Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 12.288
Filter
1.
Discov Oncol ; 15(1): 265, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38967843

ABSTRACT

In this study, we investigated the role of the newly discovered lncRNA FLJ20021 in laryngeal cancer (LC) and its resistance to cisplatin treatment. We initially observed elevated lncRNA FLJ20021 levels in cisplatin-resistant LC cells (Hep-2/R). To explore its function, we transfected lncRNA FLJ20021 and cyclin-dependent kinase 1 (CDK1) into Hep-2/R cells, assessing their impact on cisplatin sensitivity and PANoptosis. Silencing lncRNA FLJ20021 effectively reduced cisplatin resistance and induced PANoptosis in Hep-2/R cells. Mechanistically, lncRNA FLJ20021 primarily localized in the nucleus and interacted with CDK1 mRNA, thereby enhancing its transcriptional stability. CDK1, in turn, promoted panapoptosis in a ZBP1-dependent manner, which helped overcome cisplatin resistance in Hep-2/R cells. This study suggests that targeting lncRNA FLJ20021 can be a promising approach to combat cisplatin resistance in laryngeal cancer by regulating CDK1 and promoting PANoptosis via the ZBP1 pathway. These findings open up possibilities for lncRNA-based therapies in the context of laryngeal cancer.

2.
Discov Oncol ; 15(1): 266, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38967893

ABSTRACT

Glioma is the most common malignant tumor in the central nervous system, and its unique pathogenesis often leads to poor treatment outcomes and prognosis. In 2021, the World Health Organization (WHO) divided gliomas into five categories based on their histological characteristics and molecular changes. Non-coding RNA is a type of RNA that does not encode proteins but can exert biological functions at the RNA level, and long non-coding RNA (lncRNA) is a type of non-coding RNA with a length exceeding 200 nt. It is controlled by various transcription factors and plays an indispensable role in the regulatory processes in various cells. Numerous studies have confirmed that the dysregulation of lncRNA is critical in the pathogenesis, progression, and malignancy of gliomas. Therefore, this article reviews the proliferation, apoptosis, invasion, migration, angiogenesis, immune regulation, glycolysis, stemness, and drug resistance changes caused by the dysregulation of lncRNA in gliomas, and summarizes their potential clinical significance in gliomas.

3.
Vavilovskii Zhurnal Genet Selektsii ; 28(3): 342-350, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38946889

ABSTRACT

Cervical cancer is one of the most frequent cancers in women and is associated with human papillomavirus (HPV) in 70 % of cases. Cervical cancer occurs because of progression of low-differentiated cervical intraepithelial neoplasia through grade 2 and 3 lesions. Along with the protein-coding genes, long noncoding RNAs (lncRNAs) play an important role in the development of malignant cell transformation. Although human papillomavirus is widespread, there is currently no well-characterized transcriptomic signature to predict whether this tumor will develop in the presence of HPV-associated neoplastic changes in the cervical epithelium. Changes in gene activity in tumors reflect the biological diversity of cellular phenotype and physiological functions and can be an important diagnostic marker. We performed comparative transcriptome analysis using open RNA sequencing data to assess differentially expressed genes between normal tissue, neoplastic epithelium, and cervical cancer. Raw data were preprocessed using the Galaxy platform. Batch effect correction, identification of differentially expressed genes, and gene set enrichment analysis (GSEA) were performed using R programming language packages. Subcellular localization of lncRNA was analyzed using Locate-R and iLoc-LncRNA 2.0 web services. 1,572 differentially expressed genes (DEGs) were recorded in the "cancer vs. control" comparison, and 1,260 DEGs were recorded in the "cancer vs. neoplasia" comparison. Only two genes were observed to be differentially expressed in the "neoplasia vs. control" comparison. The search for common genes among the most strongly differentially expressed genes among all comparison groups resulted in the identification of an expression signature consisting of the CCL20, CDKN2A, CTCFL, piR-55219, TRH, SLC27A6 and EPHA5 genes. The transcription level of the CCL20 and CDKN2A genes becomes increased at the stage of neoplastic epithelial changes and stays so in cervical cancer. Validation on an independent microarray dataset showed that the differential expression patterns of the CDKN2A and SLC27A6 genes were conserved in the respective gene expression comparisons between groups.

