Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 396
Filter
1.
Mikrochim Acta ; 191(11): 661, 2024 10 10.
Article in English | MEDLINE | ID: mdl-39387990

ABSTRACT

By combining boric acid-modified carbon dots (p-CDs) and alizarin red (ARS), a double emission probe p-CDs@ARS with fluorescence at 410 nm and 600 nm is designed for the detection of glyphosate. When Cu2+ is added, it binds with ARS to cause ARS release from p-CDs@ARS, which decreases the fluorescence at 600 nm. However, in the presence of glyphosate, glyphosate competes to the binding of Cu2+, releasing ARS to bind with p-CDs again. Therefore, the fluorescence of 600 nm recovers. Based on this, the fluorescence of 410 nm and 600 nm act as the reference and response signal, respectively, achieving the ratiometric fluorescence detection of glyphosate. The linear range of glyphosate detection is 0.5-50 µM with a limit of detection at 0.37 µM which is well below the maximum residue limit for glyphosate in food. When the probe is used to detect the glyphosate residue in Pearl River water and cucumber, the detection results are well consistent with those detected by HPLC. The established method based on p-CDs@ARS has the advantages that the assembly of ratiometric fluorescence probe is simple, and the detection speed is fast. Additionally, a typical INHIBIT logical system has been successfully constructed based on glyphosate, Cu2+, and the fluorescence signal of p-CDs@ARS.


Subject(s)
Anthraquinones , Boric Acids , Carbon , Fluorescent Dyes , Glycine , Glyphosate , Limit of Detection , Quantum Dots , Spectrometry, Fluorescence , Glycine/analogs & derivatives , Glycine/analysis , Glycine/chemistry , Boric Acids/chemistry , Fluorescent Dyes/chemistry , Carbon/chemistry , Quantum Dots/chemistry , Spectrometry, Fluorescence/methods , Anthraquinones/chemistry , Cucumis sativus/chemistry , Water Pollutants, Chemical/analysis , Herbicides/analysis , Copper/chemistry , Food Contamination/analysis
2.
Mater Today Bio ; 29: 101257, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39381266

ABSTRACT

Memristors are considered one of the most promising new-generation memory technologies due to their high integration density, fast read/write speeds, and ultra-low power consumption. Natural biomaterials have attracted interest in integrated circuits and electronics because of their environmental friendliness, sustainability, low cost, and excellent biocompatibility. In this study, a sustainable biomemristor with Ag/mugwort:PVDF/ITO structure was prepared using spin-coating and magnetron sputtering methods, which exhibited excellent durability, significant resistance switching (RS) behavior and unidirectional conduction properties when three metals were used as top electrode. By studying the conductivity mechanism of the device, a charge conduction model was established by the combination of F-N tunneling, redox, and complexation reaction. Finally, the novel logic gate circuits were constructed using the as-prepared memristor, and further memristor based encryption circuit using 3-8 decoder was innovatively designed, which can realize uniform rule encryption and decryption of medical information for data and medical images. Therefore, this work realizes the integration of memristor with traditional electronic technology and expands the applications of sustainable biomemristors in digital circuits, data encryption, and medical image security.

3.
ACS Appl Mater Interfaces ; 16(37): 49594-49601, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39230599

ABSTRACT

Covalent organic framework (COF) film with electrofluorochromic (EFC) and electrochromic (EC) properties has been synthesized by using triphenylamine-based monomers. The film exhibited a high maximum fluorescence contrast of 151 when subjected to a drive voltage of 0.75 V vs the Ag/AgCl electrode, causing the fluorescence to be quenched, which resulted in the EFC process's "fluorescence off" state. The switching times for the fluorescence on and off states were 0.51 and 7.79 s, respectively. Over the same voltage range, the COF film also displayed EC properties, achieving a contrast of 50.23% and a coloration efficiency of 297.4 cm2 C-1 at 532 nm, with switching times of 18.6 s for coloration and 0.7 s for bleaching. Notably, the quenched fluorescence of the COF film could be restored by adding dopamine as a reductant. This phenomenon enabled the implementation of a NAND logic gate using the applied potential as a physical input and dopamine addition as a chemical input. This study demonstrates the successful development of COF films with bifunctional EFC and EC properties, showcasing their potential for use in constructing advanced optoelectronic devices.

