Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Intern Emerg Med ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38717726

ABSTRACT

The purpose is to analyze the prevalence of intestinal infection in patients with pneumonia in intensive care units (ICU) and the impact of intestinal infection on the prognosis of patients with pneumonia, so as to explore the bidirectional association between pneumonia and intestinal infection. The study aims to investigate the correlation between the occurrence of pneumonia and intestinal infection among patients in the ICU, utilizing the Medical Information Mart for Intensive Care IV (MIMIC-IV) database, as well as the impact of intestinal infection on the prognosis of pneumonia patients. The enrolled patients were first divided into pneumonia group and non-pneumonia group, and the primary outcome was that patients developed intestinal infection. Multivariate logistic regression was used to elucidate the association between pneumonia and the prevalence of intestinal infection, and propensity score matching (PSM) and inverse probability of treatment weighing (IPTW) were used to validate our findings. We then divided patients with pneumonia into two groups according to whether they were complicated by intestinal infection, and analyzed the effect of intestinal infection on 28-day mortality, length of ICU stay, and length of hospital stay in patients with pneumonia. This study included 50,920 patients, of which 7493 were diagnosed with pneumonia. Compared with non-pneumonia patients, the incidence of intestinal infection in pneumonia patients was significantly increased [OR 1.58 (95% CI 1.34-1.85; P < 0.001)]. Cox proportional hazards regression model showed no significant effect of co-infection on 28-day mortality in patients with pneumonia (P = 0.223). Patients in the intestinal infection group exhibited a longer length stay in ICU and hospital than those without intestinal infection (P < 0.001). In the ICU, patients with pneumonia were more likely linked to intestinal infection. In addition, the presence of concurrent intestinal infections can prolong both ICU and hospital stays for pneumonia patients.

2.
Sci Total Environ ; 926: 172027, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38552982

ABSTRACT

Long-term exposure to fine particulate matter (PM2.5) posed injury for gastrointestinal and respiratory systems, ascribing with the lung-gut axis. However, the cross-talk mechanisms remain unclear. Here, we attempted to establish the response networks of lung-gut axis in mice exposed to PM2.5 at environmental levels. Male Balb/c mice were exposed to PM2.5 (dose of 0.1, 0.5, and 1.0 mg/kg) collected from Chengdu, China for 10 weeks, through intratracheally instillation, and examined the effect of PM2.5 on lung functions of mice. The changes of lung and gut microbiota and metabolic profiles of mice in different groups were determined. Furthermore, the results of multi-omics were conjointly analyzed to elucidate the primary microbes and the associated metabolites in lung and gut responsible for PM2.5 exposure. Accordingly, the cross-talk network and key pathways between lung-gut axis were established. The results indicated that exposed to PM2.5 0.1 mg/kg induced obvious inflammations in mice lung, while emphysema was observed at 1.0 mg/kg. The levels of metabolites guanosine, hypoxanthine, and hepoxilin B3 increased in the lung might contribute to lung inflammations in exposure groups. For microbiotas in lung, PM2.5 exposure significantly declined the proportions of Halomonas and Lactobacillus. Meanwhile, the metabolites in gut including L-tryptophan, serotonin, and spermidine were up-regulated in exposure groups, which were linked to the decreasing of Oscillospira and Helicobacter in gut. Via lung-gut axis, the activations of pathways including Tryptophan metabolism, ABC transporters, Serotonergic synapse, and Linoleic acid metabolism contributed to the cross-talk between lung and gut tissues of mice mediated by PM2.5. In summary, the microbes including Lactobacillus, Oscillospira, and Parabacteroides, and metabolites including hepoxilin B3, guanosine, hypoxanthine, L-tryptophan, and spermidine were the main drivers. In this lung-gut axis study, we elucidated some pro- and pre-biotics in lung and gut microenvironments contributed to the adverse effects on lung functions induced by PM2.5 exposure.