4.
Front Genet ; 15: 1437522, 2024.
Article in English | MEDLINE | ID: mdl-38948359
5.
Biol Cell ; : e202400034, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949568

ABSTRACT

BACKGROUND INFORMATION: One of the confounding factors in pancreatic cancer (PC) pathogenesis is hyperglycemia. The molecular mechanism by which high glucose (HG) influences PC severity is poorly understood. Our investigation delved into the impact of lncRNA highly upregulated in liver cancer (HULC) and its interaction with yes-associated protein (YAP) in regulating the fate of pancreatic ductal adenocarcinoma cells (PDAC) under HG-induced conditions. PDAC cells were cultured under normal or HG conditions. We thereafter measured the effect of HG on the viability of PDAC cells, their migration potential and drug resistance properties. The lncRNAs putatively dysregulated in PC and diabetes were shortlisted by bioinformatics analysis followed by wet lab validation of function. RESULTS: HG led to enhanced proliferation and drug refractoriness in PDAC cells. HULC was identified as one of the major deregulated lncRNAs following bioinformatics analysis. HULC was found to regulate the expression of the potent transcriptional regulator - YAP through selective histone modifications at the YAP promoter. siRNA-mediated ablation of HULC resulted in a concurrent decrease in YAP transcriptional activity. Importantly, HULC and YAP were found to co-operatively regulate the cellular homeostatic process autophagy, thus inculcating drug resistance and proliferative potential in PDAC cells. Moreover, inhibition of autophagy or YAP led to a decrease in HULC levels, suggesting the existence of an inter-regulatory feedback loop. CONCLUSIONS: We observed that HG triggers aggressive properties in PDAC cells. Mechanistically, up-regulation of lncRNA HULC resulted in activation of YAP and differential regulation of autophagy coupled to increased proliferation of PDAC cells. SIGNIFICANCE: Inhibition of HULC and YAP may represent a novel therapeutic strategy for PDAC. Furthermore, this study portrays the intricate molecular interplay between HULC, YAP and autophagy in PDAC pathogenesis.

6.
Cell Mol Biol Lett ; 29(1): 93, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956502

ABSTRACT

BACKGROUND: Anti-angiogenic therapy has become one of the effective treatment methods for tumors. Long noncoding RNAs (lncRNAs) are emerging as important regulators of tumorigenesis and angiogenesis in EC. However, the underlying mechanisms of lncRNA TRPM2-AS in EC are still not clear. METHODS: We screened the differently expressed lncRNAs that were highly associated with poor prognosis and angiogenesis of EC by bioinformatics analysis, and constructed a ceRNA network based on the prognostic lncRNAs. The subcellular localization of TRPM2-AS was determined by fluorescence in situ hybridization (FISH) and nuclear cytoplasmic fractionation assay. CCK-8, EdU, transwell, western blot, qRT-PCR and endothelial tube formation assay were used to evaluate the effects of TRPM2-AS on the proliferation, invasion, migration of EC cells and angiogenesis. The targeted microRNA (miRNA) of TRPM2-AS was predicted by bioinformatic methods. The interaction between TRPM2-AS and miR497-5p, miR497-5p and SPP1 were analyzed by RNA immunoprecipitation and dual-luciferase reporter assay. A subcutaneous tumor model was used to explore TRPM2-AS's function in vivo. CIBERSORT was used to analyze the correlation between TRPM2-AS and immune cell immersion in EC. RESULTS: We found that the expression of TRPM2-AS and SPP1 was aberrantly upregulated, while miR-497-5p expression was significantly downregulated in EC tissues and cells. TRPM2-AS was closely correlated with the angiogenesis and poor prognosis in EC patients. Mechanistically, TRPM2-AS could sponge miR-497-5p to release SPP1, thus promoting the proliferation, invasion and migration of EC cells and angiogenesis of HUVECs. Knockdown of TRPM2-AS in xenograft mouse model inhibited tumor proliferation and angiogenesis in vivo. In addition, TRPM2-AS plays a vital role in regulating the tumor immune microenvironment of EC, overexpression of TRPM2-AS in EC cells stimulated the polarization of M2 macrophages and angiogenesis through secreting SPP1 enriched exosomes. CONCLUSION: The depletion of TRPM2-AS inhibits the oncogenicity of EC by targeting the miR-497-5p/SPP1 axis. This study offers a better understanding of TRPM2-AS's role in regulating angiogenesis and provides a novel target for EC treatment.