4.
J Colloid Interface Sci ; 678(Pt C): 430-440, 2024 Sep 14.
Article in English | MEDLINE | ID: mdl-39303561

ABSTRACT

While spatial and time-resolved anti-counterfeiting technologies have gained increasing attention owing to their excellent tunable photoluminescence, achieving high-security-level anti-counterfeiting remains a challenge. Herein, we developed a spatial-time-dual-resolved anti-counterfeiting system using zero-dimensional (0D) organic-inorganic Mn(II) metal halides: (EMMZ)2MnBr4 (named M-1, EMMZ=1-Ethyl-3-Methylimidazolium Bromide) and (EDMMZ)2MnBr4 (named M-2, EDMMZ=1-Ethyl-2,3-Dimethylimidazolium Bromide). M-1 shows a bright green emission with a quantum yield of 78 %. It undergoes a phase transformation from the crystalline to molten state with phosphorescence quenching at 350 K. Reversible phase and luminescent conversion was observed after cooling down for 15 s. Notably, M-2 exhibits green light emission similar to M-1 but undergoes phase conversion and phosphorescence quenching at 390 K, with reversible conversion observed after cooling down for 5 s. The photoluminescence switching mode of on(green)-off-on(green) can be achieved by temperature control, demonstrating excellent performance with short response times and ultra-high cyclic reversibility. By leveraging the different quenching temperatures and reversible PL conversion times of M-1 and M-2, we propose a spatial-time-dual-resolved photoluminescence (PL) switching system that combines M-1 and M-2. This system enables multi-fold tuning of the PL switch for encryption and decryption through cationic engineering strategies by modulating temperature and cooling time. This work presents a novel and feasible design strategy for advanced-level anti-counterfeiting technology based on a spatial-time-dual-resolved system.

5.
Chemphyschem ; : e202400672, 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39267598

ABSTRACT

Bacteriorhodopsin (bR) of purple membrane (PM) has increasing technical interests, particularly in photonic devices and bioelectronics. The present work has concerned with monitoring the temperature dependence of passive electric responses in-plane and out-of-plane of the membranes. Based on thermal properties observed orthogonally here for PM, a high-temperature intermediate of bR has been suggested to populate at around 60 °C, which may be ascribed to a molten globule-like state. This intermediate has been found to be enclosed between two reversible thermal transitions for PM. Large-scale turnover in the energy of activation, for these two thermal transitions, occurs steeply at such state at 60 °C, above which does bR reverse the sign of dielectric anisotropy (i.e. crossover) provided the operating frequency should be above the crossover frequency, at which the reversal occurs. No such crossover was found to occur below the crossover frequency, even above the crossover temperature (i.e. 60 °C). Likewise, no such crossover was found to occur below the crossover temperature, even above the crossover frequency. Relying on this reasoning, a logic gate operation may be declared implicating bR for bioelectronics and sense technological relevance. In addition, the results specify "dual frequency" as well as "dual temperature" characteristics to bacteriorhodopsin.

6.
Mol Ther ; 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39169622

ABSTRACT

Adoptive cell therapy using chimeric antigen receptor (CAR) T cells has proven to be lifesaving for many cancer patients. However, its therapeutic efficacy has been limited in solid tumors. One key factor for this is cancer-associated fibroblasts (CAFs) that modulate the tumor microenvironment (TME) to inhibit T cell infiltration and induce "T cell dysfunction." Additionally, the sparsity of tumor-specific antigens (TSA) and expression of CAR-directed tumor-associated antigens (TAA) on normal tissues often results in "on-target off-tumor" cytotoxicity, raising safety concerns. Using TALEN-mediated gene editing, we present here an innovative CAR T cell engineering strategy to overcome these challenges. Our allogeneic "Smart CAR T cells" are designed to express a constitutive CAR, targeting FAP+ CAFs in solid tumors. Additionally, a second CAR targeting a TAA such as mesothelin is specifically integrated at a TCR signaling-inducible locus like PDCD1. FAPCAR-mediated CAF targeting induces expression of the mesothelin CAR, establishing an IF/THEN-gated circuit sensitive to dual antigen sensing. Using this approach, we observe enhanced anti-tumor cytotoxicity, while limiting "on-target off-tumor" toxicity. Our study thus demonstrates TALEN-mediated gene editing capabilities for design of allogeneic IF/THEN-gated dual CAR T cells that efficiently target immunotherapy-recalcitrant solid tumors while mitigating potential safety risks, encouraging clinical development of this strategy.