Subject(s)
Air Pollutants , Lung Injury , Male , Mice , Animals , Lung Injury/chemically induced , Air Pollutants/toxicity , Air Pollutants/metabolism , Tryptophan , Multiomics , Spermidine/metabolism , Spermidine/pharmacology , Lung , Particulate Matter/toxicity , Particulate Matter/metabolism , Guanosine/metabolism , Guanosine/pharmacology , Hypoxanthines/metabolism , Hypoxanthines/pharmacology
3.
Int J Mol Sci ; 25(4)2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38396998

ABSTRACT

Next-generation sequencing technologies have started a new era of respiratory tract research in recent years. Alterations in the respiratory microbiome between healthy and malignant conditions have been revealed. However, the composition of the microbiome varies among studies, even in similar medical conditions. Also, there is a lack of complete knowledge about lung-gut microbiome interactions in lung cancer patients. The aim of this study was to explore the lung-gut axis in non-small-cell lung cancer (NSCLC) patients and the associations between lung-gut axis microbiota and clinical parameters (CRP, NLR, LPS, CD8, and PD-L1). Lung tissue and fecal samples were used for bacterial 16S rRNA sequencing. The results revealed, for the first time, that the bacterial richness in lung tumor tissue gradually decreased with an increase in the level of PD-L1 expression (p < 0.05). An analysis of ß-diversity indicated a significant positive correlation between the genera Romboutsia and Alistipes in both the lung tumor biopsies and stool samples from NSCLC patients (p < 0.05). Survival analysis showed that NSCLC patients with higher bacterial richness in their stool samples had prolonged overall survival (HR: 2.06, 95% CI: 1.025-4.17, p = 0.0426).


Subject(s)
Carcinoma, Non-Small-Cell Lung , Gastrointestinal Microbiome , Lung Neoplasms , Lung , Humans , B7-H1 Antigen/genetics , B7-H1 Antigen/analysis , Carcinoma, Non-Small-Cell Lung/microbiology , Carcinoma, Non-Small-Cell Lung/pathology , Lung/microbiology , Lung/pathology , Lung Neoplasms/microbiology , RNA, Ribosomal, 16S/genetics
4.
Front Immunol ; 15: 1330209, 2024.
Article in English | MEDLINE | ID: mdl-38404579

ABSTRACT

Introduction: Respiratory infections are one of the leading causes of morbidity and mortality worldwide, mainly in children, immunocompromised people, and the elderly. Several respiratory viruses can induce intestinal inflammation and alterations in intestinal microbiota composition. Human metapneumovirus (HMPV) is one of the major respiratory viruses contributing to infant mortality in children under 5 years of age worldwide, and the effect of this infection at the gut level has not been studied. Methods: Here, we evaluated the distal effects of HMPV infection on intestinal microbiota and inflammation in a murine model, analyzing several post-infection times (days 1, 3, and 5). Six to eight-week-old C57BL/6 mice were infected intranasally with HMPV, and mice inoculated with a non-infectious supernatant (Mock) were used as a control group. Results: We did not detect HMPV viral load in the intestine, but we observed significant changes in the transcription of IFN-γ in the colon, analyzed by qPCR, at day 1 post-infection as compared to the control group. Furthermore, we analyzed the frequencies of different innate and adaptive immune cells in the colonic lamina propria, using flow cytometry. The frequency of monocyte populations was altered in the colon of HMPV -infected mice at days 1 and 3, with no significant difference from control mice at day 5 post-infection. Moreover, colonic CD8+ T cells and memory precursor effector CD8+ T cells were significantly increased in HMPV-infected mice at day 5, suggesting that HMPV may also alter intestinal adaptive immunity. Additionally, we did not find alterations in antimicrobial peptide expression, the frequency of colonic IgA+ plasma cells, and levels of fecal IgA. Some minor alterations in the fecal microbiota composition of HMPV -infected mice were detected using 16s rRNA sequencing. However, no significant differences were found in ß-diversity and relative abundance at the genus level. Discussion: To our knowledge, this is the first report describing the alterations in intestinal immunity following respiratory infection with HMPV infection. These effects do not seem to be mediated by direct viral infection in the intestinal tract. Our results indicate that HMPV can affect colonic innate and adaptive immunity but does not significantly alter the microbiota composition, and further research is required to understand the mechanisms inducing these distal effects in the intestine.


