Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 113
Filter
1.
Per Med ; : 1-13, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38889283

ABSTRACT

There is a significant mortality rate associated with cardiovascular disease despite advances in treatment. long Non-coding RNAs (lncRNAs) play a critical role in many biological processes and their dysregulation is associated with a wide range of diseases in which their downstream pathways are disrupted. A lncRNA X-inactive specific transcript (XIST) is well known as a factor that regulates the physiological process of chromosome dosage compensation for females. According to recent studies, lncRNA XIST is involved in a variety of cellular processes, including apoptosis, proliferation, invasion, metastasis, oxidative stress and inflammation, through molecular networks with microRNAs and their downstream targets in neoplastic and non-neoplastic diseases. Because these cellular processes play a role in the pathogenesis of cardiovascular diseases, we aim to investigate the role that lncRNA XIST plays in this process. Additionally, we wish to determine whether it is a prognostic factor or a potential therapeutic target in these diseases.


[Box: see text].

2.
Clin Res Hepatol Gastroenterol ; 48(7): 102398, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38871250

ABSTRACT

BACKGROUND: Cholangiocarcinoma is a malignant tumor that occurs in the bile duct system, and the prognosis of patients is poor. Currently, research suggests that long non-coding RNAs (lncRNAs) in the treatment and prevention of cholangiocarcinoma. This study primarily focuses on the regulation and potential mechanism of the lncRNA XIST (XIST) in cholangiocarcinoma. METHODS: The levels of XIST and miR-126-3p in cholangiocarcinoma tissues and cells were detected using real-time quantitative polymerase chain reaction (RT-qPCR). Cell transfection status, including migration and invasion, was examined via the Transwell method. The relationship between XIST and miR-126-3p was observed by dual-luciferase gene reporter assay and verified by rescue assays. Additionally, the prognostic significance of XIST in cholangiocarcinoma was determined using Kaplan-Meier and multivariate Cox regression analyses. RESULTS: XIST expression was increased in cholangiocarcinoma, while miR-126-3p was decreased, in both tissues and cells. The successful construction of silencing XIST was found to inhibit the count of cell migration and invasion. XIST directly targeted miR-126-3p to regulate the progression of cholangiocarcinoma. CONCLUSION: XIST sponging miR-126-3p inhibited the progression of cholangiocarcinoma and improved the prognosis for patients. This finding provides new insights and opportunities for future studies on cholangiocarcinoma prognostic biomarkers.

3.
Arch Endocrinol Metab ; 68: e230097, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38739522

ABSTRACT

Objective: This study sought to investigate the regulation of long noncoding RNA (lncRNA) XIST on the microRNA (miR)-101-3p/vascular endothelial growth factor A (VEGFA) axis in neovascularization in diabetic retinopathy (DR). Materials and methods: Serum of patients with DR was extracted for the analysis of XIST, miR-101-3p, and VEGFA expression levels. High glucose (HG)-insulted HRMECs and DR model rats were treated with lentiviral vectors. MTT, transwell, and tube formation assays were performed to evaluate cell viability, migration, and angiogenesis, and ELISA was conducted to detect the levels of inflammatory cytokines. Dual-luciferase reporter, RIP, and RNA pull-down experiments were used to validate the relationships among XIST, miR-101-3p, and VEGFA. Results: XIST and VEGFA were upregulated and miR-101-3p was downregulated in serum from patients with DR. XIST knockdown inhibited proliferation, migration, vessel tube formation, and inflammatory responsein HG-treated HRMECs, whereas the above effects were nullified by miR-101-3p inhibition or VEGFA overexpression. miR-101-3p could bind to XIST and VEGFA. XIST promoted DR development in rats by regulating the miR-101-3p/VEGFA axis. Conclusion: LncRNA XIST promotes VEGFA expression by downregulating miR-101-3p, thereby stimulating angiogenesis and inflammatory response in DR.


Subject(s)
Diabetic Retinopathy , MicroRNAs , Neovascularization, Pathologic , RNA, Long Noncoding , Vascular Endothelial Growth Factor A , RNA, Long Noncoding/genetics , Diabetic Retinopathy/genetics , Diabetic Retinopathy/blood , Vascular Endothelial Growth Factor A/metabolism , Animals , Rats , Humans , Male , Neovascularization, Pathologic/genetics , Rats, Sprague-Dawley , Female , Cell Movement/genetics , Cell Proliferation/genetics , Middle Aged , Diabetes Mellitus, Experimental
4.
Br J Pharmacol ; 181(15): 2509-2527, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38589338

