Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Comput Struct Biotechnol J ; 23: 648-658, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38283853

ABSTRACT

Lung cancer's mortality is predominantly linked to post-chemotherapy recurrence, driven by the reactivation of dormant cancer cells. Despite the critical role of these reactivated cells in cancer recurrence and metastasis, the molecular mechanisms governing their therapeutic selection remain poorly understood. In this study, we conducted an integrative analysis by combining PacBio single molecule real-time (SMRT) sequencing with short reads Illumina RNA-seq. Our study revealed that cisplatin-induced dormant and reactivated cancer cells exhibited a noteworthy reduction in gene transcripts and alternative splicing events. Particularly, the differential alternative splicing events were found to be overlapping with the differentially expression genes and enriched in genes related to cell cycle and cell division. Utilizing ENCORI database and correlation analysis, we identified key splicing factors, including SRSF7, SRSF3, PRPF8, and HNRNPC, as well as RNA helicase such as EIF4A3, DDX39A, DDX11, and BRIP1, which were associated with the observed reduction in alternative splicing and subsequent decrease in gene expression. Our study demonstrated that lung cancer cells reduce gene transcripts through diminished alternative splicing events mediated by specific splicing factors and RNA helicase in response to the chemotherapeutic stress. These findings provide insights into the molecular mechanisms underlying the therapeutic selection and reactivation of dormant cancer cells. This discovery opens a potential avenue for the development of therapeutic strategies aimed at preventing cancer recurrence following chemotherapy.

2.
Biotechnol Appl Biochem ; 70(6): 2052-2068, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37731306

ABSTRACT

Tetrahydrobiopterin (BH4) is an essential biological cofactor and a derivative of pterin which is considered potent anticancer agents. In continuation of our previous study on the identification of BH4 from cyanide-degrading Bacillus pumilus, the present study focuses on evaluating the anticancer properties of BH4 on A549, a human lung adenocarcinoma. Anticancer activity analysis shows that BH4 inhibited A549 cell growth after 24 h of incubation with 0.02 mg/mL. In acridine orange/ethidium bromide staining, BH4-treated A549 cells showed apoptotic morphology. BH4 treatment caused cell cycle arrest at G0/G1 phase compared to control cells. BH4 augmented p53 expression in alveolar cancer cells by downregulating MDM2 levels. There was downregulation of casp-3 and upregulation of iNOS gene in BH4-treated A549 cells. Further, docking studies indicated that BH4 had significant interactions with the above proteins affirming the apoptosis mechanism. Thus, BH4 could be considered a potential anticancer drug.


Subject(s)
Adenocarcinoma of Lung , Antineoplastic Agents , Bacillus pumilus , Lung Neoplasms , Humans , Cyanides/pharmacology , Cyanides/therapeutic use , Cell Line, Tumor , Adenocarcinoma of Lung/drug therapy , Apoptosis , Antineoplastic Agents/pharmacology , Cell Proliferation , Lung Neoplasms/metabolism
3.
Open Med (Wars) ; 18(1): 20230740, 2023.
Article in English | MEDLINE | ID: mdl-37465347

ABSTRACT

The goal of this study was to demonstrate the functions and specific mechanism of long non-coding RNA (lncRNA) GNAS-AS1 in lung adenocarcinoma. Levels of lncRNA GNAS-AS1, microRNA (miR)-433-3p, and Rab3A were assessed by quantitative real-time PCR (qRT-PCR). The target-binding sites of lncRNA GNAS-AS1, miR-433-3p, and Rab3A were predicted and confirmed by bioinformatics tool (StarBase) and a dual-luciferase reporter system. Cell proliferation and apoptosis were checked using MTT and flow cytometry, respectively. Additionally, the levels of apoptosis-related and epithelial-mesenchymal transition (EMT)-associated genes in A549 cells were analyzed by qRT-PCR and western blot. We found that lncRNA GNAS-AS1 was upregulated, miR-433-3p was low-expressed, and Rab3A was overexpressed in lung adenocarcinoma tissues and cell lines. LncRNA GNAS-AS1 interacted with miR-433-3p and negatively regulated miR-433-3p levels. Rab3A was a direct target of miR-433-3p. Downregulation of lncRNA GNAS-AS1 remarkably suppressed cell proliferation, promoted cell apoptosis, decreased B-cell lymphoma-2 (Bcl-2) expression, enhanced the Bcl-2-Associated X (Bax) level, promoted E-cadherin expression, and reduced N-cadherin and Rab3A levels. However, the miR-433-3p inhibitor reversed all these findings. Similarly, the inhibitory effects of miR-433-3p mimic on A549 cells were reversed by the Rab3A-plasmid. In conclusion, lncRNA GNAS-AS1 downregulation suppressed lung adenocarcinoma cell proliferation and EMT through the miR-433-3p/Rab3A axis.