Subject(s)
Metapneumovirus , Paramyxoviridae Infections , Respiratory Tract Infections , Child , Mice , Humans , Animals , Child, Preschool , Aged , CD8-Positive T-Lymphocytes , RNA, Ribosomal, 16S , Mice, Inbred C57BL , Adaptive Immunity , Inflammation , Immunoglobulin A
5.
Heart Lung ; 64: 189-197, 2024.
Article in English | MEDLINE | ID: mdl-38290183

ABSTRACT

BACKGROUND: Multiple studies have highlighted a potential link between gut microbes and the onset of Pulmonary Arterial Hypertension (PAH). Nonetheless, the precise cause-and-effect relationship remains uncertain. OBJECTIVES: In this investigation, we utilized a two-sample Mendelian randomization (TSMR) approach to probe the presence of a causal connection between gut microbiota and PAH. METHODS: Genome-wide association (GWAS) data for gut microbiota and PAH were sourced from MiBioGen and FinnGen research, respectively. Inverse variance weighting (IVW) was used as the primary method to explore the causal effect between gut flora and PAH, supplemented by MR-Egger, weighted median (WM). Sensitivity analyses examined the robustness of the MR results. Reverse MR analysis was used to rule out the effect of reverse causality on the results. RESULTS: The results indicate that Genus Ruminococcaceae UCG004 (OR = 0.407, P = 0.031) and Family Alcaligenaceae (OR = 0.244, P = 0.014) were protective factors for PAH. Meanwhile Genus Lactobacillus (OR = 2.446, P = 0.013), Class Melainabacteria (OR = 2.061, P = 0.034), Phylum Actinobacteria (OR = 3.406, P = 0.010), Genus Victivallis (OR = 1.980, P = 0.010), Genus Dorea (OR = 3.834, P = 0.024) and Genus Slackia (OR = 2.622, P = 0.039) were associated with an increased Prevalence of PAH. Heterogeneity and pleiotropy were not detected by sensitivity analyses, while there was no reverse causality for these nine specific gut microorganisms. CONCLUSIONS: This study explores the causal effects of eight gut microbial taxa on PAH and provides new ideas for early prevention of PAH.


Subject(s)
Gastrointestinal Microbiome , Pulmonary Arterial Hypertension , Humans , Pulmonary Arterial Hypertension/epidemiology , Pulmonary Arterial Hypertension/genetics , Gastrointestinal Microbiome/genetics , Genome-Wide Association Study , Mendelian Randomization Analysis , Familial Primary Pulmonary Hypertension
6.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1012469

ABSTRACT

Background Salidroside (SAL) has a protective effect on multiple organ systems. Exposure to fine particulate matter (PM2.5) in the atmosphere may lead to disruptions in gut microbiota and impact intestinal health. The regulatory effect of SAL on the gut microbiota of mice exposed to PM2.5 requires further investigation. Objective To evaluate gut microbiota disruption in mice after being exposed to PM2.5 and the potential effect of SAL. Methods Forty male C57BL/6 mice, aged 6 to 8 weeks, were randomly divided into four groups: a control group, an SAL group, a PM2.5 group, and an SAL+PM2.5 group, each containing 10 mice. In the SAL group and the SAL+PM2.5 group, the mice were administered SAL (60 mg·kg−1) by gavage, while in the control group and the PM2.5 group, sterile saline (10 mL·kg−1) was administered by gavage. In the PM2.5 group and the SAL+PM2.5 group, PM2.5 suspension (8 mg·kg−1) was intratracheally instilled, and in the control group and SAL group, sterile saline (1.5 mL·kg−1) was intratracheally administered. Each experiment cycle spanned 2 d, with a total of 10 cycles conducted over 20 d. Histopathological changes in the ileum tissue of the mice were observed after HE staining. Colon contents were collected for gut microbiota sequencing and short-chain fatty acids (SCFAs) measurements. Results The PM2.5 group showed infiltration of inflammatory cells in the ileum tissue, while the SAL+PM2.5 group exhibited only a small amount of inflammatory cell infiltration. Compared to the control group, the PM2.5 group showed decreased Shannon index (P<0.05) and increased Simpson index (P<0.05), indicating that the diversity of gut microbiota in this group was decreased; the SAL+PM2.5 group showed increased Shannon index compared to the PM2.5 group (P<0.05) and decreased Simpson index (P<0.05), indicating that the diversity of gut microbiota in mice intervened with SAL was increased. The principal coordinates analysis (PCoA) revealed a significant separation between the PM2.5 group and the control group, while the separation trend was less evident among the control group, the SAL group, and the SAL+PM2.5 group. The unweighted pair-group method with arithmetic means (UPGMA) clustering tree results showed that the control group and the SAL group clustered together first, followed by clustering with the SAL+PM2.5 group, and finally, the three groups clustered with the PM2.5 group. The PCoA and UPGMA clustering results indicated that the uniformity and similarity of the microbiota in the PM2.5 group were significantly decreased. Compared to the control group, the PM2.5 group showed decreased abundance of phylum Bacteroidetes and Candidatus_Saccharimonas (P<0.05) and increased abundance of phylum Proteobacteria, genus Escherichia, genus Bacteroides, genus Prevotella, genus Enterococcus, and genus Proteus (P<0.05). Compared to the PM2.5 group, the SAL+PM2.5 group showed decreased abundance of phylum Proteobacteria, phylum Actinobacteria, genus Prevotella, and genus Proteus (P<0.05), and increased abundance of Candidatus_Saccharimonas (P<0.05). The PM2.5 group showed reduced levels of propionic acid, valeric acid, and hexanoic acid compared to the control group (P<0.05), while the SAL+PM2.5 group showed increased levels of propionic acid, isobutyric acid, butyric acid, valeric acid, and hexanoic acid compared to the PM2.5 group (P<0.05). Conclusion Exposure to PM2.5 can cause pathological alterations, microbial dysbiosis, and disturbing production of SCFAs in intestinal tissue in mice. However, SAL can provide a certain degree of protective effect against these changes.