ABSTRACT

BACKGROUND AND PURPOSE: It is well acknowledged that tobacco-derived lung carcinogens can induce lung injury and even lung cancer through a complex mechanism. MicroRNAs (MiRNAs) are differentially expressed in tobacco-derived carcinogen nicotine-derived nitrosamine ketone (NNK)-treated A/J mice. EXPERIMENTAL APPROACH: RNA sequencing was used to detect the level of long non-coding RNAs (lncRNAs). Murine and human lung normal and cancer cells were used to evaluate the function of lncRNA XIST and miR-328-3p in vitro, and NNK-treated A/J mice were used to test their function in vivo. In vivo levels of miR-328-3p and lncRNA XIST were analysed, using in situ hybridization. miR-328-3p agomir and lncRNA XIST-specific siRNA were used to manipulate in vivo levels of miR-328-3p and lncRNA XIST in A/J mice. KEY RESULTS: LncRNA XIST was up-regulated in NNK-induced lung injury and dominated the NNK-induced ectopic miRNA expression in NNK-induced lung injury both in vitro and in vivo. Either lncRNA XIST silencing or miR-328-3p overexpression exerted opposing effects in lung normal and cancer cells regarding cell migration. LncRNA XIST down-regulated miR-328-3p levels as a miRNA sponge, and miR-328-3p targeted the 3'-UTR of FZD7 mRNA, which is ectopically overexpressed in lung cancer patients. Both in vivo lncRNA XIST silencing and miR-328 overexpression could rescue NNK-induced lung injury and aberrant overexpression of the lung cancer biomarker CK19 in NNK-treated A/J mice. CONCLUSIONS AND IMPLICATIONS: Our results highlight the promotive effect of lncRNA XIST in NNK-induced lung injury and elucidate its post-transcriptional mechanisms, indicating that targeting lncRNA XIST/miR-328-3p could be a potential therapeutic strategy to prevent tobacco carcinogen-induced lung injury in vivo.


Subject(s)
Carcinogens , MicroRNAs , Nitrosamines , RNA, Long Noncoding , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Animals , Nitrosamines/toxicity , MicroRNAs/genetics , MicroRNAs/metabolism , Mice , Humans , Carcinogens/toxicity , Lung Injury/chemically induced , Lung Injury/metabolism , Lung Injury/genetics , Lung Neoplasms/chemically induced , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Male , Nicotiana
5.
Biochem Genet ; 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38609670

ABSTRACT

The polycystic ovary syndrome (PCOS), a common endocrine disorder, is mainly related to infertility. Moreover, it is characterized by promoted androgen, suppressed ovulation and insulin resistance. Long non-coding RNA X inactive specific transcript (lncRNA XIST), known as an oncogene or a cancer inhabited factor, is involved in several disease. However, the diagnostic mechanisms of lncRNA XIST in PCOS have not been clarified. Our study aimed to explain whether lncRNA XIST regulates KGN cells proliferation and apoptosis via microRNA (miR)-212-3p/RASA1 axis in PCOS. Levels of lncRNA XIST, miR-212-3p and RASA1 in KGN cells were detected through reverse transcription quantitative polymerase chain reaction (RT-qPCR) assay. Fluorescence in situ Hybridization (FISH) was performed to confirm the expression of lncRNA XIST and miR-212-3p in KGN cells. StarBase and dual-luciferase reporter assay were applied for exploring the interaction between miR-212-3p and RASA1. Cell viability, apoptosis, protein expression of Bcl-2 and Bax were assessed by MTT, flow cytometry analysis, RT-qPCR and western blot, respectively. We found that lncRNA XIST was low-expressed, miR-212-3p was over-expressed, and RASA1 was dramatically down-regulated in KGN cells. LncRNA XIST negatively regulated miR-212-3p expression in KGN cells. MiR-212-3p interacted with RASA1 and negatively regulated RASA1 levels in KGN cells. Up-regulation of lncRNA XIST signally decreased cells viability, stimulated more apoptotic cells, enhanced Bax expression, and depressed Bcl-2 level in KGN cells. However, these observations were abolished after miR-212-3p mimic treatment. Furthermore, miR-212-3p inhibitor significantly inhibited cell proliferation, enhanced more apoptotic cells, increased Bax expression, and decreased Bcl-2 level in KGN cells, and these effects were eliminated by RASA1-siRNA transfection. Our observations revealed that lncRNA XIST protects against PCOS through regulating miR-212-3p/RASA1 axis, suggesting that lncRNA XIST may be a promising therapeutic target for PCOS therapy.