7.
Chempluschem ; : e202400376, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39158125

ABSTRACT

In this study, two chemosensors, N5R1 and N5R2, based on 5-(4-nitrophenyl)-2-furaldehyde, with varying electron-withdrawing groups, were synthesized and effectively employed for the colorimetric selective detection of arsenite anions in a DMSO/H2O solvent mixture (8:2, v/v). Chemosensors N5R1 and N5R2 exhibited a distinct color change upon binding with arsenite, accompanied by a spectral shift toward the near-infrared region (Δλmax exceeding 200 nm). These chemosensors established stability between a pH range 6-12. Among them, N5R2 displayed the lowest detection limit of 17.63 ppb with a high binding constant of 2.6163×105 M⁻1 for arsenite. The binding mechanism involved initial hydrogen bonding between the NH binding site and the arsenite anion, followed by deprotonation and an intramolecular charge transfer (ICT) mechanism. The mechanism was confirmed through UV and 1H NMR titrations, cyclic voltammetric studies, and theoretical calculations. The interactions between the sensor and arsenite anions were further analyzed using global reactivity parameters (GRPs). Practical applications were demonstrated through the utilization of test strips and molecular logic gates. Real water samples, honey, and milk samples were successfully analyzed by both chemosensors for the sensing of arsenite.

8.
ACS Synth Biol ; 13(8): 2587-2599, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39110782

ABSTRACT

Genetic code expansion (GCE) is a powerful strategy that expands the genetic code of an organism for incorporating noncanonical amino acids into proteins using engineered tRNAs and aminoacyl-tRNA synthetases (aaRSs). While GCE has opened up new possibilities for synthetic biology, little is known about the potential side effects of exogenous aaRS/tRNA pairs. In this study, we investigated the impact of exogenous aaRS and amber suppressor tRNA on gene expression in Escherichia coli. We discovered that in DH10ß ΔcyaA, transformed with the F1RP/F2P two-hybrid system, the high consumption rate of cellular adenosine triphosphate by exogenous aaRS/tRNA at elevated temperatures induces temperature sensitivity in the expression of genes regulated by the cyclic AMP receptor protein (CRP). We harnessed this temperature sensitivity to create a novel biological AND gate in E. coli, responsive to both p-benzoylphenylalanine (BzF) and low temperature, using a BzF-dependent variant of E. coli chorismate mutase and split subunits of Bordetella pertussis adenylate cyclase. Our study provides new insights into the unexpected effects of exogenous aaRS/tRNA pairs and offers a new approach for constructing a biological logic gate.


Subject(s)
Amino Acids , Amino Acyl-tRNA Synthetases , Escherichia coli , RNA, Transfer , Temperature , Escherichia coli/genetics , Escherichia coli/metabolism , Amino Acyl-tRNA Synthetases/genetics , Amino Acyl-tRNA Synthetases/metabolism , Amino Acids/metabolism , RNA, Transfer/genetics , RNA, Transfer/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Genetic Code , Cyclic AMP Receptor Protein/metabolism , Cyclic AMP Receptor Protein/genetics , Synthetic Biology/methods , Chorismate Mutase/genetics , Chorismate Mutase/metabolism , Phenylalanine/metabolism , Phenylalanine/analogs & derivatives , Adenosine Triphosphate/metabolism , Gene Expression Regulation, Bacterial , Benzophenones
9.
Nanomaterials (Basel) ; 14(15)2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39120423

ABSTRACT

Optical logic devices are essential functional devices for achieving optical signal processing. In this study, we design an ultra-compact (4.92 × 2.52 µm2) reconfigurable optical logic gate by using inverse design method with DBS algorithm based on Sb2Se3-SOI integrated platform. By selecting different amorphous/crystalline distributions of Sb2Se3 via programmable electrical triggers, the designed structure can switch between OR, XOR, NOT or AND logic gate. This structure works well for all four logic functions in the wavelength range of 1540-1560 nm. Especially at the wavelength of 1550 nm, the Contrast Ratios for XOR, NOT and AND logic gate are 13.77 dB, 11.69 dB and 3.01 dB, respectively, indicating good logical judgment ability of the device. Our design is robust to a certain range of fabrication imperfections. Even if performance weakens due to deviations, improvements can be obtained by rearranging the configurations of Sb2Se3 without reproducing the whole device.