4.
Biomol Ther (Seoul) ; 31(4): 446-455, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37188656

ABSTRACT

The mechanistic functions of 3-deoxysappanchalcone (3-DSC), a chalcone compound known to have many pharmacological effects on lung cancer, have not yet been elucidated. In this study, we identified the comprehensive anti-cancer mechanism of 3-DSC, which targets EGFR and MET kinase in drug-resistant lung cancer cells. 3-DSC directly targets both EGFR and MET, thereby inhibiting the growth of drug-resistant lung cancer cells. Mechanistically, 3-DSC induced cell cycle arrest by modulating cell cycle regulatory proteins, including cyclin B1, cdc2, and p27. In addition, concomitant EGFR downstream signaling proteins such as MET, AKT, and ERK were affected by 3-DSC and contributed to the inhibition of cancer cell growth. Furthermore, our results show that 3-DSC increased redox homeostasis disruption, ER stress, mitochondrial depolarization, and caspase activation in gefitinib-resistant lung cancer cells, thereby abrogating cancer cell growth. 3-DSC induced apoptotic cell death which is regulated by Mcl-1, Bax, Apaf-1, and PARP in gefitinib-resistant lung cancer cells. 3-DSC also initiated the activation of caspases, and the pan-caspase inhibitor, Z-VAD-FMK, abrogated 3-DSC induced-apoptosis in lung cancer cells. These data imply that 3-DSC mainly increased mitochondria-associated intrinsic apoptosis in lung cancer cells to reduce lung cancer cell growth. Overall, 3-DSC inhibited the growth of drug-resistant lung cancer cells by simultaneously targeting EGFR and MET, which exerted anti-cancer effects through cell cycle arrest, mitochondrial homeostasis collapse, and increased ROS generation, eventually triggering anticancer mechanisms. 3-DSC could potentially be used as an effective anti-cancer strategy to overcome EGFR and MET target drug-resistant lung cancer.

5.
J Biomater Sci Polym Ed ; 34(14): 1981-1999, 2023 10.
Article in English | MEDLINE | ID: mdl-37071065

ABSTRACT

Tumor-associated macrophages and monocytes are the major stromal cell types found in the tumor immune microenvironment (TIME), which modulates tumor progression, invasion, and chemoresistance. To address the need for an in vitro three-dimensional tumor model for understanding the complex cellular interactions within the TIME, we propose a TIME-mimetic co-culture matrix composed of photo-crosslinked poly(ethylene glycol) hydrogels mimicking the characteristics of the tumor and stroma. Desmoplasia-mimetic microgels encapsulating lung adenocarcinoma cells (A549) were embedded with monocyte- or macrophage-type U937 cells in normal stroma-mimetic hydrogel, increasing the proximity between the two cell types. By modulating the proteolytic degradability of the hydrogels, we could separate different cell types with high purities for use in orthogonal assays. In addition, we demonstrated that U937 cells had distinct influences on A549 cell death depending on their activation states (i.e. monocyte, M0, or M1 phenotype). M1 macrophages suppressed tumor growth and increased the susceptibility of A549 cells to cisplatin. In contrast, monocytes upregulated cancer stem cell markers (OCT4, SOX2, and SHH) of A549 cells, showing M2-like features, such as downregulated expression of proinflammatory markers (IL6 and TNFα). These findings suggest that this co-culture system is potentially used for investigation of heterotypic cellular interactions in the TIME.


The developed co-culture model successfully reproduces complex tumor immune microenvironment.The model is composed of tumor- and stroma-mimetic matrices containing tumor and immune cells.Sequential matrix degradation enabled the independent cell collection.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Humans , Coculture Techniques , Macrophages , Biocompatible Materials , Hydrogels , Tumor Microenvironment
6.
Front Pharmacol ; 14: 1135601, 2023.
Article in English | MEDLINE | ID: mdl-36937843

ABSTRACT

Introduction: Lung cancer, one of the most frequent malignancies, has a high death rate and an increased number of new cases globally. Ginkgo biloba has been used for many years in the treatment of lung cancer. Ginkgetin is the key active ingredient extracted from Ginkgo biloba. However, the mechanism by which ginkgetin inhibits the invasive metastasis of lung cancer is unclear. Methods: We used a network pharmacology approach to obtain the molecular mechanism by which ginkgetin inhibits lung cancer metastasis. Then we analyzed potential target proteins between ginkgetin and lung cancer. Finally, we validated with molecular docking and experimental validation. Results: By analyzing the intersecting genes of lung cancer and ginkgetin, there were 79 intersecting genes, which were mainly involved in the positive regulation of cell migration, with the cancer pathway being one of the most enriched pathways. The results of in vitro experiments showed that GK had a large inhibitory effect on cell invasion and metastasis of A549 and H1299. In vivo animals GK had a great inhibitory effect on metastasis of LLC. Conclusion: This study identified the potential related GK molecular targets and signaling pathways in treating human lung cancer using network pharmacological approaches. Experiments confirmed that GK inhibits the Akt/GSK-3ß/Snail and Wnt/ß-catenin cascade initiation in A549, H1299 and LLC cells, preventing metastasis. This study's results align with the hypotheses derived from the network pharmacology analysis.