6.
Biomed Pharmacother ; 175: 116636, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38677245

ABSTRACT

PURPOSE: Renal interstitial fibrosis is a pathological manifestation of the progression of diabetic kidney disease (DKD). Dendrobium officinale polysaccharides (DOP), one of the major active components of Dendrobium officinale, have hypoglycemic and hypolipidemic effects and are used clinically to treat diabetes. However, the role of DOP in delaying DKD progression remains unclear. This study aimed to explore the potential mechanisms by which DOP delays DKD renal interstitial fibrosis. METHODS: Using db/db mice as a model of DKD, we administered DOP by gavage and observed its therapeutic effectiveness. Employing ASO technology, we knocked down lncRNA XIST expression in kidney tissues and detected the expression of lncRNA XIST, TGF-ß1, and renal interstitial fibrosis-related molecules. RESULTS: DOP was primarily composed of monosaccharides, with 91.57% glucose and 1.41% mannose, forming a spheroid-like structure. It has a high polydispersity index with an Mw/Mn of 6.146, and the polysaccharides are mainly connected by 4-Man(p) and 4-Glc(p) linkages. In the kidneys of db/db mice, lncRNA XIST and TGF-ß1 are highly expressed; however, their expression is significantly reduced after gastric infusion with DOP, and upon knockdown of lncRNA XIST, it might delay the progression of renal interstitial fibrosis in DKD. CONCLUSION: DOP may delay the progression of DKD renal interstitial fibrosis through the regulation of the LncRNA XIST/TGF-ß1 related fibrotic pathway. This provides a new perspective for clinical strategies to delay the progression of DKD renal interstitial fibrosis.


Subject(s)
Dendrobium , Diabetic Nephropathies , Fibrosis , Mice, Inbred C57BL , Polysaccharides , RNA, Long Noncoding , Transforming Growth Factor beta1 , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Animals , Dendrobium/chemistry , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , Diabetic Nephropathies/genetics , Polysaccharides/pharmacology , Transforming Growth Factor beta1/metabolism , Male , Mice , Kidney/pathology , Kidney/drug effects , Kidney/metabolism
7.
Immunobiology ; 229(3): 152796, 2024 May.
Article in English | MEDLINE | ID: mdl-38484431

ABSTRACT

BACKGROUND: We have previously found that enhancer of zeste homolog 2 (EZH2) is correlated with inflammatory infiltration and mucosal cell injury in ulcerative colitis (UC). This study aims to analyze the role of X-inactive specific transcript (XIST), a possible interactive long non-coding RNA of EZH2, in UC and to explore the mechanisms. METHODS: C57BL/6N mice were treated with dextran sulfate sodium (DSS), and mouse colonic mucosal epithelial cells were treated with DSS and lipopolysaccharide (LPS) for UC modeling. The UC-related symptoms in mice, and the viability and apoptosis of mucosal epithelial cells were determined. Inflammatory injury in animal and cellular models were assessed through the levels of ACS, occludin, IL-1ß, IL-18, TNF-α, caspase-1, and caspase-11. Molecular interactions between XIST, EZH2, and GABA type A receptor-associated protein (GABARAP) were verified by immunoprecipitation assays, and their functions in inflammatory injury were determined by gain- or loss-of-function assays. RESULTS: XIST was highly expressed in DSS-treated mice and in DSS + LPS-treated mucosal epithelial cells. It recruited EZH2, which mediated gene silencing of GABARAP through H3K27me3 modification. Silencing of XIST alleviated body weight loss, colon shortening, and disease active index of mice and reduced inflammatory injuries in their colon tissues. Meanwhile, it reduced apoptosis and inflammation in mucosal epithelial cells. However, these alleviating effects were blocked by either EZH2 overexpression or GABARAP knockdown. Rescue experiments identified caspase-11 as a key effector mediating the inflammatory injury following GABARAP loss. CONCLUSION: This study suggests that the XIST-EZH2 interaction-mediated GABARAP inhibition activates caspase-11-dependent inflammatory injury in UC.


Subject(s)
Apoptosis Regulatory Proteins , Caspases, Initiator , Colitis, Ulcerative , Disease Models, Animal , Enhancer of Zeste Homolog 2 Protein , RNA, Long Noncoding , Animals , Colitis, Ulcerative/metabolism , Colitis, Ulcerative/chemically induced , RNA, Long Noncoding/genetics , Enhancer of Zeste Homolog 2 Protein/metabolism , Mice , Caspases, Initiator/metabolism , Apoptosis Regulatory Proteins/metabolism , Apoptosis Regulatory Proteins/genetics , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Mice, Inbred C57BL , Dextran Sulfate , Apoptosis , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Inflammation/metabolism , Humans , Male , Lipopolysaccharides , Colon/pathology , Colon/metabolism
8.
Cell Tissue Res ; 395(3): 285-297, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38353742