Subject(s)
Cell Movement , Cell Proliferation , Endometrial Neoplasms , Gene Expression Regulation, Neoplastic , MicroRNAs , Neovascularization, Pathologic , RNA, Long Noncoding , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Neovascularization, Pathologic/genetics , Female , Animals , Cell Proliferation/genetics , Cell Line, Tumor , Endometrial Neoplasms/genetics , Endometrial Neoplasms/pathology , Endometrial Neoplasms/metabolism , Cell Movement/genetics , Mice , Disease Progression , Mice, Nude , TRPM Cation Channels/genetics , TRPM Cation Channels/metabolism , Mice, Inbred BALB C , Prognosis , Angiogenesis
7.
J Cell Commun Signal ; 18(2): e12021, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38946718

ABSTRACT

lncRNA ZFAS1 was identified to facilitate thyroid cancer, but its role in medullary thyroid carcinoma (MTC) remains unknown. This study aimed to unravel the potential function of this lncRNA in MTC by investigating the involvement of the lncRNA ZFAS1 in a ceRNA network that regulates MTC invasion. Proliferation, invasion, and migration of cells were evaluated using EdU staining and Transwell assays. Immunoprecipitation (IP) assays, dual-fluorescence reporter, and RNA IP assays were employed to examine the binding interaction among genes. Nude mice were used to explore the role of lncRNA ZFAS1 in MTC in vivo. ZFAS1 and EPAS1 were upregulated in MTC. Silencing ZFAS1 inhibited MTC cell proliferation and invasion under hypoxic conditions, which reduced EPAS1 protein levels. UCHL1 knockdown increased EPAS1 ubiquitination. ZFAS1 positively regulated UCHL1 expression by binding to miR-214-3p. Finally, silencing ZFAS1 significantly repressed tumor formation and metastasis in MTC. LncRNA ZFAS1 promotes invasion of MTC by upregulating EPAS1 expression via the miR-214-3p/UCHL1 axis.

8.
J Cell Commun Signal ; 18(2): e12033, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38946724

ABSTRACT

Liver fibrosis is a persistent damage repair response triggered by various injury factors, which leads to an abnormal accumulation of extracellular matrix within liver tissue samples. The current clinical treatment of liver fibrosis is currently ineffective; therefore, elucidating the mechanism of liver fibrogenesis is of significant importance. Herein, the function and related mechanisms of lncRNA Snhg12 within hepatic fibrosis were investigated. Snhg12 expression was shown to be increased in mouse hepatic fibrotic tissue samples, and Snhg12 knockdown suppressed hepatic pathological injury and down-regulated the expression levels of fibrosis-associated proteins. Mechanistically, Snhg12 played a role in the early activation of mouse hepatic stellate cells (mHSCs) based on bioinformatics analysis, and Snhg12 was positively correlated with Igfbp3 expression. Further experimental results demonstrated that Snhg12 knockdown impeded mHSCs proliferation and activation and also downregulated the protein expression of Igfbp3. Snhg12 could interact with IGFBP3 and boost its protein stability, and overexpression of Igfbp3 partially reversed the inhibition of mHSCsproliferation and activation by the knockdown of Snhg12. In conclusion, LncRNA Snhg12 mediates liver fibrosis by targeting IGFBP3 and promoting its protein stability, thereby promoting mHSC proliferation and activation. Snhg12 has been identified as an underlying target for treating liver fibrosis.