7.
Biotechnol Genet Eng Rev ; : 1-22, 2023 Mar 30.
Article in English | MEDLINE | ID: mdl-36994673

ABSTRACT

As a cancer with the highest incidence in recent years, lung cancer is mainly composed of three diseases: non-small cell lung cancer, small cell lung cancer and neuroendocrine tumor. The morbidity and mortality of this malignant tumor are the highest in both male and female populations worldwide. In my country, lung cancer has become the most common cancer disease and the leading cause of cancer death, so it is extremely important to find lung cancer therapeutic targets. Based on previous studies, we speculated that the TLR4-Myd88-NFκB pathway may be involved in hmgb1-induced EMT in A549 cells, and daphnetin may also inhibit hmgb1-induced EMT through the TLR4-Myd88-NFκB pathway in A549 cells, but related studies have not linked it to hmgb1-induced EMT. Therefore, the innovation of this study is to test these two conjectures and analyze how daphnetin affects the epithelial-mesenchymal transition (EMT) mechanism induced by HMGB1 in human lung adenocarcinoma cells (A549 cell line), aiming at lung adenocarcinoma cells, foundation for clinical treatment. The proliferation rate and the migrating cell number presented an obvious decrease in the HMGB1+TLR4-shRNA group and the HMGB1+daphnetin group relative to the HMGB1 group (P < 0.0001). The intracellular expression of TLR4, Myd88, NFκB, vimentin and snail1 proteins were significantly decreased (P < 0.001), while that of E-cadherin presented a remarkable increase (P < 0.001) in the HMGB1+TLR4-shRNA and HMGB1+daphnetin group compared with the HMGB1 group. TLR4-MyD88-NFκB pathway is associated with HMGB1-induced EMT in A549 cells. Daphnetin had an inhibitory effect on HMGB1-induced EMT via the TLR4-Myd88-NF-κB pathway in A549 cells.

8.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-986727

ABSTRACT

Objective To investigate the effect of the SMAC gene on paclitaxel sensitivity and cellular activity in lung adenocarcinoma cells based on the caspase-3/Bcl-2/Bax signaling pathway. Methods A paclitaxel-resistant cell line A549/Taxol was established for lung adenocarcinoma, and the cells were divided into four following groups: pcDNA-NC (transfected with pcDNA-NC blank vector), pcDNA-SMAC (transfected with pcDNA-SMAC vector), siRNA-NC (transfected with siRNA-NC empty virus vector), and siRNA-SMAC groups (transfected with siRNA-SMAC lentiviral vector). The SMAC mRNA expression in cells was detected by qRT-PCR; cell sensitivity was detected by MTT; cell proliferation ability was detected by cloning assay; cell invasion ability was detected by Transwell; apoptosis ability was detected by flow cytometry assay; and caspase-3, Bcl-2 and Bax protein expression in cells were detected by Western blot analysis. Results The SMAC mRNA expression was significantly lower in A549 cells compared with BEAS-2B cells (P < 0.05). The SMAC mRNA expression was significantly higher in the pcDNA-SMAC group than that in the pcDNA-NC group cells (P < 0.05). The SMAC mRNA expression was significantly lower in the cells of the siRNA-SMAC group (P < 0.05) than that in the siRNA-NC group. The SMAC mRNA expression was significantly lower in the cells of the siRNA-SMAC group (P < 0.05) than in the siRNA-NC group. Compared with the pcDNA-NC group, the cell IC50, cell clone number, cell invasion ability, and Bcl-2 protein and Bcl-2/Bax ratio were significantly lower in the pcDNA-SMAC group, the cell resistance index reversal was 2.51-fold, and the apoptosis ability and caspase-3, as well as Bax protein expression, were significantly higher (P < 0.05). Compared with the siRNA-NC group, cell IC50, cell clone number, cell invasion ability, and Bcl-2 protein and Bcl-2/Bax ratio were significantly higher in the siRNA-SMAC group, and apoptosis ability and caspase-3 and Bax protein expression were significantly lower (P < 0.05). Conclusion High expression of SMAC increases paclitaxel sensitivity, inhibits cell growth and invasion, promotes apoptosis in lung adenocarcinoma cells, and has a regulatory effect on the caspase-3/Bcl-2/Bax signaling pathway.