ABSTRACT

Leydig cell (LCs) apoptosis is responsible for decreased serum testosterone levels during late-onset hypogonadism (LOH). Our study was designed to illustrate the regulatory effect of lncRNA XIST on LCs and to clarify its molecular mechanism of action in LOH. The Leydig cells (TM3) was treated by 300 µM H2O2 for 8 h to establish Leydig cell oxidative stress model in vitro. The expression levels of lncRNA XIST in the testicular tissues of patients with LOH were measured using fluorescence in situ hybridization (FISH). The interaction between lncRNA XIST/SIRT1 and miR-145a-5p was assessed using starBase and dual-luciferase reporter gene assays. Apoptotic cells and Caspase3 activity were determined by flow cytometry (FCM) assay. Testosterone concentration was determined by ELISA. Moreover, histological assessment of testicles in mice was performed by using HE staining and the TUNEL assay was used to determine apoptosis. We found that the lncRNA XIST was downregulated in the testicular tissues of LOH patients and mice and in H2O2-induced TM3 cells. XIST siRNA significantly promoted apoptosis, enhanced Caspase3 activity and reduced testosterone levels in H2O2-stimulated TM3 cells. Further studies showed that the miR-145a-5p inhibitor reversed the effect of XIST-siRNA on H2O2-induced Leydig cell apoptosis. MiR-145a-5p negatively regulated SIRT1 expression, and SIRT1-siRNA reversed the effects of the miR-145a-5p inhibitor on H2O2 stimulated TM3 cells. The in vivo experiments indicated that silencing of the lncRNA XIST aggravated LOH symptoms in mice. Inhibition of lncRNA XIST induces Leydig cell apoptosis through the miR-145a-5p/SIRT1 axis in the progression of LOH.


Subject(s)
Hypogonadism , MicroRNAs , RNA, Long Noncoding , Animals , Humans , Male , Mice , Apoptosis , Cell Proliferation/genetics , Hydrogen Peroxide , Hypogonadism/genetics , In Situ Hybridization, Fluorescence , Leydig Cells/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Competitive Endogenous , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA, Small Interfering/metabolism , Sirtuin 1/genetics , Testosterone/pharmacology
9.
Diabetol Metab Syndr ; 16(1): 35, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38317244

ABSTRACT

BACKGROUND: The prevalence of diabetic foot ulcers (DFUs) has caused serious harm to human health. To date, a highly effective treatment is lacking. Long noncoding RNA X-inactive specific transcript (lncRNA XIST) has been the subject of mounting research studies, all of which have found that it serves as a protective factor against certain diseases; however, its function in DFUs is not entirely understood. This study was performed to determine the importance of the lncRNA XIST in the pathogenesis and biological function of DFUs. METHODS: Diabetic ulcer skin from rats was analysed using haematoxylin-eosin (HE), Masson's trichrome, and immunohistochemistry (IHC) staining. The differences in the expression of genes and proteins were examined with real-time quantitative polymerase chain reaction (RT-qPCR) and Western blotting. Next, the interaction was verified with a dual luciferase gene reporter assay. In addition, CCK-8, Transwell, and wound healing assays were used to assess the proliferation and migration of HaCaT cells. RESULTS: The lncRNA XIST and epidermal growth factor receptor (EGFR) were downregulated, while microRNA-126-3p (miR-126-3p) was increased in diabetic ulcer rat skin tissues and high glucose-induced HaCaT cells. In addition, we found that the lncRNA XIST binds to miR-126-3p and that EGFR is directly targeted by miR­126­3p. Silencing XIST contributed to upregulated miR-126-3p expression, thus lowering EGFR levels and inhibiting the proliferative and migratory abilities of high glucose-treated HaCaT cells; however, the miR-126-3p inhibitor and overexpression of EGFR reversed this effect. CONCLUSION: Decreased lncRNA XIST expression inhibits the proliferative and migratory abilities of high glucose-induced HaCaT cells by modulating the miR-126-3p/EGFR axis, causing delayed wound healing.

10.
Hematology ; 29(1): 2306444, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38305210

ABSTRACT

Acute myeloid leukemia (AML) is the common blood cancer in hematopoietic system-related diseases and has a poor prognosis. Studies have shown that long non-coding RNAs (lncRNAs) are closely related to the pathogenesis of a variety of diseases, including AML. However, the specific molecular mechanism remains unclear. Hence, the objective of this study was to investigate the effect and mechanism of lncRNA X inactive specific transcript (lncRNA XIST) on AML. To achieve our objective, some tests were performed. Quantitative real-time polymerase chain reaction (qRT-PCR) was utilized to detect the expression of lncRNA XIST, miR-142-5p and the platelet isoform of phosphofructokinase (PFKP). The targeting relationship between miR-142-5p and lncRNA XIST and PFKP was verified by Pearson correlation analysis, dual-luciferase reporter assay, and pull-down assay. Functional experiments were used to analyze the effect and mechanism of action of knocking down lncRNA XIST on THP-1 and U937 cells. Compared with bone marrow cells, lncRNA XIST and PFKP expression levels were up-regulated and miR-142-5p expression levels were down-regulated in AML. Further analysis revealed that lncRNA XIST targeted and bound to miR-142-5p, and PFKP was a target gene of miR-142-5p. Knockdown of lncRNA XIST significantly promoted miR-142-5p expression to down-regulate PFKP in THP-1 and U937 cells, while the cell proliferation, cell viability, and cell cycle arrest were inhibited and apoptosis was increased. Knockdown of miR-142-5p reversed the functional impact of lncRNA XIST knockdown on AML cells. In conclusion, down-regulation of lncRNA XIST can affect the progression of AML by regulating miR-142-5p.