9.
Heliyon ; 10(11): e31971, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38947424

ABSTRACT

Objective: To analyze the effect of allicin on the immunoreactivity of osteosarcoma (OS) cells and further explore whether its mechanism is related to the long non-coding Ribonucleic Acid (lncRNA) CBR3-AS1/miR-145-5p/GRP78 axis, so as to provide clinical evidence. Methods: The human OS cell line Saos-2 was treated with allicin at 25, 50, and 100 µmol/L, respectively, to observe changes in cell biological behaviors. Subsequently, CBR3-AS1 abnormal expression vectors were constructed and transfected into Saos-2 to discuss their influence on OS. Furthermore, the regulatory relationship between allicin and the CBR3-AS1/miR-145-5p/GRP78 axis was validated by rescue experiments. Finally, a nude mice tumorigenesis experiment was carried out to analyze the effects of allicin and CBR3-AS1/miR-145-5p/GRP78 axis on the growth of living tumors. Alterations in T-lymphocyte subsets were also detected to assess the effect of allicin on OS immunoreactivity. Results: With the increase of allicin concentration, Saos-2 activity decreased and apoptosis increased (P < 0.05). In addition, the expression of CBR3-AS1 and GRP78 decreased after allicin intervention, while miR-145-5p increased (P < 0.05). Silencing CBR3-AS1 led to reduced Saos-2 activity, enhanced apoptosis, and activated mitophagy and endoplasmic reticulum stress (P < 0.05). In the rescue experiment, the effect of CBR3-AS1 on OS cells was reversed by silencing miR-145-5p, while the impact of miR-145-5p was reversed by GRP78. Finally, the tumorigenesis experiment in nude mice confirmed the regulatory effects of allicin and CBR3-AS1/miR-145-5p/GRP78 on tumor growth in vivo. Meanwhile, it was seen that allicin activated CD4+CD8+ in OS mice, confirming that allicin has the effect of activating OS immunoreactivity. Conclusions: Allicin activates OS immunoreactivity and induces apoptosis through the CBR3-AS1/miR-145-5p/GRP78 molecular axis.

10.
Microrna ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38952161

ABSTRACT

AIM: This study aims to investigate the potential role of lncRNA NR2F2-AS1 in the development of gastric cancer by affecting the levels of miR-320b and BMI1. BACKGROUND: Gastric cancer is a high-mortality malignancy, and understanding the underlying molecular mechanisms is crucial. Non-coding RNAs play an important role in gene expression, and their dysregulation can lead to tumor initiation and progression. OBJECTIVE: This study aims to determine the pathological role of LncRNA NR2F2-AS1 in gastric cancer progression and its association with the clinicopathological characteristics of patients. METHODS: Bioinformatics databases were used to predict the expression levels and interactions between the studied factors to achieve this objective. The expression pattern of NR2F2-AS1/miR- 320b/BMI1 in 40 pairs of tumor and adjacent normal tissues was examined using RT-PCR, IHC, and western blot. The correlation, ROC curve, and survival analyses were also conducted for the aforementioned factors. RESULTS: The results showed an increase of more than 2-fold for BMI-1 and lncRNA NR2F2-AS1 in lower stages, and the elevation continued with the increasing stage of the disease. This correlated with significant downregulation of miR-320b and PTEN, indicating their association with gastric cancer progression and decreased patient survival. LncRNA NR2F2-AS1 acts as an oncogene by influencing the level of miR-320b, altering the amount of BMI1. A reduction in the amount of miR-320b against lncRNA NR2F2-AS1 and BMI1 directly correlates with a reduced overall survival rate of patients, especially if this disproportion is more than 3.0. ROC curve analysis indicated that alteration in the lncRNA NR2F2-AS1 level showed more than 98.0% sensitivity and specificity to differentiate the lower from higher stages of GC and predict the early onset of metastasis. CONCLUSION: In conclusion, these results suggest that NR2F2-AS1/miR-320b/BMI1 has the potential to be a prognostic as well as diagnostic biomarker for gastric cancer.

11.
Small Methods ; : e2301801, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958078

ABSTRACT

Gliomas, the predominant form of brain cancer, comprise diverse malignant subtypes with limited curative therapies available. The insufficient understanding of their molecular diversity and evolutionary processes hinders the advancement of new treatments. Technical complexities associated with formalin-fixed paraffin-embedded (FFPE) clinical samples hinder molecular-level analyses of gliomas. Current single-cell RNA sequencing (scRNA-seq) platforms are inadequate for large-scale clinical applications. In this study, automated snRandom-seq is developed, a high-throughput single-nucleus total RNA sequencing platform optimized for archival FFPE samples. This platform integrates automated single-nucleus isolation and droplet barcoding systems with the random primer-based scRNA-seq chemistry, accommodating a broad spectrum of sample types. The automated snRandom-seq is applied to analyze 116 492 single nuclei from 17 FFPE samples of various glioma subtypes, including rare clinical samples and matched primary-recurrent glioblastomas (GBMs). The study provides comprehensive insights into the molecular characteristics of gliomas at the single-cell level. Abundant non-coding RNAs (ncRNAs) with distinct expression profiles across different glioma clusters and uncovered promising recurrence-related targets and pathways in primary-recurrent GBMs are identified. These findings establish automated snRandom-seq as a robust tool for scRNA-seq of FFPE samples, enabling exploration of molecular diversities and tumor evolution. This platform holds significant implications for large-scale integrative and retrospective clinical research.