9.
Tissue Cell ; 79: 101950, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36274350

ABSTRACT

Lung cancer is the most common cancer and one of the main causes of cancer-related deaths, presenting in most cases as metastatic disease. Given the frequent gene mutation and/or signaling deregulation in lung adenocarcinoma, identifying novel factors or agents that target these signaling pathways may be promising strategies for lung adenocarcinoma therapy. Herein, we identified inhibitor of DNA binding 2 (ID2) as an aberrantly downregulated gene in lung adenocarcinoma. ID2 overexpression not only suppressed the viability, colony formation ability, and migration ability of lung adenocarcinoma cells but also decreased the protein levels of N-cadherin, MMP2, MMP9 and the phosphorylation levels of AKT and mTOR. The effects of PI3K/AKT/mTOR signaling agonist on lung adenocarcinoma cells were opposite to those of ID2 overexpression, partially reversing the effects of ID2 overexpression. In these experimental tissue samples, ID2 protein levels and mRNA expression were also down-regulated compared with those in adjacent non-cancerous tissues. Altogether, these findings indicated that ID2 exerts its tumor-suppressive effects on the malignant behavior of lung adenocarcinoma cells by inhibiting the activation of the PI3K/AKT/mTOR signaling pathway. Restoration of ID2 expression in lung adenocarcinoma cells may improve the therapeutic efficacy of lung adenocarcinoma therapies.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Humans , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Cell Proliferation , Cell Line, Tumor , TOR Serine-Threonine Kinases/metabolism , Adenocarcinoma of Lung/genetics , Signal Transduction , Lung Neoplasms/pathology , Inhibitor of Differentiation Protein 2/pharmacology
10.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 53(4): 611-618, 2022 Jul.
Article in Chinese | MEDLINE | ID: mdl-35871731

ABSTRACT

Objective: To analyze the effect of knocking down MAP4 K4 expression on the proliferation and migration of cancer cells, and to explore its underlining molecular mechanisms. Methods: A stable knockdown MAP4 K4 cell line was constructed and the subcellular localization of the cells was determined with immunofluorescence, cell proliferation assay and cell migration assay. In addition, the effects of down-regulated MAP4 K4 expression were analyzed by examining the difference between the proliferation and migration of cancer cells in the knockdown group and those of the control group. Results: MAP4 K4 was localized in focal adhesion and cell edges in A549 cells. Stable knockdown of MAP4 K4 expression induced cancer cells to grow in clusters and arrested the progression of the cell cycle and cell migration. Further analysis found that knocking down MAP4 K4 expression in A549 cells induced the accumulation of epithelial cell marker E-cadherin, and subsequently, the down-regulation of N-cadherin, a mesenchymal cell marker, thereby disrupting the "cadherin switch" and the epithelial-mesenchymal conversion. Then, the control group and the knockdown group both received the combined treatment of cisplatin at a final concentration of 5 µmol/L and paclitaxel at a final concentration of 20 nmol/L. The stably knocked down MAP4 K4 expressing cells showed significantly enhanced toxicity of chemotherapeutic drugs to cancer cells. Conclusion: The study shows that MAP4 K4 regulates the malignant phenotypes of cancer cells and chemoresistance by regulating "cadherin switch" to promote epithelial-mesenchymal transition in A549 cells.


Subject(s)
Lung Neoplasms , A549 Cells , Cadherins/metabolism , Cell Line, Tumor , Cell Movement , Cell Proliferation , Epithelial-Mesenchymal Transition/genetics , Humans , Lung Neoplasms/pathology , Microtubule-Associated Proteins
11.
Bioengineered ; 13(2): 2878-2888, 2022 02.
Article in English | MEDLINE | ID: mdl-35040754

ABSTRACT

Lung adenocarcinoma is the main cause of the excessive mortality for patients who lives with lung cancers. According to the GEPIA database analysis, GATA5 and ARHGAP9 were found to be low expressed in lung adenocarcinoma, and they were positively correlated, and in addition ARHGAP9 low expression was associated with poor prognosis in lung adenocarcinoma. Therefore, the present study focused on the effect of promoting GATA5 to induce ARHGAP9 on the malignant process of lung adenocarcinoma cells. The expressions of GATA5 and ARHGAP9 were measured with Western blot and RT-qPCR. With the adoption of CCK-8, EDU staining, transwell and colony formation, the cell viability, proliferation, invasion and tumorigenesis ability were detected, respectively. In addition, the wound healing and Western blot were employed to evaluate migration and metastasis-related proteins individually. Moreover, the luciferase activity as well as the binding of GATA5 and ARHGAP9 promoters were detected by luciferase report and ChIP. After further comprehensive assessments, the results confirmed that GATA5 could successfully activate ARHGAP9. Moreover, ARHGAP9 upregulation remarkably inhibited lung adenocarcinoma cell proliferation, invasion and migration as compared to the control group. More importantly, GATA5 silencing reversed the inhibitory effect of ARHGAP9 upregulation on the malignant progression of lung adenocarcinoma cells. To conclude, the present study successfully demonstrated for the first time that GATA5-induced ARHGAP9 upregulation has a protective effect on lung adenocarcinoma cells.