10.
Cytometry A ; 2024 Aug 17.
Article in English | MEDLINE | ID: mdl-39152710

ABSTRACT

Logic-gated engineered cells are an emerging therapeutic modality that can take advantage of molecular profiles to focus medical interventions on specific tissues in the body. However, the increased complexity of these engineered systems may pose a challenge for prediction and optimization of their behavior. Here we describe the design and testing of a flow cytometry-based screening system to rapidly select functional inhibitory receptors from a pooled library of candidate constructs. In proof-of-concept experiments, this approach identifies inhibitory receptors that can operate as NOT gates when paired with activating receptors. The method may be used to generate large datasets to train machine learning models to better predict and optimize the function of logic-gated cell therapeutics.

11.
Biomimetics (Basel) ; 9(7)2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39056873

ABSTRACT

A chemical reaction and its reaction environment are intrinsically linked, especially within the confines of narrow cellular spaces. Traditional models of chemical reactions often use differential equations with concentration as the primary variable, neglecting the density heterogeneity in the solution and the interaction between the reaction and its environment. We model the interaction between a chemical reaction and its environment within a geometrically confined space, such as inside a cell, by representing the environment through the size of molecular clusters. In the absence of fluctuations, the interplay between cluster size changes and the activation and inactivation of molecules induces oscillations. However, in unstable environments, the system reaches a fluctuating steady state. When an enzyme is introduced to this steady state, oscillations akin to action potential spike trains emerge. We examine the behavior of these spike trains and demonstrate that they can be used to implement logic gates. We discuss the oscillations and computations that arise from the interaction between a chemical reaction and its environment, exploring their potential for contributing to chemical intelligence.

12.
Adv Mater ; 36(38): e2403538, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39040000

ABSTRACT

Visuomorphic computing aims to simulate and potentially surpass the human retina by mimicking biological visual perception with an artificial retina. Despite significant progress, challenges persist in perceiving complex interactive environments. Negative photoconductivity transistors (NPTs) mimic synaptic behavior by achieving adjustable positive photoconductivity (PPC) and negative photoconductivity (NPC), simulating "excitation" and "inhibition" akin to sensory cell signals. In complex interactive environments, NPTs are desired for visuomorphic computing that can achieve a better sense of information, lower power consumption, and reduce hardware complexity. In this review, it is started by introducing the development process of NPTs, while placing a strong emphasis on the device structures, working mechanisms, and key performance parameters. The common material systems employed in NPTs based on their functions are then summarized. Moreover, it is proceeded to summarize the noteworthy applications of NPTs in optoelectronic devices, including advanced multibit nonvolatile memory, optoelectronic logic gates, optical encryption, and visual perception. Finally, the challenges and prospects that lie ahead in the ongoing development of NPTs are addressed, offering valuable insights into their applications in optoelectronics and a comprehensive understanding of their significance.

13.
Int J Biol Macromol ; 276(Pt 1): 133915, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39019374

ABSTRACT

The low solubility of chitosan (CS) imposes adverse effects on its application. In this work, one of the aims is to improve the water solubility of CS. By introducing water-soluble side chains to CS, this aim was achieved. Besides, fluorescent moieties were incorporated into the side chains, the fluorescent copolymers were endowed with Cr3+ and Cu2+ ions recognition ability. Firstly, a reversible addition-fragmentation chain transfer polymerization (RAFT) reagent with naphthalimide units and CC groups was prepared. Water-soluble monomer methyl acrylic acid (MAA) was employed in the RAFT polymerization. Thus, water-soluble polymer with fluorescent unit and -C ≡ C on both ends of the polymer was obtained. They were introduced into CS, and the CS-based fluorescent copolymers were obtained eventually. The amount of MAA introduced could be tuned to obtain three side chains of different lengths. It was found that the more MAA was introduced, the better the solubility of CS-TP was. The detection limits (LOD) of Cr3+ and Cu2+ were 44.6 nM and 54.5 nM, respectively. The detection of Cr3+ and Cu2+ ions is further combined with a mobile APP to realize real-time, portable, and visual detection. And the application in the logic gate, a new detection platform, is prepared.