Subject(s)
Leukemia, Myeloid, Acute , MicroRNAs , RNA, Long Noncoding , Humans , Apoptosis/genetics , Cell Proliferation/genetics , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , MicroRNAs/genetics , MicroRNAs/metabolism , Phosphofructokinases , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Gene Knockdown Techniques
11.
J Biochem Mol Toxicol ; 38(1): e23621, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38229320

ABSTRACT

Gestational diabetes mellitus (GDM), a prevalent complication during the gestation period, has been linked to impaired proliferation and migration of trophoblasts causing placental maldevelopment. We previously found that lncRNA X-inactive specific transcript (XIST) played an essential role in GDM progression. Here, we investigated the precise biological functions as well as the upstream and downstream regulatory mechanisms of XIST in GDM. We found that XIST and forkhead box O1 (FOXO1) were conspicuously upregulated and miR-497-5p and methyltransferase-like 14 (METTL14) were downregulated in the placentas of GDM patients. XIST silencing facilitated proliferation and migration and inhibited cell apoptosis and cell cycle arrest in HG-cultured HTR8/SVneo cells. METTL14 inhibited XIST expression through m6A methylation modification. XIST overexpression abrogated the positive effect of METTL14 overexpression on HG-cultured HTR8/SVneo cell progression. MiR-497-5p and FOXO1 are downstream regulatory genes of XIST in HTR8/SVneo cells. Reverse experiments illustrated that XIST mediated HTR8/SVneo cell functions by regulating the miR-497-5p/FOXO1 axis. Additionally, XIST silencing augmented glucose tolerance and alleviated fetal detrimental changes in GDM rats. To conclude, METTL14-mediated XIST silencing facilitated proliferation and migration and inhibited cell apoptosis and cell cycle arrest in HG-cultured HTR8/SVneo cells via the miR-497-5p/FOXO1 axis, thereby alleviating GDM progression in rats.


Subject(s)
Diabetes, Gestational , Forkhead Box Protein O1 , Methyltransferases , MicroRNAs , RNA, Long Noncoding , Animals , Female , Humans , Pregnancy , Rats , Cell Line , Cell Proliferation/genetics , Diabetes, Gestational/genetics , Diabetes, Gestational/metabolism , Forkhead Box Protein O1/metabolism , Genes, Regulator , Methyltransferases/genetics , Methyltransferases/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Placenta/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Trophoblasts/metabolism
12.
Arch. endocrinol. metab. (Online) ; 68: e230097, 2024. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1556940

ABSTRACT

ABSTRACT Objective: This study sought to investigate the regulation of long noncoding RNA (lncRNA) XIST on the microRNA (miR)-101-3p/vascular endothelial growth factor A (VEGFA) axis in neovascularization in diabetic retinopathy (DR). Materials and methods: Serum of patients with DR was extracted for the analysis of XIST, miR-101-3p, and VEGFA expression levels. High glucose (HG)-insulted HRMECs and DR model rats were treated with lentiviral vectors. MTT, transwell, and tube formation assays were performed to evaluate cell viability, migration, and angiogenesis, and ELISA was conducted to detect the levels of inflammatory cytokines. Dual-luciferase reporter, RIP, and RNA pull-down experiments were used to validate the relationships among XIST, miR-101-3p, and VEGFA. Results: XIST and VEGFA were upregulated and miR-101-3p was downregulated in serum from patients with DR. XIST knockdown inhibited proliferation, migration, vessel tube formation, and inflammatory response in HG-treated HRMECs, whereas the above effects were nullified by miR-101-3p inhibition or VEGFA overexpression. miR-101-3p could bind to XIST and VEGFA. XIST promoted DR development in rats by regulating the miR-101-3p/VEGFA axis. Conclusions: LncRNA XIST promotes VEGFA expression by downregulating miR-101-3p, thereby stimulating angiogenesis and inflammatory response in DR.