Subject(s)
Adenocarcinoma of Lung/pathology , GATA5 Transcription Factor/physiology , GTPase-Activating Proteins/genetics , Lung Neoplasms/pathology , A549 Cells , Adenocarcinoma of Lung/diagnosis , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/mortality , Biomarkers, Tumor/genetics , Cells, Cultured , Disease Progression , Gene Expression Regulation, Neoplastic , Humans , Lung Neoplasms/diagnosis , Lung Neoplasms/genetics , Lung Neoplasms/mortality , Prognosis , Promoter Regions, Genetic , Up-Regulation/genetics
12.
Acta Pharmacol Sin ; 42(4): 624-632, 2021 Apr.
Article in English | MEDLINE | ID: mdl-32704040

ABSTRACT

The mechanism underlying the resistance of cancer cells to chemotherapeutic drug varies with different cancer cells. Recent evidence shows that lysosomal function is associated with drug resistance of cancer cells. Artesunate, a derivative of artemisinin, displays broad antitumor activity and direct cytotoxicity on various tumor cells. Our previous study shows that artesunate increases autophagosome accumulation, while significantly decreases autolysosome number in cancer cells, suggesting that artesunate might impair the lysosomal function. In this study, we investigated the effects of artesunate on lysosomal function and its relationship with chemotherapeutic drug resistance in cancer cells. We found that the lysosomal function was significantly enhanced in two drug-resistant (A549/TAX and A549/DDP) cells. Furthermore, we showed that the enhanced lysosomal function by overexpression of transcription factor EB (TFEB) significantly increased MCF-7 cells resistance to doxorubicin (DOX), whereas the decreased lysosomal function by TFEB-knockdown or lysosome inhibitor chloroquine increased MCF-7 cells sensitivity to DOX. Treatment of A549/TAX cells with artesunate (2.5-50 µM) dose-dependently inhibited lysosomal function and the clearance of dysfunctional mitochondria, and induced cell apoptosis. Moreover, we demonstrated that artesunate exerted more potent inhibition on the resistant (A549/TAX and MCF-7/ADR) cells with higher activity of lysosomal function. Our results suggest that artesunate or other inhibitors of lysosomal function would be potential in the treatment of cancer cells with drug resistance caused by the enhanced lysosomal function.


Subject(s)
Antineoplastic Agents/pharmacology , Artesunate/pharmacology , Drug Resistance, Neoplasm/drug effects , Lysosomes/drug effects , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Cathepsins/metabolism , Cell Death/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Chloroquine/pharmacology , Chromans/pharmacology , Doxorubicin/pharmacology , Drug Synergism , Gene Knockdown Techniques , Humans , Paclitaxel/pharmacology
13.
Cancer Manag Res ; 12: 10975-10984, 2020.
Article in English | MEDLINE | ID: mdl-33154676

ABSTRACT

OBJECTIVE: To investigate the effects of miR-490-3p on the proliferation, migration, invasion and apoptosis of lung adenocarcinoma (LUAD) cells through the Wnt/ß-catenin signaling pathway. METHODS: Differentially expressed miRNAs in LUAD tissues were analyzed by bioinformatics and the target miRNA went through GSEA enrichment analysis. qRT-PCR was used to detect the expression of miR-490-3p in human LUAD cells and normal bronchial cells. The constructed vectors were transfected into the LUAD cell lines using Lipofectamine 2000. Cell viability was detected by MTT, cell migration and invasion were detected by transwell assay, and cell apoptosis was detected by flow cytometry. Western blot was performed to detect the expression levels of the proteins related to the Wnt/ß-catenin pathway and cell apoptosis. Xenograft tumor mouse models were used for in vivo validation. RESULTS: The results of qRT-PCR showed that miR-490-3p was relatively lowly expressed in LUAD cells, and the expression level was different in different LUAD cell lines. The results of MTT, transwell and flow cytometry exhibited that miR-490-3p could significantly inhibit the proliferation, migration, invasion and increase cell apoptosis rate of LUAD cells. Western blot results showed that miR-490-3p promoted the expression of Bax, Caspase-3 and E-cadherin as well as the phosphorylation of GSK-3ß and inhibited the expression of Bcl-2, ß-catenin and C-myc. Additionally, animal experiments were performed to prove that miR-490-3p suppressed LUAD malignant progression in vivo. CONCLUSION: MiR-490-3p inhibited the proliferation, migration, invasion and promoted the apoptosis of LUAD cells by down-regulating the Wnt/ß-catenin signaling pathway, suggesting that miR-490-3p may be an indicator for early diagnosis and prognosis of LUAD.