12.
BMC Womens Health ; 24(1): 379, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956558

ABSTRACT

BACKGROUND: Breast cancer has become a major public health problem in the current society, and its incidence rate ranks the first among Chinese female malignant tumors. This paper once again confirmed the efficacy of lncRNA in tumor regulation by introducing the mechanism of the diagnosis of breast cancer by the MIR497HG/miR-16-5p axis. METHODS: The abnormal expression of MIR497HG in breast cancer was determined by RT-qPCR method, and the correlation between MIR497HG expression and clinicopathological characteristics of breast cancer patients was analyzed via Chi-square test. To understand the diagnostic potential of MIR497HG in breast cancer by drawing the receiver operating characteristic curve (ROC). The overexpressed MIR497HG (pcDNA3.1-MIR497HG) was designed and constructed to explore the regulation of elevated MIR497HG on biological function of BT549 and Hs 578T cells through Transwell assays. Additionally, the luciferase gene reporter assay and Pearson analysis evaluated the targeting relationship of MIR497HG to miR-16-5p. RESULTS: MIR497HG was decreased in breast cancer and had high diagnostic function, while elevated MIR497HG inhibited the migration and invasion of BT549 and Hs 578T cells. In terms of functional mechanism, miR-16-5p was the target of MIR497HG, and MIR497HG reversely regulated the miR-16-5p. miR-16-5p mimic reversed the effects of upregulated MIR497HG on cell biological function. CONCLUSIONS: In general, MIR497HG was decreased in breast cancer, and the MIR497HG/miR-16-5p axis regulated breast cancer tumorigenesis, providing effective insights for the diagnosis of patients.


Subject(s)
Breast Neoplasms , MicroRNAs , RNA, Long Noncoding , Humans , MicroRNAs/genetics , Female , Breast Neoplasms/genetics , RNA, Long Noncoding/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Cell Movement/genetics , Middle Aged , Cell Proliferation/genetics
13.
Clin Exp Med ; 24(1): 146, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38960924

ABSTRACT

Despite being characterized by high malignancy, high morbidity, and low survival rates, the underlying mechanism of hepatocellular carcinoma (HCC) has not been fully elucidated. Ferroptosis, a non-apoptotic form of regulated cell death, possesses distinct morphological, biochemical, and genetic characteristics compared to other types of cell death. Dysregulated actions within the molecular network that regulates ferroptosis have been identified as significant contributors to the progression of HCC. Long non-coding RNAs (lncRNAs) have emerged as influential contributors to diverse cellular processes, regulating gene function and expression through multiple mechanistic pathways. An increasing body of evidence indicates that deregulated lncRNAs are implicated in regulating malignant events such as cell proliferation, growth, invasion, and metabolism by influencing ferroptosis in HCC. Therefore, elucidating the inherent role of ferroptosis and the modulatory functions of lncRNAs on ferroptosis in HCC might promote the development of novel therapeutic interventions for this disease. This review provides a succinct overview of the roles of ferroptosis and ferroptosis-related lncRNAs in HCC progression and treatment, aiming to drive the development of promising therapeutic targets and biomarkers for HCC patients.