13.
Front Immunol ; 14: 1225482, 2023.
Article in English | MEDLINE | ID: mdl-38115999

ABSTRACT

Background: Neuroinflammation is a common feature of many neurological diseases, and remains crucial for disease progression and prognosis. Activation of microglia and astrocytes can lead to neuroinflammation. However, little is known about the role of lncRNA xist and miR-122-5p in the pathogenesis of sepsis-associated neuroinflammation (SAN). This study aims to investigate the role of lncRNA xist and miR-122-5p in the pathogenesis of SAN. Methods: Levels of miR-122-5p and proinflammatory mediators were detected in the cerebrospinal fluid (CSF) of patients with intracranial infection (ICI) by ELISA and qRT-PCR. miRNA expression in the periventricular white matter (PWM) in rats was analyzed by high-throughput sequencing. Levels of lncRNA xist, miR-122-5p and proinflammatory mediators in the PWM were measured using qRT-PCR and western blot. Bioinformatics analysis was used to predict the upstream and downstream of miR-122-5p. The interaction between miR-122-5p and its target protein was validated using luciferase reporter assay. BV2 and astrocytes were used to detect the expression of lncRNA xist, miR-122-5p. Results: The level of miR-122-5p was significantly decreased in the CSF of ICI patients, while the expression of IL-1ß and TNF-α were significantly upregulated. Furthermore, it was found that the expression of IL-1ß and TNF-α were negatively correlated with the level of miR-122-5p. A high-throughput sequencing analysis showed that miR-122-5p expression was downregulated with 1.5-fold changes in the PWM of CLP rats compared with sham group. Bioinformatics analysis found that lncRNA xist and PKCη were the upstream and downstream target genes of miR-122-5p, respectively. The identified lncRNA xist and PKCη were significantly increased in the PWM of CLP rats. Overexpression of miR-122-5p or knockdown of lncRNA xist could significantly downregulate the level of PKCη and proinflammatory mediators from activated microglia and astrocytes. Meanwhile, in vitro investigation showed that silencing lncRNA xist or PKCη or enhancing the expression of miR-122-5p could obviously inhibit the release of proinflammatory mediators in activated BV2 cells and astrocytes. Conclusion: LncRNA xist could regulate microglia and astrocytes activation in the PWM of CLP rats via miR-122-5p/PKCη axis, further mediating sepsis associated neuroinflammation.


Subject(s)
MicroRNAs , RNA, Long Noncoding , Sepsis , White Matter , Animals , Humans , Rats , MicroRNAs/genetics , MicroRNAs/metabolism , Neuroinflammatory Diseases , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Sepsis/complications , Sepsis/genetics , Tumor Necrosis Factor-alpha/metabolism , White Matter/metabolism
14.
Mol Biotechnol ; 2023 Dec 28.
Article in English | MEDLINE | ID: mdl-38153663

ABSTRACT

This study aimed to explore the regulatory effects and molecular mechanisms of long non-coding RNA X-inactive-specific transcript (LncRNA-XIST) in lung adenocarcinoma. si-XIST or glutathione peroxidase 4 (GPX4) plasmids were transfected in PC-9 cells to suppress LncRNA-XIST expression or over-express GPX4, respectively. The mRNA expression levels of LncRNA-XIST and GPX4 in lung adenocarcinoma tissues or cells were assessed using RT-qPCR. CCK-8 assay was performed to examine cell activity, and corresponding biochemical kits were used to measure the levels of Fe2+, reactive oxygen species (ROS), malondialdehyde (MDA) in cells. Western blot is used to examine relative protein expression of FANCD2, SLC7A11, and GPX4 in lung adenocarcinoma cells. The mRNA and protein expression levels of LncRNA-XIST in clinical tissues and cells of lung adenocarcinoma were significantly higher than those in adjacent tissues and normal cells. Functional analysis showed that knockdown of LncRNA-XIST notably weakened the viability of lung adenocarcinoma cells and promoted ferroptosis (manifested by significantly up-regulated levels of ROS, MDA, and Fe2+ and down-regulated the expression of SLC7A11 and FANCD2, P < 0.05). Further mechanism analysis revealed that knockdown of LncRNA-XIST markedly inhibited the expression of GPX4 in lung adenocarcinoma cells and that GPX4 was significantly over-expressed in clinical tissues and cells of lung adenocarcinoma. Notably, the expression of GPX4 was positively correlated with that of LncRNA-XIST. Over-expression of GPX4 remarkably promoted cell proliferation and inhibited ferroptosis in lung adenocarcinoma. Besides, the GPX4 over-expression reversed the LncRNA-XIST knockdown-induced ferroptosis and decrease in lung adenocarcinoma cell viability. LncRNA-XIST increases the activity of lung adenocarcinoma cells and inhibits ferroptosis by up-regulating GPX4. Knocking down LncRNA-XIST may be an effective treatment for lung adenocarcinoma.

15.
Int Immunopharmacol ; 125(Pt A): 111066, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37866316

ABSTRACT

Mesenchymal stem cell-derived exosomes and long non-coding RNAs (lncRNAs) have been identified to play a role in acute lung injury (ALI). In this study, we investigated whether exosomal lncRNAs could regulate ALI and the underlying mechanisms. Bone marrow mesenchymal stem cells (BM-MSCs) were pretreated with hypoxia or normoxia, and exosomes were subsequently extracted from normoxic BM-MSCs (Nor-exos) and hypoxic BM-MSCs (Hypo-exos). A rat model of ALI was established via an airway perfusion of lipopolysaccharide (LPS). Exosomes were administered via the tail vein to evaluate the in vivo effect of exosomes in ALI. LPS-exposed RLE-6TN cells were incubated with exosomes to explore their in vitro effect in ALI. A luciferase reporter assay was used to evaluate the interaction between lncRNA XIST and miR-455-3p, as well as miR-455-3p and Claudin-4. We found that the exosomes attenuated LPS-induced ALI and Hypo-Exos exerted a greater therapeutic effect compared with Nor-exos both in vitro and in vivo. Moreover, an abundance of lncRNA XIST was observed in Hypo-exos compared with Nor-exos. Mechanistically, LncRNA XIST functioned as a miR-455-3p sponge and targeted Claudin-4 in ALI. Our results provide novel insight into the role of exosomal lncRNA XIST for the treatment of ALI. Thus, hypoxic pretreatment may represent an effective method for improving the therapeutic effects of exosomes.