14.
Int J Biol Macromol ; 164: 3835-3845, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-32835798

ABSTRACT

In the present study, to verify the effect of polysaccharides derived from persimmon leaves (PLE) at epithelial-to-mesenchymal transition (EMT), A549 cells were treated with TGF-ß1 alone or co-treated with TGF-ß1 and PLE (50 and 75 µg/mL). PLE-treated cells showed higher expression of E-cadherin and lower expression of N-cadherin and vimentin compared to TGF-ß1-treated cells by inhibiting the levels of transcription factors, including Snail, Slug, and ZEB1, all associated with EMT. PLE also significantly decreased migration, invasion, and anoikis resistance through TGF-ß1 mediated EMT suppression, whereby PLE inhibited the levels of MMP-2 and MMP-9 while cleaving PARP. These inhibitory effects of PLE against EMT, migration, invasion, and anoikis resistance were determined by activating the canonical SMAD2/3 and non-canonical ERK/p38 signaling pathways. Therefore, these results suggest that PLE could be used as a potential chemical therapeutic agent for early metastasis of lung cancer in vitro.


Subject(s)
Diospyros/chemistry , Epithelial-Mesenchymal Transition/drug effects , Plant Leaves/chemistry , Polysaccharides/isolation & purification , Polysaccharides/pharmacology , Transforming Growth Factor beta1/pharmacology , A549 Cells , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic/drug effects , Humans , Matrix Metalloproteinase 1 , Polysaccharides/chemistry , Recombinant Proteins , Signal Transduction/drug effects , Transcription Factors/genetics
15.
Int J Radiat Biol ; 96(10): 1281-1295, 2020 10.
Article in English | MEDLINE | ID: mdl-32659143

ABSTRACT

PURPOSE: Radiation has been shown to promote the epithelial-mesenchymal transition (EMT) in tumor cells, and TGF-ß/Smad and PI3K-Akt signaling pathways play an important role in the EMT. In this study, we investigated the effects of neuropilin-1 (NRP1) on radiation-induced TGF-ß/Smad and non-classical Smad signaling pathways in lung cancer cells, as well as the effects of NRP1 on invasion and migration. MATERIALS AND METHODS: Changes in the expression levels of EMT markers (ß-catenin, N-cadherin, and vimentin) and related transcription factors (Twist and ZEB1) in stably transfected cells were detected by Western blotting and qPCR, and changes were assessed by TGF-ß/Smad and non-classical Smad signaling. Immunofluorescence was used to detect the expression of the cytoskeletal protein F-actin. Expression of TGF-ß1 and CXCL-12 was detected by ELISA. Transwell and scratch assays were used to detect the invasive ability and migration of lung cancer cells, respectively. RESULTS: Our results showed that ionizing radiation could induce the EMT as well as morphological changes in lung adenocarcinoma cells (A549); however, the effects were not significant in lung squamous carcinoma cells (SK-MES-1). Moreover, we showed that NRP1 promotes the EMT induced by ionizing radiation in A549 cells, which may be related to the increased expression of EMT-related transcription factors. NRP1 may promote the radiation-induced EMT of A549 cells mainly through TGF-ß1/Smad2/3 signaling. NRP1 also enhanced radiation-induced invasion, migration, and CXCL-12 expression in A549 cells. CONCLUSIONS: We conclude that NRP1 promotes radiation-induced EMT in lung adenocarcinoma cells via TGF-ß1/Smad signaling and not non-classical Smad signaling, and enhances the invasion and migration of lung adenocarcinoma cells.


