298291

ABSTRACT

SiOx electrodes are promising for high-energy-density lithium-ion batteries (LIBs) due to their ability to mitigate volume expansion-induced degradation. Here, we investigate the surface dynamics of SiOx thin-film electrodes cycled in different carbonate-based electrolytes using a combination of ex situ X-ray photoelectron spectroscopy (XPS) and operando synchrotron X-ray reflectivity analyses. The thin-film geometry allows us to probe the depth-dependent chemical composition and electron density from surface to current collector through the solid electrolyte interphase (SEI), the active material, and the thickness evolution during cycling. Results reveal that SiOx lithiation initiates below 0.4 V vs Li+/Li and indicate a close relationship between SEI formation and SiOx electrode lithiation, likely due to the high resistivity of SiOx. We find similar chemical compositions for the SEI in FEC-containing and FEC-free electrolytes but observe a reduced thickness in the former case. In both cases, the SEI thickness decreases during delithiation due to the removal or dissolution of some carbonate species. These findings give insights into the (de)lithiation of SiOx, in particular, during the formation stage, and the effect of the presence of FEC in the electrolyte on the evolution of the SEI during cycling.

9.
Chemistry ; : e202402940, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39299919

ABSTRACT

The enhancement of electrochemical performance in lithium-ion batteries can be achieved through the incorporation of MoS2 with carbon materials and various metal sulfides. In this investigation, a MoS2/ZnS heterostructure was devised incorporating a two-dimensional nitrogen-doped carbon nanosheet (NC) backbone. The synthesis of ZnMo-ZIF-L precursors was achieved by introducing a Mo source in a 1:1 molar ratio during ZIF-L synthesis. Subsequent to high-temperature carbonization and vulcanization treatment, ZnS/MoS2@NC composite materials were successfully synthesized. Compared to the unvulcanized ZnO/MoO3@NC and MoS2 samples, the ZnS/MoS2@NC composite exhibits remarkable lithium storage performance. At a current density of 500 mA g-1, the initial discharge specific capacity is 2547 mAh g-1, with an initial charge specific capacity of 1674 mAh g-1, resulting in a first Coulombic efficiency of 65.76%. Furthermore, this composite material demonstrates optimal rate capabilities and a significant pseudocapacitance contribution. The nitrogen-doped carbon framework effectively mitigates volume effects, while the heterostructural design provides more active sites for lithium ions, thereby enhancing lithium storage performance.

10.
Article in English | MEDLINE | ID: mdl-39327725

ABSTRACT

The use of vanadium(V)-based materials as electrode materials in electrochemical energy storage (EES) devices is promising due to their structural and chemical variety, abundance, and low cost. V-based materials with a layered structure and high multielectron transfer in the redox reaction have been actively explored for energy storage. Our current work presents the structural and electrochemical properties of a vanadium-based composite with TiO2@Ti3C2 MXene, referred to as VM. This composite is obtained through the in situ thermal decomposition of the VO2(OH)/Ti3C2mixture, which is achieved by solution mixing and drying. The material structure is confirmed using various characterization tools, which establish an orthorhombic V2O5 nanostructure compositing with nanocrystalline TiO2@Ti3C2. VM with 5 wt % MXene, referred to as VM5, can achieve 460 mAhg-1 at a current density of 0.1 Ag1- and 290 mAhg-1 at 1 Ag1-, with an average coulombic efficiency of 98.5%. The presence of the V2O5/TiO2 (nanocrystals) heterojunction attached with Ti3C2 sheets contributed to reduced charge transfer resistance. The cyclic stability shows a capacity retention of 62% over 500 cycles at 1 Ag1- (4C rate, where 1C equals 0.25 Ag1-) with a 0.22 capacity drop with each cycle. Dunn's approach to examining the charge storage mechanism demonstrates 72% contribution of the surface-dominant capacitive process and 28% of the diffusion-controlled intercalation process at 0.4 mVs-1, suggesting a potential high-performance pseudocapacitive hybrid electrode material for lithium-ion batteries.

11.
Nanomaterials (Basel) ; 14(18)2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39330685

ABSTRACT

Recently, nanoporous graphene has attracted great interest in the scientific community. It possesses nano-sized holes; thus, it has a highly accessible surface area for lithium adsorption for energy storage applications. Defective graphene has been extensively studied. However, the lithium adsorption mechanism of nanoporous graphene is not clearly understood yet. Here, we present theoretical investigations on the lithium-ion adsorption mechanism in nanoporous graphene. We perform ab initio electronic structure calculations based on density functional theory. Lithium adsorption in a graphene nanopore is studied and adsorption sites are determined. We also study different lithium-ion distributions in graphene nanopores to determine the best lithium-nanoporous graphene structures for lithium-ion batteries. We show that lithium ions can be adsorbed in a graphene nanopore, even in a single layer of graphene. It is also shown that adding more nanopores to multilayer nanoporous graphene can result in higher Li storage capacity for new-generation lithium-ion batteries.