Subject(s)
Carcinoma, Hepatocellular , Ferroptosis , Gene Expression Regulation, Neoplastic , Liver Neoplasms , RNA, Long Noncoding , Humans , Ferroptosis/genetics , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Liver Neoplasms/genetics , Liver Neoplasms/pathology
14.
J Exp Clin Cancer Res ; 43(1): 187, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38965580

ABSTRACT

BACKGROUND: Recent studies have highlighted the significant role of the NF-κB signaling pathway in the initiation and progression of cancer. Furthermore, long noncoding RNAs (lncRNAs) have been identified as pivotal regulators in sustaining the NF-κB signaling pathway's functionality. Despite these findings, the underlying molecular mechanisms through which lncRNAs influence the NF-κB pathway remain largely unexplored. METHODS: Bioinformatic analyses were utilized to investigate the differential expression and prognostic significance of XTP6. The functional roles of XTP6 were further elucidated through both in vitro and in vivo experimental approaches. To estimate the interaction between XTP6 and NDH2, RNA pulldown and RNA Immunoprecipitation (RIP) assays were conducted. The connection between XTP6 and the IκBα promoter was examined using Chromatin Isolation by RNA Purification (ChIRP) assays. Additionally, Chromatin Immunoprecipitation (ChIP) assays were implemented to analyze the binding affinity of c-myc to the XTP6 promoter, providing insights into the regulatory mechanisms at play. RESULTS: XTP6 was remarkedly upregulated in glioblastoma multiforme (GBM) tissues and was connected with adverse prognosis in GBM patients. Our investigations revealed that XTP6 can facilitate the malignant progression of GBM both in vitro and in vivo. Additionally, XTP6 downregulated IκBα expression by recruiting NDH2 to the IκBα promoter, which resulted in elevated levels of H3K27me3, thereby reducing the transcriptional activity of IκBα. Moreover, the progression of GBM was further driven by the c-myc-mediated upregulation of XTP6, establishing a positive feedback loop with IκBα that perpetuated the activation of the NF-κB signaling pathway. Notably, the application of an inhibitor targeting the NF-κB signaling pathway effectively inhibited the continuous activation induced by XTP6, leading to a significant reduction in tumor formation in vivo. CONCLUSION: The results reveal that XTP6 unveils an innovative epigenetic mechanism instrumental in the sustained activation of the NF-κB signaling pathway, suggesting a promising therapeutic target for the treatment of GBM.


Subject(s)
Disease Progression , Glioblastoma , NF-kappa B , Proto-Oncogene Proteins c-myc , RNA, Long Noncoding , Humans , Glioblastoma/metabolism , Glioblastoma/pathology , Glioblastoma/genetics , NF-kappa B/metabolism , Mice , Animals , Proto-Oncogene Proteins c-myc/metabolism , Proto-Oncogene Proteins c-myc/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Signal Transduction , Prognosis , Feedback, Physiological , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Brain Neoplasms/genetics , Male , Cell Proliferation , Female
15.
Front Oncol ; 14: 1415801, 2024.
Article in English | MEDLINE | ID: mdl-38919532

ABSTRACT

Cancer chimeric, or fusion, transcripts are thought to most frequently appear due to chromosomal aberrations that combine moieties of unrelated normal genes. When being expressed, this results in chimeric RNAs having upstream and downstream parts relatively to the breakpoint position for the 5'- and 3'-fusion components, respectively. As many other types of cancer mutations, fusion genes can be of either driver or passenger type. The driver fusions may have pivotal roles in malignisation by regulating survival, growth, and proliferation of tumor cells, whereas the passenger fusions most likely have no specific function in cancer. The majority of research on fusion gene formation events is concentrated on identifying fusion proteins through chimeric transcripts. However, contemporary studies evidence that fusion events involving non-coding RNA (ncRNA) genes may also have strong oncogenic potential. In this review we highlight most frequent classes of ncRNAs fusions and summarize current understanding of their functional roles. In many cases, cancer ncRNA fusion can result in altered concentration of the non-coding RNA itself, or it can promote protein expression from the protein-coding fusion moiety. Differential splicing, in turn, can enrich the repertoire of cancer chimeric transcripts, e.g. as observed for the fusions of circular RNAs and long non-coding RNAs. These and other ncRNA fusions are being increasingly recognized as cancer biomarkers and even potential therapeutic targets. Finally, we discuss the use of ncRNA fusion genes in the context of cancer detection and therapy.