Subject(s)
Adenocarcinoma of Lung/pathology , Epithelial-Mesenchymal Transition/radiation effects , Neoplasms, Radiation-Induced/pathology , Neuropilin-1/metabolism , Signal Transduction/radiation effects , Smad Proteins/metabolism , Transforming Growth Factor beta/metabolism , Cell Line, Tumor , Cell Movement/radiation effects , Humans , Neoplasm Invasiveness
16.
J Cell Mol Med ; 24(14): 7730-7742, 2020 07.
Article in English | MEDLINE | ID: mdl-32476275

ABSTRACT

Lung adenocarcinoma (LUAD), as the most common subtype of non-small cell lung cancer, is responsible for more than 500 000 deaths worldwide annually. In this study, we identify a novel microRNA-26b-5p (miR-26b-5p) and elucidated its function on LUAD. The survival rate of parent LUAD cells and radiation-resistant LUAD cells were determined using clonogenic survival assay. We overexpressed or inhibited miR-26b-5p in LUAD, and the correlation between activating transcription factor 2 (ATF2) and miR-26b-5p was determined using integrated bioinformatics analysis and dual-luciferase reporter gene assay. Exosomes derived from A549 cell lines were then detected using Western blot assay, followed by co-transfection with radiation-resistant A549R cells. LUAD tissues and serum were collected, followed by miR-26b-5p relative expression quantification using RT-qPCR. miR-26b-5p was identified as the most differentially expressed miRNA and was down-regulated in LUAD. Radiation-resistant cells were more resistant to X-radiation compared with parent cells. miR-26b-5p overexpression and X-irradiation led to enhanced radiosensitivity of LUAD cells. ATF2 was negatively targeted by miR-26b-5p. Exosomal miR-26b-5p derived from A549 cells could be transported to irradiation-resistant LUAD cells and inhibit ATF2 expression to promote DNA damage, apoptosis and radiosensitivity of LUAD cells, which was verified using serum-based miR-26b-5p. Our results show a regulatory network of miR-26b-5p on radiosensitivity of LUAD cells, which may serve as a non-invasive biomarker for LUAD.


Subject(s)
Activating Transcription Factor 2/genetics , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/metabolism , Exosome Multienzyme Ribonuclease Complex/metabolism , Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , Radiation Tolerance/genetics , A549 Cells , Adenocarcinoma of Lung/mortality , Adenocarcinoma of Lung/pathology , Animals , Apoptosis/genetics , Biomarkers , Cell Line, Tumor , Cell Survival/genetics , Cell Survival/radiation effects , Disease Models, Animal , Humans , Mice , Prognosis , RNA Interference , Xenograft Model Antitumor Assays
17.
Transl Cancer Res ; 9(4): 2648-2659, 2020 Apr.
Article in English | MEDLINE | ID: mdl-35117624

ABSTRACT

BACKGROUND: Lung adenocarcinoma is a non-small cell lung cancer with a high mortality. There is little published data on the role of coatomer protein complex subunit ß (COPB2) in lung adenocarcinoma. The current study aimed to explore the effects of COPB2 on lung adenocarcinoma cells. METHODS: The differential expression of COPB2 in normal cells and lung adenocarcinoma cells was detected by quantitative real time-polymerase chain reaction (qRT-PCR) and Western blotting. Then, cell viability assay, flow cytometry and Transwell experiments were performed to study the effects of COPB2 on cell growth, apoptosis, migration and invasion. MiRNA targeting COPB2 was predicted by TargetScan and validated by luciferase assay, qRT-PCR and Western blotting. The effects of miRNA inhibitor on siCOPB2 were analyzed by rescue experiments. Finally, apoptosis and metastatic marker proteins were detected by Western blotting. RESULTS: COPB2 was high-expressed in lung adenocarcinoma cells. Silencing COPB2 inhibited cell viability and cell metastasis, and significantly increased apoptosis. MiR-216a-3p was predicted to be able to target COBP2. Rescue experiment showed that miR-216a-3p inhibitor promoted cell viability, migration and invasion, and inhibited apoptosis of lung adenocarcinoma cells, partly reversed the effects of siCOPB2. Moreover, Western blotting showed that siCOPB2 up-regulated expressions of cleaved Caspase-3, Caspase-3, BCL2 associated X (Bax), and E-Cadherin, and down-regulated expressions of BCL2 apoptosis regulator (Bcl-2), N-Cadherin, and Vimentin, and the above effects were also partly reversed by miR-216a-3p inhibitor. CONCLUSIONS: High-expressed COPB2 promotes metastasis and inhibits apoptosis of lung adenocarcinoma cells through functioning as a target of miR-216a-3p.