12.
ACS Appl Mater Interfaces ; 16(38): 50948-50960, 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39263738

ABSTRACT

Alkali metal anodes paired with solid ion conductors offer promising avenues for enhancing battery energy density and safety. To facilitate rapid ion transport crucial for fast charging and discharging of batteries, it is essential to understand the behavior of point defects in these conductors. In this study, we investigate the heterogeneity of defect distribution in two prototypical solid ion conductors, Li3OCl and Li2PO2N (LiPON), by quantifying the defect formation energy (DFE) as a function of distance from the surface and interface through first-principles simulations. To simulate defects at the electrode-electrolyte interface, we perform calculations of Li+ vacancy in Li3OCl near its interface with lithium metal. Our results reveal a significant difference between the bulk and surface/interface DFE which could lead to defect aggregation/depletion near the surface/interface. Interestingly, while Li3OCl has a lower surface DFE than the bulk in most cases, LiPON follows the opposite trend with a higher surface DFE compared to the bulk. Due to this difference between bulk and surface DFE, the defect density can be up to 14 orders of magnitude higher at surfaces compared to the bulk. Further, we reveal that the DFE transition from surface/interface to bulk is precisely characterized by an exponentially decaying function. By incorporating this exponential trend, we develop a revised model for the average behavior of defects in solid ion conductors that offers a more accurate description of the influence of grain sizes. Surface effects dominate for grain sizes ≲1 µm, highlighting the importance of surface defect engineering and the DFE function for accurately capturing ion transport in devices. We further explore the kinetics of defect redistribution by calculating the migration barriers for defect movement between bulk and surfaces. We find a highly asymmetric energy landscape for the lithium vacancies, exhibiting lower migration barriers for movement toward the surface compared to the bulk, while interstitial defects exhibit comparable kinetics between surface and bulk regions. These insights highlight the importance of considering both thermodynamic and kinetic factors in designing solid ion conductors for improved ion transport at surfaces and interfaces.

13.
ACS Appl Mater Interfaces ; 16(38): 51469-51479, 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39263963

ABSTRACT

As an important component of lithium-ion batteries, all-solid-state electrolytes should possess high ionic conductivity, excellent flexibility, and relatively high mechanical strength. All-solid-state polymer electrolytes (ASSPEs) based on polymers seem to be able to meet these requirements. However, pure ASSPEs have relatively low ionic conductivity, and the addition of inorganic fillers such as lithium salts will reduce their flexibility and mechanical strength. To address the above issues, in this paper, the solvent-free method was used to prepare a poly(vinylidenefluoride-co-hexafluoropropylene)/lithium bis(trifluoromethanesulfonyl) imide/poly(ethylene oxide) all-solid-state polymer electrolyte, which was then subjected to 4 × 4 magnification synchronous bidirectional stretching. Subsequently, it was multilayered with PEO-based composite polymer electrolytes to obtain multilayered composite polymer electrolytes (MCPEs). Bidirectional stretching provides superior in-plane and out-of-plane mechanical properties to MCPEs by inducing molecular chain orientation, which suppresses the growth of lithium dendrites. Concurrently, it facilitates the formation of the ß-crystal form of PVDF-HFP, thereby weakening the ion solvation effect and reducing the lithium-ion migration energy barrier. Multilayered compounding improves the interfacial contact between MCPEs and electrodes, thereby reducing the interfacial impedance. Experiments have demonstrated that the MCPEs prepared in this paper exhibit high ionic conductivity at room temperature (1.83 × 10-4 S cm-1), low interfacial resistance (547 Ω cm-2), excellent mechanical properties (26 MPa), and excellent cycling rate performance (a capacity retention rate of 90% after 110 cycles at 0.1 C), which can meet the performance requirements of lithium-ion batteries for ASSPEs.