Subject(s)
Acute Lung Injury , Mesenchymal Stem Cells , MicroRNAs , RNA, Long Noncoding , Animals , Rats , Acute Lung Injury/chemically induced , Acute Lung Injury/therapy , Acute Lung Injury/genetics , Claudin-4 , Hypoxia , Lipopolysaccharides , MicroRNAs/genetics , RNA, Long Noncoding/genetics
16.
Mol Neurobiol ; 60(10): 6109-6120, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37422573

ABSTRACT

Ischemic stroke causes lethal damage to the brain. Identifying key regulators of OGD/R-induced cerebral injury is important for developing novel therapies for ischemic stroke. HMC3 and SH-SY5Y cells were treated with OGD/R as an in vitro ischemic stroke model. Cell viability and apoptosis were determined via CCK-8 assay and flow cytometry. Inflammatory cytokines were examined by ELISA. Luciferase activity was measured for evaluating the interaction of XIST, miR-25-3p, and TRAF3. Bcl-2, Bax, Bad, cleaved-caspase 3, total caspase 3, and TRAF3 were detected via western blotting. HMC3 and SH-SY5Y cells showed increased XIST expression and decreased miR-25-3p expression following OGD/R. Importantly, silencing of XIST and overexpression of miR-25-3p reduced apoptosis and inflammatory response following OGD/R. Furthermore, XIST worked as a miR-25-3p sponge, and miR-25-3p targeted TRAF3 to suppress its expression. Moreover, the knockdown of TRAF3 ameliorated OGD/R-induced injury. Loss of XIST-mediated protective effects was reversed by overexpression of TRAF3. LncRNA XIST exacerbates OGD/R-induced cerebral damage via sponging miR-25-3p and enhancing TRAF3 expression.


Subject(s)
Ischemic Stroke , MicroRNAs , Neuroblastoma , RNA, Long Noncoding , Reperfusion Injury , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Long Noncoding/genetics , Caspase 3/metabolism , TNF Receptor-Associated Factor 3/genetics , TNF Receptor-Associated Factor 3/metabolism , Glucose , Oxygen/metabolism , Reperfusion Injury/genetics , Reperfusion Injury/metabolism , Apoptosis/genetics
17.
Heliyon ; 9(7): e17852, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37455998

ABSTRACT

Spinal cord injury (SCI) has a high disability rate and mortality rate. Recently, LncRNA XIST has been found to be involved in the regulation of inflammatory responses. Therefore, we aimed to investigate the role of XIST in the occurrence and development of SCI and the specific regulation mechanism. Methods: 100 ng/mL lipopolysaccharide (LPS) was used to treat mouse microglia BV2 cells. Hitting spinal cord was performed to C57BL/6 mice for establishing SCI model. Real-time reverse transcriptase-polymerase chain reaction (RT-qPCR), Western blot, Immunofluorescence (IF) and Enzyme linked immunosorbent assay (ELISA) experiments were used to explore the function of XIST, miR-124-3p and IRF1 in LPS-induced BV2 cells. RT-qPCR, Nissl staining, IF, Western blot and ELISA experiment were performed to study the function of XIST in SCI mice. Dual-luciferase reporter assay, RNA immunoprecipitation (RIP), RT-qPCR and Western blot assays were utilized to identify the interaction among XIST, miR-124-3p and IRF1. Results: XIST was upregulated in LPS-induced BV2 cells and spinal cord tissues of SCI mice. Overexpression of XIST promoted the M1 microphages polarization and cytokines concentration in LPS-stimulated BV2 cells, aggravated SCI of mice. Downregulated XIST promoted M1-to-M2 conversion of microglial and relieved the injury of SCI mice. Mechanism verification indicated that XIST acted as a molecular sponge of miR-124-3p and regulated IRF1 expression. Increased miR-124-3p or reduced IRF1 inhibited M1 polarization of microglial and decreased the production of inflammatory cytokines in LPS-induced BV2 cells. Increased XIST or decreased miR-124-3p had an opposite of on LPS-induced BV2 cells. Conclusion: Overexpression of XIST enhanced M1 polarization of microglia and promoted the level of inflammatory cytokines through sponging miR-124-3p and regulating IRF1 expression.