Subject(s)
Chitosan , Chromium , Copper , Fluorescent Dyes , Solubility , Water , Chitosan/chemistry , Copper/chemistry , Copper/analysis , Chromium/analysis , Chromium/chemistry , Fluorescent Dyes/chemistry , Water/chemistry , Limit of Detection , Ions , Polymerization , Spectrometry, Fluorescence/methods
14.
Spectrochim Acta A Mol Biomol Spectrosc ; 322: 124734, 2024 Dec 05.
Article in English | MEDLINE | ID: mdl-38986255

ABSTRACT

A ninhydrin-based colorimetric chemosensor (LH) was synthesized using 3-hydroxy-2-naphthoic hydrazide and 11H-indeno[1,2-b]quinoxalin-11-one. It was characterized by spectroscopic and single crystal X-ray diffraction techniques. In a semi-aqueous (MeOH/HEPES) system, LH displayed a characteristic chromogenic change from colorless to yellow upon adding Cu2+ ion, with the appearance of a new peak at λmax = 460 nm. A 1:1 binding stoichiometry between LH and Cu2+ ion has been found, with LOD = 2.3 µM (145 ppb) and LOQ = 8 µM (504 ppb). Based on experimental results the formula of [Cu(L)Cl(H2O)2] (1) was assigned and this in-situ generated 1 was found to exhibit a discoloration of upon gradual addition of cysteine (LOD = 60 nM) as well as ATP (LOD = 130 nM) having 1:2 and 1:1 stoichiometry respectively. The LH was useful for recognition of Cu2+ ion in real water samples and on filter paper strips. A two-input-two-output logic gate circuitry was also constructed by employing 1 and cysteine. The DFT/TDDFT calculations performed on LH and 1 were consistent with experimental findings. The binding affinity of LH towards HSA and BSA were determined with HSA having greater affinity than BSA, which was also supported by theoretical calculations.


Subject(s)
Adenosine Triphosphate , Colorimetry , Copper , Cysteine , Ninhydrin , Copper/analysis , Colorimetry/methods , Ninhydrin/chemistry , Cysteine/analysis , Adenosine Triphosphate/analysis , Limit of Detection , Models, Molecular , Naphthalenes/chemistry
15.
Spectrochim Acta A Mol Biomol Spectrosc ; 322: 124806, 2024 Dec 05.
Article in English | MEDLINE | ID: mdl-39018674

ABSTRACT

Dimethylaniline-substituted aza-BODIPY dyes (DA, DM, DP) were designed and synthesized aiming for ion detection. The Zn2+ recognition ability was found in all compounds and the binding mechanism was possibly via dimethylaniline sites linked to the aza-BODIPY core. Upon Zn2+ addition, the new absorption band and the color change occurred due to the altered charge transfer of the adducts. The custom-made colorimeter was successfully integrated into the dye's application, demonstrating a good linear relationship between resistance values and Zn2+ concentration. The chromophore test strips were fabricated and exhibited distinct color changes upon aqueous Zn2+ exposure. The compound DA also exhibits logical behavior with DA-Zn2+-Cu2+ system. In terms of environmental hazards, the compounds exhibited no adverse effect on Pseudomonas putida at the concentration level of 0.2 mg/mL. These findings indicated that all synthesized aza-BODIPYs might be suitable for chemosensor probes for Zn2+ detection with possibly low environmental risk.

16.
Talanta ; 278: 126538, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39002264

ABSTRACT

Molecular beacons (MBs) based on hairpin-shaped oligonucleotides are captivating owing to their capability to enable effective real-time detection of cytosolic mRNA in living cells. However, DNase in the nucleus and lysosome could induce the degradation of oligonucleotides in MBs, leading to the generation of false-positive signals. Herein, a graphene oxide (GO) nanosheet was applied as a nanocarrier for MBs to greatly enhance the anti-interference of the easily designed nanoprobe. Advantageously, the absorption capacity of GO for MBs increased with the decrease in pH values, providing the MB-GO nanoprobe with the ability to detect the expression of cytosolic Ki-67 mRNA without interference from DNase Ⅱ in lysosomes. Moreover, the size of GO nanosheets was considerably higher than that of the nuclear pore complex (NPC), which prevented nanoprobes from transition through the NPCs, thereby avoiding the generation of false-positive signals in the nucleus. Altogether, the present work affords a convenient approach for the successful detection of Ki-67 mRNA expression in the cytosol without interference from DNase Ⅰ/Ⅱ in the nucleus/lysosome, which may be potentially further applied for the detection of other cytosolic RNAs.