14.
Heliyon ; 10(18): e37447, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39315164

ABSTRACT

Conventional spent lithium-ion battery (LIB) recycling procedures, which employ powerful acids and reducing agents, pose environmental risks. This work describes a unique and environmentally acceptable bioleaching method for Li and Mn recovery utilizing Acidithiobacillus thiooxidans, a sulfur-oxidizing bacteria that may produce sulfuric acid biologically. The novel feature of this strategy is the step-by-step addition of biogenic sulfuric acid, which differs significantly from conventional methods that use chemical reagents. We expected that gradually introducing biogenic sulfuric acid produced by A. thiooxidans would improve metal leaching at high pulp density. To investigate this, LIBs were disassembled and bioleached with or without a step-wise addition of the biogenic sulfuric acid approach. The impact on leaching efficiency, time, and ultimate product quality was assessed. Direct bioleaching yielded modest Li (43 %) and Mn (15 %) recoveries. However, bioleaching greatly increased metal recovery with the step-wise addition of biogenic acid. Li and Mn leaching efficiency were 93 % and 53 %, respectively, at a high pulp density of 60 g/L, while leaching time was reduced from 16 to 8 days. Following bioleaching, Mn(OH)2 and Li2CO3 were successfully precipitated from the leachate at more than 90 % purity. This study shows that gradually adding biogenic sulfuric acid can efficiently recover Li and Mn from waste LIBs. This approach has several environmental and economic advantages over conventional methods. The step-wise addition optimizes the leaching environment, increasing metal recovery rates while reducing the development of hazardous byproducts. This approach is environmentally friendly because it decreases greenhouse gas emissions and chemical waste. Economically, this technology offers potential cost savings through less chemical usage, shorter processing times, and lower energy needs, making it a more sustainable and cost-effective option for LIB recycling. This study shows that the step-wise addition of biogenic sulfuric acid may efficiently recover Li and Mn from wasted LIBs. This method provides a sustainable alternative to traditional procedures by limiting environmental impact while reducing process time and energy consumption.

15.
Nanotechnology ; 2024 Sep 23.
Article in English | MEDLINE | ID: mdl-39312901

ABSTRACT

Perovskite fluorides are attractive anode materials for lithium-ion batteries (LIBs) because of their three-dimensional diffusion channels and robust structures, which is advantageous for the rapid transmission of lithium ions. Unfortunately, the wide band gap results in poor electronic conductivity, which limits their further development and application. Herein, the cubic perovskite iron fluoride (KFeF3, KFF) nanocrystals (~100 nm) are synthesized by a one-step solvothermal strategy. Thanks to the good electrical conductivity of carbon nanotubes (CNTs), the overall electrochemical performance of composite anode material (KFF-CNTs) has been significantly improved. In particular, the KFF-CNTs delives a high specific capacity (363.8 mAh g-1), good rate performance (131.6 mAh g-1 at 3.2 A g-1), and superior cycle stability (500 cycles). Noted that the surface conversion reactions play a dominant role in the electrochemical process of KFF-CNTs, together with the stable octahedral perovskite structure and nanoscale particle sizes achieving high ion diffusion coefficients. Furthermore, the specific lithium storage mechanism of KFF has explored by the distribution of relaxation times (DRT) technology. This work opens up a new way for developing cubic perovskite fluorides as high-capacity and robust anode materials for LIBs.

16.
Small ; : e2405005, 2024 Sep 23.
Article in English | MEDLINE | ID: mdl-39308282

ABSTRACT

Silicon is a promising alternative to graphite anodes for achieving high-energy-density in lithium-ion batteries (LIBs) because of its high theoretical capacity (3579 mAh g-1). However, silicon anode must be developed to address its disadvantages, such as volume expansion and low electronic conductivity. Therefore, the use of silicon as composed with graphite and carbon anode materials is investigated, which requires properties such as a spherical morphology for high density and encapsulation of silicon particles in the composite. Herein, a graphite@silicon@carbon (Gr@Si@C) micro-sized spherical anode composite is synthesized by mechanofusion process. This composite comprises an outer surface, middle layer, and core pore, which are formed by the capillary force arising from 2D structured graphite and pitch properties. This structure effectively addresses the intrinsic issues associated with Si. Gr@Si@C exhibits a high capacity of 1622 mAh g-1 and capacity retention of 72.2% after 100 cycles, with a high areal capacity 4.2 mAh cm-2. When Gr@Si@C is blended with commercial graphite, the composite exhibits high capacity retention and average Coulombic efficiency after cycling. The Gr@Si@C blended electrode exhibits a high energy density of 820 Wh L-1 with ≈16% metallic Si in the electrode (40 wt.% composite), enabling the realization of practical commercial LIBs.

