ABSTRACT
OBJECTIVE: To use cerebral near-infrared spectroscopy (NIRS) to quantify occult cerebral hypoxia across respiratory support modes in preterm infants. STUDY DESIGN: In this prospective, longitudinal, observational study, infants ≤32 weeks gestation underwent serial pulse oximetry (oxygen saturation [SpO2]) and cerebral NIRS monitoring (4-6 hours per session) following a standardized recording schedule (daily for 2 weeks, every other day for 2 weeks, then weekly until 35 weeks corrected gestational age). Four calculations were made: median cerebral saturation, median cerebral hypoxia burden (proportion of NIRS samples below the hypoxia threshold [<67%]), median systemic saturation, and median systemic hypoxia burden (proportion of SpO2 samples below the desaturation threshold [<85%]). During each recording session, respiratory support mode was noted (room air, low-flow nasal cannula, high-flow nasal cannula, noninvasive positive pressure ventilation, continuous positive airway pressure, and invasive ventilation). RESULTS: There were 1013 recording sessions made from 174 infants with a median length of 6.9 hours. Although the systemic (SpO2) hypoxia burden was significantly greater for infants on the highest respiratory support (invasive and noninvasive positive pressure ventilation), the cerebral hypoxia burden was significantly greater during recording sessions made on the lowest respiratory support (8% for room air; 29% for low-flow nasal cannula). CONCLUSIONS: Premature infants on the highest levels of respiratory support have less cerebral hypoxia than those on lower respiratory support. These results raise concern about unrecognized cerebral hypoxia during lower acuity periods of neonatal intensive care unit hospitalization and adverse outcomes.
Subject(s)
Hypoxia, Brain , Infant, Premature , Infant , Infant, Newborn , Humans , Prospective Studies , Incidence , Hypoxia, Brain/etiology , Hypoxia/etiology , Oximetry/methods , Continuous Positive Airway Pressure/adverse effects , OxygenABSTRACT
Considering the worrying emergence of multidrug resistance, including in animal husbandry and especially in food-producing animals, the need to detect antimicrobial resistance strains in poultry environments is relevant, mainly considering a One Health approach. Thus, this study aimed to conduct longitudinal monitoring of antimicrobial resistance in broiler chicken farms, with an emphasis on evaluating the frequency of resistance to fosfomycin and ß-lactams. Escherichia coli was isolated from broiler chicken farms (cloacal swabs, meconium, poultry feed, water, poultry litter, and Alphitobius diaperinus) in northern Paraná from 2019 to 2020 during three periods: the first period (1st days of life), the second period (20th to 25th days of life), and third period (40th to 42nd days of life). Antibiogram tests and the detection of phenotypic extended-spectrum ß-lactamase (ESBL) were performed, and they were confirmed by seaching for genes from the bla CTX-M group. The other resistance genes searched were mcr-1 and fosA3. Some ESBL bla CTX-M-1 group strains were selected for ESBL identification by sequencing and enterobacterial repetitive intergenic consensus-polymerase chain reaction analysis. To determine the transferability of the bla CTX-M-1- and fosA3-carrying plasmids, strains were subjected to conjugation experiments. A total of 507 E. coli were analyzed: 360 from cloacal swabs, 24 from meconium samples, 3 from poultry feed samples, 18 from water samples, 69 from poultry litter samples, and 33 from A. diaperinus samples. Among the strain isolate, 80% (406/507) were multidrug-resistant (MDR), and 51% (260/507) were ESBL-positive, with the bla CTX-M-1 group being the most frequent. For the fosA3 gene, 68% (344/507) of the strains isolated were positive, deserves to be highlighted E. coli isolated from day-old chickens (OR 6.34, CI 2.34-17.17), when compared with strains isolated from other origins (poultry litter, A. diaperinus, water, and poultry feed). This work alerts us to the high frequency of the fosA3 gene correlated with the CTX-M-1 group (OR 3.57, CI 95% 2.7-4.72, p < 0.05), especially the bla CTX-M-55 gene, in broiler chickens. This profile was observed mainly in day-old chicken, with a high percentage of E. coli that were MDR. The findings emphasize the importance of conducting longitudinal monitoring to detect the primary risk points during poultry production.