16.
Discov Med ; 36(185): 1268-1279, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38926113

ABSTRACT

BACKGROUND: Tuberculosis (TB) stands as the second most prevalent infectious agent-related cause of death worldwide in 2022, trailing only COVID-19. With 1.13 million reported deaths, this figure is more than half of the mortality associated with human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS), which accounted for 0.63 million deaths. Diagnosing Mycobacterium tuberculosis (MTB) infection remains a formidable challenge due to the inability to isolate and detect MTB in sputum and within the human body. The absence of universally reliable diagnostic criteria for MTB infection globally poses a significant obstacle to preventing the progression of tuberculosis from the MTB infection stage. METHODS: In this study, our objective was to formulate a diagnostic biomarker cluster capable of discerning the progression of MTB infection and disease. This was achieved through a comprehensive joint multiomics analysis, encompassing transcriptome, proteome, and metabolome, conducted on lung tissue samples obtained from both normal control mice and those infected with MTB. RESULTS: A total of 1690 differentially expressed genes and 94 differentially expressed proteins were systematically screened. From this pool, 10 core genes were singled out. Additionally, eight long non-coding ribonucleic acids and eight metabolites linked to these core genes were identified to establish a cohesive cluster of biomarkers. This multiomics-based biomarker cluster demonstrated its capability to differentiate uninfected samples from MTB-infected samples effectively in both principle component analysis and the construction of a random forest model. CONCLUSION: The outcomes of our study strongly suggest that the multiomics-based biomarker cluster holds significant potential for enhancing the diagnosis of MTB infection.


Subject(s)
Biomarkers , Disease Models, Animal , Mycobacterium tuberculosis , Tuberculosis, Pulmonary , Animals , Tuberculosis, Pulmonary/diagnosis , Tuberculosis, Pulmonary/microbiology , Tuberculosis, Pulmonary/metabolism , Mice , Biomarkers/metabolism , Mycobacterium tuberculosis/genetics , Transcriptome , Humans , Lung/microbiology , Lung/pathology , Lung/metabolism , Female , Metabolome , Proteomics/methods , Proteome/metabolism , Multiomics
17.
Front Med ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38926249

ABSTRACT

Pathological cardiac hypertrophy, a major contributor to heart failure, is closely linked to mitochondrial function. The roles of long noncoding RNAs (lncRNAs), which regulate mitochondrial function, remain largely unexplored in this context. Herein, a previously unknown lncRNA, Gm20257, was identified. It markedly increased under hypertrophic stress in vivo and in vitro. The suppression of Gm20257 by using small interfering RNAs significantly induced cardiomyocyte hypertrophy. Conversely, the overexpression of Gm20257 through plasmid transfection or adeno-associated viral vector-9 mitigated angiotensin II-induced hypertrophic phenotypes in neonatal mouse ventricular cells or alleviated cardiac hypertrophy in a mouse TAC model respectively, thus restoring cardiac function. Importantly, Gm20257 restored mitochondrial complex IV level and enhanced mitochondrial function. Bioinformatics prediction showed that Gm20257 had a high binding score with peroxisome proliferator-activated receptor coactivator-1 (PGC-1α), which could increase mitochondrial complex IV. Subsequently, Western blot analysis results revealed that Gm20257 substantially affected the expression of PGC-1α. Further analyses through RNA immunoprecipitation and immunoblotting following RNA pull-down indicated that PGC-1α was a direct downstream target of Gm20257. This interaction was demonstrated to rescue the reduction of mitochondrial complex IV induced by hypertrophic stress and promote the generation of mitochondrial ATP. These findings suggest that Gm20257 improves mitochondrial function through the PGC-1α-mitochondrial complex IV axis, offering a novel approach for attenuating pathological cardiac hypertrophy.

18.
Front Pharmacol ; 15: 1405199, 2024.
Article in English | MEDLINE | ID: mdl-38939836

ABSTRACT

Urologic oncology is a significant public health concern on a global scale. Recent research indicates that long chain non-coding RNAs (lncRNAs) and autophagy play crucial roles in various cancers, including urologic malignancies. This article provides a summary of the latest research findings, suggesting that lncRNA-mediated autophagy could either suppress or promote tumors in prostate, kidney, and bladder cancers. The intricate network involving different lncRNAs, target genes, and mediated signaling pathways plays a crucial role in urological malignancies by modulating the autophagic process. Dysregulated expression of lncRNAs can disrupt autophagy, leading to tumorigenesis, progression, and enhanced resistance to therapy. Consequently, targeting particular lncRNAs that control autophagy could serve as a dependable diagnostic tool and a promising prognostic biomarker in urologic oncology, while also holding potential as an effective therapeutic approach.