17.
ChemSusChem ; : e202401459, 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39269735

ABSTRACT

Porous silicon (Si) has a tetrahedral structure similar to that of sp3- hybridized carbon atoms in a typical diamond structure, which affords it unique chemical and physical properties including an adjustable intrinsic bandgap, a high-speed carrier transfer efficiency. It has shown great potential in photocatalysis, rechargeable batteries, solar cells, detectors, and electrocatalysis. This review introduces various porous Si-supported electrocatalysts and analyzes the reasons why porous Si is used as a new carrier/active sites from the perspectives of its molecular structure, electronic properties, synthesis methods, etc. The electrochemical applications of porous Si-based electrocatalysts in energy conversion reactions such as hydrogen evolution reaction, oxygen evolution reaction, oxygen reduction reaction, and total water decomposition together with lithium-ion batteries (LIBs) and supercapacitors in energy storage are summarized. The challenges and future research directions for porous Si are also discussed. This review aims to deepen the understanding of porous Si and promote the development and applications of this new type of Si material.

18.
Small ; : e2405674, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39225385

ABSTRACT

Si provides an effective approach to achieving high-energy batteries owing to its high energy density and abundance. However, the poor stability of Si requires buffering with graphite particles when used as anodes. Currently, commercial lithium-ion batteries with Si/graphite composite anodes can provide a high energy density and are expected to replace traditional graphite-based batteries. The different lithium storage properties of Si and graphite lead to different degrees of lithiation and chemical environments for this composite anode, which significantly affects the performance of batteries. Herein, the interplay between Si and graphite in mechanically mixed Si/graphite composite anodes is emphasized, which alters the lithiation sequence of the active materials and thus the cycling performance of the battery. Furthermore, performance optimization can be achieved by changing the intrinsic properties of the active materials and external operating conditions, which are summarized and explained in detail. The investigation of the interplay based on Si/graphite composite anodes lays the foundation for developing long-life and high-energy batteries. The abovementioned experimental methods provide logical guidance for future research on composite electrodes with multiple active materials.

19.
J Colloid Interface Sci ; 678(Pt A): 1031-1042, 2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39236432

ABSTRACT

Cost-efficient material with an ingenious design is important in the engineering applications of flexible energy storage and electromagnetic (EM) protection. In this study, bimetallic ZnCo2S4 (ZCS) polyhedral nanoparticles homogenously embedded in the surface of porous N-doped carbon nanofiber membranes (ZCS@PCNFM) have been fabricated by electrospinning technique combined with carbonization and hydrothermal processes. As a self-assembled electrode for lithium-ion batteries (LIBs), the bimetallic ZCS nanoparticles possess rich redox reactions, good electrical conductivity, and pseudocapacitive properties, while the three-dimensional (3D) multiaperture architecture of the nanofiber film not only shortens the transfer spacing of lithium ions and electrons but also effectively tolerates the volume variation during lithiation and delithiation cycles. Benefiting from the above merits, the ZCS@PCNFM electrode exhibits good cycle performance (662.3 mA h/g at 100 mA/g after 100 cycles), superior rate capacity (401.3 mA h/g at 1 A/g) and an extremely high initial specific capacity of 1152.2 mAh/g at 100 mA/g. Meanwhile, depending on the hierarchical nanostructure and multi-component heterogeneous interface effects constructed by 3D inlaid architecture, the ZCS@PCNFM nanocomposite exhibits fascinating microwave absorption (MA) characteristics with a superhigh reflection loss (RL) of -49.7 dB at a filling content of only 20 wt% and corresponding effective absorption bandwidth (EAB, RL<-10 dB) of 5.2 GHz ranging from 12.8 to 18.0 GHz at 2.2 mm.

20.
Adv Mater ; : e2408463, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39221676

ABSTRACT

The burgeoning accumulation of spent lithium-ion batteries (LIBs), a byproduct from the widespread adoption of portable electronics and electric vehicles, necessitates efficient recycling strategies. Direct recycling represents a promising strategy to maximize the value of LIB waste and minimize harmful environmental outcomes. However, current efforts to large-scale direct recycling face challenges stemming from heterophase residues (e.g., Li2CO3, LiOH) in the recycled products and uncontrolled interfacial instability, often requiring repeated washing that generates significant wastewater. Here, a refined direct recycling process is proposed to improve cathode interface stability by leveraging in situ reaction between surface residual lithium species and a weak inorganic acid to form a conformal Li+ conductive coating that stabilizes the regenerated Ni-rich cathodes with significantly reduced water footprint. The findings reveal that the conductive coating also prevents direct contact between contaminants and the cathode surface, thus improving the ambient storage stability. By eliminating the need for extensive washing, this intensified recycling process offers a more sustainable approach with the potential to transition from laboratory to industrial-scale applications, improving both product quality and environmental sustainability.

SELECTION OF CITATIONS
SEARCH DETAIL