ABSTRACT
High pedological and geological variability can trigger the formation of REE hotspots, causing a need to optimize the establishment of quality reference values (QRVs). Thus, we determined the background concentrations of REEs in the soils of an emerging Brazilian state and used a combination of Moran's I and indicator kriging to identify REE hotspots and determine QRVs. A total of 100 composite soil samples was collected at a 0.20 m depth to establish background concentrations, QRVs, and spatial distribution and to elaborate probability maps for REEs. The QRVs established for soils were the following (mg kg-1): La (27.21), Ce (57.26), Pr (10.49), Nd (24.29), Sm (4.75), Eu (0.90), Gd (4.22), Tb (0.82), Dy (1.54), Ho (0.38), Er (1.23), Yb (1.07), Lu (0.24), Y (10.65), and Sc (3.70). It was possible to draw attention to the Northwest and Southwest regions of the Rio Grande do Norte (RN) state, due to the formation of REE hotspots, indicated by Moran's I, and a high tendency to exceed the QRVs, confirmed by the indicator kriging. The high background concentrations and geochemical patterns for REEs showed that a single QRV for each REE and the entire state can neglect specific environmental characteristics and misrepresent the natural geochemistry of the soil. Thus, specific QRVs were established to optimize the monitoring of natural REE values by identifying hotspot areas. The criteria established here may be useful for other groups of potentially toxic elements, provided that observations meet the requirements of the spatial autocorrelation and kriging analyses. Graphical abstract.