18.
J Cell Biochem ; 121(8-9): 3901-3912, 2020 Aug.
Article in English | MEDLINE | ID: mdl-31709623

ABSTRACT

Epithelial-mesenchymal transformation (EMT) is associated with drug resistance in human lung adenocarcinoma cells, but its specific mechanism has not been clarified. In this study, we investigated the effect of miRNA-146b on EMT in cisplatin (DDP) resistant human lung adenocarcinoma cells and the corresponding mechanism. Cisplatin resistant (CR) human lung adenocarcinoma cells (A549/DDP and H1299/DDP) were established, and the EMT characteristics and invasion and metastasis ability of CR cells were determined by tumor cell-related biological behavior experiments. The role of miR-146b in EMT of CR cells was determined by in vitro functional test. The targeted binding of miR-146b to protein tyrosine phosphatase 1B (PTP1B) was verified by biological information and double luciferin gene reporting experiments. The effect of miR-146b on tumor growth and EMT phenotype in vivo was investigated by establishing the xenotransplantation mouse model. Compared with the control group, H1299/DDP and A549/DDP cells showed the enhanced EMT phenotypes, invasion and migration ability. Besides, miR-146b was lowly expressed in H1299/DDP and A549/DDP cells. More importantly, overexpressed miR-146b could specifically bind to PTP1B, thus inhibiting the EMT process and ultimately reducing CR in H1299/DDP and A549/DDP cells. Finally, overexpressed miR-146b observably inhibited tumor growth in xenograft model mice and inhibited the EMT phenotype of A549/DDP cells in vivo by regulating the expressions of EMT-related proteins. Overexpressed miR-146b could reverse the EMT phenotype of CR lung adenocarcinoma cells by targeting PTP1B, providing new therapeutic directions for CR of lung adenocarcinoma cells.

19.
Am J Chin Med ; 47(8): 1737-1754, 2019.
Article in English | MEDLINE | ID: mdl-31795742

ABSTRACT

Panax ginseng is a natural medicine that has been used globally for a long time. Moreover, several studies have reported the effective activity of ginseng in treating malignancies. Various agents containing ginseng were widely used as an antitumor treatment nowadays. Lung cancer is the most common fatal cancer in China, and lung adenocarcinoma is the most common histological type of non-small cell lung cancer (NSCLC). What's worse, many patients may have a failed response to conventional therapy including chemotherapy, radiotherapy, or molecule-targeted therapy due to drug resistance. Apoptosis is a highly ordered cellular suicidal process that plays an essential role in maintaining normal homeostasis. The pharmacological mechanism of many antineoplastic drugs involves triggering of apoptotic process. In several recent studies, ginsenosides are regarded as major active components of ginseng that have the potential to control lung cancer. Most of these results have proved that ginsenosides induce apoptosis in lung cancer cells through many different signaling pathways such as PI3K/Akt, NF-κB, EGFR, and so on. This study is aimed at reviewing the signaling pathways that underlie ginsenosides-triggered apoptotic process and encourage further studies to target promising agents against lung cancer treatment.


Subject(s)
Apoptosis/drug effects , Carcinoma, Non-Small-Cell Lung/drug therapy , Drugs, Chinese Herbal/administration & dosage , Ginsenosides/administration & dosage , Lung Neoplasms/drug therapy , Animals , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/physiopathology , Cell Proliferation/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Humans , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/physiopathology
20.
Hum Cell ; 32(4): 453-464, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31441010

ABSTRACT

Regrowth of cancer cells following chemotherapy is a significant problem for cancer patients. This study examined whether cancer-associated fibroblasts (CAFs), a major component of a tumor microenvironment, promote cancer cell regrowth after chemotherapy. First, we treated human lung adenocarcinoma cell line A549 and CAFs from four patients with cisplatin. Cisplatin treatment inhibited the viable cell number of A549 cells and induced epithelial-mesenchymal transition. After cisplatin was removed, A549 cells continued to manifest the mesenchymal phenotype and proliferated 2.2-fold in 4 days (regrowth of A549 cells). Cisplatin treatment inhibited the viable cell number of CAFs from four patients also. The CM (derived from cisplatin-pretreated CAFs from two patients) significantly enhanced the regrowth of cisplatin-pretreated A549 cells, and the CM derived from cisplatin-naïve CAFs marginally enhanced A549 regrowth. By contrast, the CM derived from either cisplatin-pretreated CAFs or cisplatin-naïve CAFs failed to enhance the growth of cisplatin-naïve A549 cells. The CM derived from cisplatin-pretreated CAFs did not enhance the proliferation of A549 cells in which epithelial-mesenchymal transition was induced by TGFß-1. Our findings indicate the possibility that humoral factors from cisplatin-pretreated CAFs promote the regrowth of cisplatin-pretreated A549 cells. These results suggest that interactions between cancer cells and CAFs may significantly enhance cancer cell regrowth within the tumor microenvironment after cisplatin treatment.


Subject(s)
Adenocarcinoma/pathology , Antineoplastic Agents/pharmacology , Cancer-Associated Fibroblasts/pathology , Cell Proliferation , Cisplatin/pharmacology , Lung Neoplasms/pathology , Tumor Microenvironment , A549 Cells , Epithelial-Mesenchymal Transition/drug effects , Epithelial-Mesenchymal Transition/genetics , Humans , Transforming Growth Factor beta1/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...