7.
Microbiol Spectr ; : e0199023, 2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37623316

ABSTRACT

While the effect of gut microbiota and/or inflammation on a distant body site, including the lungs (gut-lung axis), has been well characterized, data about the influence of lung microbiota and lung inflammation on gut homeostasis (lung-gut axis) are scarce. Using a well-characterized model of pulmonary infection with the fungus Aspergillus fumigatus, we investigated alterations in the lung and gut microbiota by next-generation sequencing of the V3-V4 regions of total bacterial DNA. Pulmonary inflammation due to the fungus A. fumigatus caused bacterial dysbiosis in both lungs and gut, but with different characteristics. While increased alpha diversity and unchanged bacterial composition were noted in the lungs, dysbiosis in the gut was characterized by decreased alpha diversity indices and modified bacterial composition. The altered homeostasis in the lungs allows the immigration of new bacterial species of which 41.8% were found in the feces, indicating that some degree of bacterial migration from the gut to the lungs occurs. On the contrary, the dysbiosis occurring in the gut during pulmonary infection was a consequence of the local activity of the immune system. In addition, the alteration of gut microbiota in response to pulmonary infection depends on the bacterial composition before infection, as no changes in gut bacterial microbiota were detected in a rat strain with diverse gut bacteria. The data presented support the existence of the lung-gut axis and provide additional insight into this mechanism. IMPORTANCE Data regarding the impact of lung inflammation and lung microbiota on GIT are scarce, and the mechanisms of this interaction are still unknown. Using a well-characterized model of pulmonary infection caused by the opportunistic fungus Aspergillus fumigatus, we observed bacterial dysbiosis in both the lungs and gut that supports the existence of the lung-gut axis.

8.
Acta Pharmacol Sin ; 44(11): 2201-2215, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37433872

ABSTRACT

Pulmonary arterial hypertension (PH) is a chronic disease induced by a progressive increase in pulmonary vascular resistance and failure of the right heart function. A number of studies show that the development of PH is closely related to the gut microbiota, and lung-gut axis might be a potential therapeutic target in the PH treatment. A. muciniphila has been reported to play a critical role in treating cardiovascular disorders. In this study we evaluated the therapeutic effects of A. muciniphila against hypoxia-induced PH and the underlying mechanisms. Mice were pretreated with A. muciniphila suspension (2 × 108 CFU in 200 µL sterile anaerobic PBS, i.g.) every day for 3 weeks, and then exposed to hypoxia (9% O2) for another 4 weeks to induce PH. We showed that A. muciniphila pretreatment significantly facilitated the restoration of the hemodynamics and structure of the cardiopulmonary system, reversed the pathological progression of hypoxia-induced PH. Moreover, A. muciniphila pretreatment significantly modulated the gut microbiota in hypoxia-induced PH mice. miRNA sequencing analysis reveals that miR-208a-3p, a commensal gut bacteria-regulated miRNA, was markedly downregulated in lung tissues exposed to hypoxia, which was restored by A. muciniphila pretreatment. We showed that transfection with miR-208a-3p mimic reversed hypoxia-induced abnormal proliferation of human pulmonary artery smooth muscle cells (hPASMCs) via regulating the cell cycle, whereas knockdown of miR-208a-3p abolished the beneficial effects of A. muciniphila pretreatment in hypoxia-induced PH mice. We demonstrated that miR-208a-3p bound to the 3'-untranslated region of NOVA1 mRNA; the expression of NOVA1 was upregulated in lung tissues exposed to hypoxia, which was reversed by A. muciniphila pretreatment. Furthermore, silencing of NOVA1 reversed hypoxia-induced abnormal proliferation of hPASMCs through cell cycle modulation. Our results demonstrate that A. muciniphila could modulate PH through the miR-208a-3p/NOVA1 axis, providing a new theoretical basis for PH treatment.