19.
J Cardiovasc Dev Dis ; 11(6)2024 May 30.
Article in English | MEDLINE | ID: mdl-38921668

ABSTRACT

Arrhythmogenic right ventricular cardiomyopathy (ARVC) can lead to sudden cardiac death and life-threatening heart failure. Due to its high fatality rate and limited therapies, the pathogenesis and diagnosis biomarker of ARVC needs to be explored urgently. This study aimed to explore the lncRNA-miRNA-mRNA competitive endogenous RNA (ceRNA) network in ARVC. The mRNA and lncRNA expression datasets obtained from the Gene Expression Omnibus (GEO) database were used to analyze differentially expressed mRNA (DEM) and lncRNA (DElnc) between ARVC and non-failing controls. Differentially expressed miRNAs (DEmiRs) were obtained from the previous profiling work. Using starBase to predict targets of DEmiRs and intersecting with DEM and DElnc, a ceRNA network of lncRNA-miRNA-mRNA was constructed. The DEM and DElnc were validated by real-time quantitative PCR in human heart tissue. Protein-protein interaction network and weighted gene co-expression network analyses were used to identify hub genes. A logistic regression model for ARVC diagnostic prediction was established with the hub genes and their ceRNA pairs in the network. A total of 448 DEMs (282 upregulated and 166 downregulated) were identified, mainly enriched in extracellular matrix and fibrosis-related GO terms and KEGG pathways, such as extracellular matrix organization and collagen fibril organization. Four mRNAs and two lncRNAs, including COL1A1, COL5A1, FBN1, BGN, XIST, and LINC00173 identified through the ceRNA network, were validated by real-time quantitative PCR in human heart tissue and used to construct a logistic regression model. Good ARVC diagnostic prediction performance for the model was shown in both the training set and the validation set. The potential lncRNA-miRNA-mRNA regulatory network and logistic regression model established in our study may provide promising diagnostic methods for ARVC.

20.
Skin Res Technol ; 30(7): e13814, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38924611

ABSTRACT

BACKGROUND: Skin cutaneous melanoma (SKCM) is an aggressive form of malignant melanoma with poor prognosis and high mortality rates. Disulfidptosis is a newly discovered cell death regulatory mechanism caused by the abnormal accumulation of disulfides. This unique pathway is guiding significant new research to understand cancer progression for targeted treatment. However, the correlation between disulfidptosis with long non-coding RNAs (lncRNAs) in SKCM remains unknown at present. METHODS: The Cancer Genome Atlas database furnished lncRNA expression data and clinical information for SKCM patients. Pearson correlation and Cox regression analyses identified disulfidptosis-related lncRNAs associated with SKCM prognosis. ROC curves and a nomogram validated the model. TME, immune infiltration, GSEA analysis, immune checkpoint gene expression profiling, and drug sensitivity were assessed in high and low-risk groups. Consistent clustering categorized SKCM patients for personalized clinical treatment guidance. RESULTS: A total of twelve disulfidptosis-related lncRNAs were identified for the development of prognosis prediction models. The area under the curve (AUC) values of the ROC curve and the nomogram provided reliable discrimination to evaluate the prognostic potential for SKCM patients. The TME played a crucial role in tumorigenesis, progression and prognosis, and the risk scores were closely related to immune cell infiltration. Meanwhile, the combination of chemotherapy, targeted therapy, and immunotherapy was recommended for low-risk patients based on drug sensitivity and immune efficacy analyses. CONCLUSION: We identified a risk model of twelve disulfidptosis-related lncRNAs that could be used to predict the prognosis of SKCM patients and help guide immunotherapy and chemotherapy for personalized treatment plans.


Subject(s)
Melanoma , RNA, Long Noncoding , Skin Neoplasms , Tumor Microenvironment , Humans , RNA, Long Noncoding/genetics , Melanoma/genetics , Melanoma/immunology , Melanoma/drug therapy , Skin Neoplasms/genetics , Skin Neoplasms/immunology , Skin Neoplasms/drug therapy , Prognosis , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology , Male , Female , Middle Aged , Nomograms , Melanoma, Cutaneous Malignant , Biomarkers, Tumor/genetics , ROC Curve
SELECTION OF CITATIONS
SEARCH DETAIL
...