Subject(s)
Graphite , Ki-67 Antigen , RNA, Messenger , Graphite/chemistry , Ki-67 Antigen/analysis , Ki-67 Antigen/metabolism , Humans , RNA, Messenger/analysis , Nanostructures/chemistry
17.
ACS Appl Mater Interfaces ; 16(31): 41072-41079, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39046366

ABSTRACT

As the fields of photonics and information technology develop, a lot of novel applications based on VO2 material, such as optoelectronic computing and information encryption, have been developed. While the performance of these devices was not only closely associated with the VO2 phase transition properties but also depended on their dimensional characteristics. In the current study, we conducted the dimension-controlled vanadium dioxide (VO2) film growth, resulting in the epitaxial 2-dimensional (2D) VO2 film and well-distributed 3-dimensional (3D) VO2 crystal film deposition, respectively. It was revealed that, unlike the 2D film, the pronounced localized surface plasmon resonance dominated the near-infrared spectrum across the phase transition for the 3D VO2 film due to the naturally formed meta-surface structure, which showed a transmittance valley in the infrared spectrum after metallization. Based on this distinct infrared spectrum feature in the 3D VO2 film, we proposed an optoelectronic logic gate controlled by the input voltage and the probing Vis/IR light. By detecting the transmittance states of the probing light with different wavelengths, we achieved multistate encoding functions and demonstrated the information encryption application. This new conception device also showed great potential for some other applications such as optoelectronic coupled computing, information encryption, and optical near-field sensing computing.

18.
Macromol Rapid Commun ; : e2400359, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38897179

ABSTRACT

Understanding the transport of nanoparticles from and within hydrogels is a key issue for the design of nanocomposite hydrogels for drug delivery systems and tissue engineering. To investigate the translocation of nanocarriers from and within hydrogel networks triggered by changes of temperature, ultrasmall (8 nm) and small (80 nm) silica nanocapsules are embedded in temperature-responsive hydrogels and non-responsive hydrogels. The ultrasmall silica nanocapsules are released from temperature-responsive hydrogels to water or transported to other hydrogels upon direct activation by heating or indirect activation by Joule heating; while, they are not released from non-responsive hydrogel. Programmable transport of nanocarriers from and in hydrogels provides insights for the development of complex biomedical devices and soft robotics.

19.
Front Oncol ; 14: 1399544, 2024.
Article in English | MEDLINE | ID: mdl-38919533

ABSTRACT

Recent years have seen a marked increase in research on chimeric antigen receptor T (CAR-T) cells, with specific relevance to the treatment of hematological malignancies. Here, the structural principles, iterative processes, and target selection of CAR-T cells for therapeutic applications are described in detail, as well as the challenges faced in the treatment of solid tumors and hematological malignancies. These challenges include insufficient infiltration of cells, off-target effects, cytokine release syndrome, and tumor lysis syndrome. In addition, directions in the iterative development of CAR-T cell therapy are discussed, including modifications of CAR-T cell structures, improvements in specificity using multi-targets and novel targets, the use of Boolean logic gates to minimize off-target effects and control toxicity, and the adoption of additional protection mechanisms to improve the durability of CAR-T cell treatment. This review provides ideas and strategies for the development of CAR-T cell therapy through an in-depth exploration of the underlying mechanisms of action of CAR-T cells and their potential for innovative modification.

20.
Spectrochim Acta A Mol Biomol Spectrosc ; 319: 124512, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38823238

ABSTRACT

The present work represents a Fluorescence Resonance Energy Transfer (FRET) based sensing method for detecting Gunshot Residue (GSR) components. Two laser dyes Acf and RhB have been used as donor and acceptor respectively in the FRET pair. The real sample was collected after test firing in a forensic science laboratory. On the other hand, a standard GSR solution has been prepared in the laboratory. For the preparation of standard GSR solutions, we used the water solutions of the salts BaCl2, SbCl3, and Pb(NO3)2. The FRET efficiency was measured between Acf and RhB to sense the presence of GSR components (Pb+2, Ba+2, and Sb+3) in both real sample and standard solution by mixing the salts in aqueous solution. It has been observed that the FRET efficiency systematically decreases in the presence of GSR components. To amplify the FRET efficiency of the dye pair, inorganic clay dispersion (laponite) was used. The enhancement in FRET efficiency represents a better sensitivity of the proposed sensor. The current sensor is useful for the quantification of concentrations of the GSR components in a real sample.

SELECTION OF CITATIONS
SEARCH DETAIL