Subject(s)
Hypertension, Pulmonary , MicroRNAs , Pulmonary Arterial Hypertension , Humans , Mice , Animals , Pulmonary Arterial Hypertension/genetics , Pulmonary Arterial Hypertension/metabolism , Pulmonary Arterial Hypertension/pathology , Hypertension, Pulmonary/drug therapy , Hypertension, Pulmonary/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Lung/pathology , Pulmonary Artery/metabolism , Hypoxia/metabolism , Myocytes, Smooth Muscle/metabolism , RNA-Binding Proteins/metabolism , Cell Proliferation/physiology , Neuro-Oncological Ventral Antigen
9.
Front Cell Infect Microbiol ; 13: 1151557, 2023.
Article in English | MEDLINE | ID: mdl-37180438

ABSTRACT

Non-small cell lung cancer (NSCLC) is one of the most serious diseases affecting human health today, and current research is focusing on gut flora. There is a correlation between intestinal flora imbalance and lung cancer, but the specific mechanism is not clear. Based on the "lung and large intestine being interior-exteriorly related" and the "lung-intestinal axis" theory. Here, based on the theoretical comparisons of Chinese and western medicine, we summarized the regulation of intestinal flora in NSCLC by active ingredients of traditional Chinese medicine and Chinese herbal compounds and their intervention effects, which is conducive to providing new strategies and ideas for clinical prevention and treatment of NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Drugs, Chinese Herbal , Gastrointestinal Microbiome , Lung Neoplasms , Humans , Medicine, Chinese Traditional , Carcinoma, Non-Small-Cell Lung/drug therapy , Drugs, Chinese Herbal/therapeutic use
10.
J Korean Med Sci ; 38(15): e120, 2023 Apr 17.
Article in English | MEDLINE | ID: mdl-37069814

ABSTRACT

BACKGROUND: Long coronavirus disease 2019 (COVID-19) in recovered patients (RPs) is gradually recognized by more people. However, how long it will last and the underlining mechanism remains unclear. METHODS: We conducted a prospective follow-up study to evaluate the long-term symptoms and clinical indices of RPs at one-year after discharge from Union Hospital, Wuhan, China between December 2020 to May 2021. We also performed the 16S rRNA sequencing of stool samples from RPs and healthy controls (HCs) and analyzed the correlation between the gut microbiota and long COVID-19. RESULTS: In total, 187 RPs were enrolled, among them, 84 (44.9%) RPs reported long COVID-19 symptoms at one-year after discharge. The most common long-term symptoms were cardiopulmonary symptoms, including chest tightness after activity (39/187, 20.9%), palpitations on exercise (27/187, 14.4%), sputum (21/187, 11.2%), cough (15/187, 8.0%) and chest pain (13/187, 7.0%), followed by systemic symptoms including fatigue (34/187, 18.2%) and myalgia (20/187, 10.7%), and digestive symptoms including constipation (14/187, 7.5%), anorexia (13/187, 7.0%), and diarrhea (8/187, 4.3%). Sixty-six (35.9%) RPs presented either anxiety or depression (42/187 [22.8%] and 53/187 [28.8%] respectively), and the proportion of anxiety or depression in the long symptomatic group was significantly higher than that in the asymptomatic group (41/187 [50.6%] vs. 25/187 [24.3%]). Compared with the asymptomatic group, scores of all nine 36-Item Short Form General Health Survey domains were lower in the symptomatic group (all P < 0.05). One hundred thirty RPs and 32 HCs (non-severe acute respiratory syndrome coronavirus 2 infected subjects) performed fecal sample sequencing. Compared with HCs, symptomatic RPs had obvious gut microbiota dysbiosis including significantly reduced bacterial diversities and lower relative abundance of short-chain fatty acids (SCFAs)-producing salutary symbionts such as Eubacterium_hallii_group, Subdoligranulum, Ruminococcus, Dorea, Coprococcus, and Eubacterium_ventriosum_group. Meanwhile, the relative abundance of Eubacterium_hallii_group, Subdoligranulum, and Ruminococcus showed decreasing tendencies between HCs, the asymptomatic group, and the symptomatic group. CONCLUSION: This study demonstrated the presence of long COVID-19 which correlates with gut microbiota dysbiosis in RPs at one-year after discharge, indicating gut microbiota may play an important role in long COVID-19.