18.
Arch Rheumatol ; 38(1): 82-94, 2023 Mar.
Article in English | MEDLINE | ID: mdl-37235115

ABSTRACT

Objectives: This study aims to explore the mechanism by which long non-coding ribonucleic acids (lncRNA) X-inactive specific transcript (XIST) affects the progression of adjuvant-induced arthritis (AIA). Materials and methods: Freund's complete adjuvant was used to induce arthritis in rats. The polyarthritis, spleen and thymus indexes were calculated to evaluate AIA. Hematoxylin-eosin (H&E) staining was used to reveal the pathological changes in the synovium of AIA rats. Enzyme-linked immunosorbent assay (ELISA) was performed to detect the expression of tumor necrosis factor-alpha (TNF-α), interleukin (IL)-6 and IL-8 in the synovial fluid of AIA rats. The cell continuing kit (CCK)-8, flow cytometry, and Transwell assays were used to assess the proliferation, apoptosis, migration and invasion of transfected fibroblast-like synoviocytes (FLS) isolated from AIA rats (AIA-FLS). Dual-luciferase reporter assay was performed to verify the binding sites between XIST and miR-34b-5p or between YY1 mRNA and miR-34b-5p. Results: The XIST and YY1 were highly expressed, and miR-34a-5p was lowly expressed in the synovium of AIA rats and in AIA-FLS. Silencing of XIST impaired the function of AIA-FLS in vitro and inhibited the progression of AIA in vivo. The XIST promoted the expression of YY1 by competitively binding to miR-34a-5p. Inhibition of miR-34a-5p strengthened the function of AIA-FLS by upregulating XIST and YY1. Conclusion: The XIST controls the function of AIA-FLS and may promote the progression of rheumatoid arthritis via the miR-34a-5p/YY1 axis.

19.
Biol Direct ; 18(1): 25, 2023 05 24.
Article in English | MEDLINE | ID: mdl-37226251

ABSTRACT

BACKGROUND: Increasing evidences have shown that long non-coding RNAs (lncRNAs) display crucial regulatory roles in the occurrence and development of numerous diseases. However, the function and underlying mechanisms of lncRNAs in hypertrophy of ligamentum flavum (HLF) have not been report. METHODS: The integrated analysis of lncRNAs sequencing, bioinformatics analysis and real-time quantitative PCR were used to identify the key lncRNAs involved in HLF progression. Gain- and loss-function experiments were used to explore the functions of lncRNA X inactive specific transcript (XIST) in HLF. Mechanistically, bioinformatics binding site analysis, RNA pull-down, dual-luciferase reporter assay, and rescue experiments were utilized to investigate the mechanism by which XIST acts as a molecular sponge of miR-302b-3p to regulate VEGFA-mediated autophagy. RESULTS: We identified that XIST was outstandingly upregulated in HLF tissues and cells. Moreover, the up-regulation of XIST strongly correlated with the thinness and fibrosis degree of LF in LSCS patients. Functionally, knockdown of XIST drastically inhibited proliferation, anti-apoptosis, fibrosis and autophagy of HLF cells in vitro and suppressed hypertrophy and fibrosis of LF tissues in vivo. Intestinally, we uncovered that overexpression of XIST significantly promoted proliferation, anti-apoptosis and fibrosis ability of HLF cells by activating autophagy. Mechanistic studies illustrated that XIST directly medullated the VEGFA-mediated autophagy through sponging miR-302b-3p, thereby enhancing the development and progression of HLF. CONCLUSION: Our findings highlighted that the XIST/miR-302b-3p/VEGFA-mediated autophagy axis is involved in development and progression of HLF. At the same time, this study will complement the blank of lncRNA expression profiles in HLF, which laid the foundation for further exploration of the relationship between lncRNAs and HLF in the future.


Subject(s)
Ligamentum Flavum , MicroRNAs , RNA, Long Noncoding , Humans , Autophagy/genetics , Hypertrophy , MicroRNAs/genetics , RNA, Long Noncoding/genetics , Vascular Endothelial Growth Factor A/genetics
20.
Heliyon ; 9(5): e15826, 2023 May.
Article in English | MEDLINE | ID: mdl-37206002

ABSTRACT

Acute myeloid leukemia (AML) is a life-threatening aggressive malignancy of the bone marrow and has posed a great challenge to the clinic, due to a lack of fully understanding of the molecular mechanism. Histone deacetylase 1 (HDAC1) has been reported to be a therapeutic target for treating AML. Naringenin (Nar) may act as an anti-leukemic agent and suppress the expression of HDACs. However, the potential underlying mechanism of Nar in suppressing the activity of HDAC1 remains unclear. Here, we found that Nar induced the apoptosis, decreased the expression of lncRNA XIST and HDAC1, and increased the expression of microRNA-34a in HL60 cells. Sh-XIST transfection could induce cell apoptosis. On the contrary, the forced expression of XIST might reverse the biological actions of Nar. XIST could sponge miR-34a, which targeted to degrade HDAC1. The forced expression of HDAC1 could effectively reverse the effects of Nar. Thus, Nar can induce cell apoptosis by mediating the expression of lncRNA XIST/miR-34a/HDAC1 signaling in HL60 cells.

SELECTION OF CITATIONS
SEARCH DETAIL
...