Subject(s)
COVID-19 , Gastrointestinal Microbiome , Humans , Post-Acute COVID-19 Syndrome , Patient Discharge , Follow-Up Studies , Gastrointestinal Microbiome/genetics , Dysbiosis/microbiology , RNA, Ribosomal, 16S/genetics , Prospective Studies , Feces/microbiology
11.
Br J Pharmacol ; 180(16): 2102-2119, 2023 08.
Article in English | MEDLINE | ID: mdl-36869838

ABSTRACT

BACKGROUND AND PURPOSE: The causal relationship between altered host microbiome composition, especially the respiratory tract microbiome, and the occurrence of pulmonary hypertension (PH) has not yet been studied. An increased abundance of airway streptococci is seen in patients with PH compared with healthy individuals. This study aimed to determine the causal link between elevated airway exposure to Streptococcus and PH. EXPERIMENTAL APPROACH: The dose-, time- and bacterium-specific effects of Streptococcus salivarius (S. salivarius), a selective streptococci, on PH pathogenesis were investigated in a rat model established by intratracheal instillation. KEY RESULTS: Exposure to S. salivarius successfully induced typical PH characteristics, such as elevated right ventricular systolic pressure (RVSP), right ventricular hypertrophy (Fulton's index) and pulmonary vascular remodelling, in a dose- and time-dependent manner. Moreover, the S. salivarius-induced characteristics were absent in either the inactivated S. salivarius (inactivated bacteria control) treatment group or the Bacillus subtilis (active bacteria control) treatment group. Notably, S. salivarius-induced PH is characterized by elevated inflammatory infiltration in the lungs, in a pattern different from the classic hypoxia-induced PH model. Moreover, in comparison with the SU5416/hypoxia-induced PH model (SuHx-PH), S. salivarius-induced PH causes similar histological changes (pulmonary vascular remodelling) but less severe haemodynamic changes (RVSP, Fulton's index). S. salivarius-induced PH is also associated with altered gut microbiome composition, suggesting potential communication of the lung-gut axis. CONCLUSION AND IMPLICATIONS: This study provides the first evidence that the delivery of S. salivarius in the respiratory tract could cause experimental PH in rats.


Subject(s)
Hypertension, Pulmonary , Streptococcus salivarius , Rats , Animals , Vascular Remodeling , Rats, Sprague-Dawley , Lung/pathology , Hypoxia
12.
Cells ; 12(6)2023 03 15.
Article in English | MEDLINE | ID: mdl-36980242

ABSTRACT

Cigarette smoking (CS) or ambient particulate matter (PM) exposure is a risk factor for metabolic disorders, such as insulin resistance (IR), increased plasma triglycerides, hyperglycemia, and diabetes mellitus (DM); it can also cause gut microbiota dysbiosis. In smokers with metabolic disorders, CS cessation decreases the risks of serious pulmonary events, inflammation, and metabolic disorder. This review included recent studies examining the mechanisms underlying the effects of CS and PM on gut microbiota dysbiosis and metabolic disorder development; one of the potential mechanisms is the disruption of the lung-gut axis, leading to gut microbiota dysbiosis, intestinal dysfunction, systemic inflammation, and metabolic disease. Short-chain fatty acids (SCFAs) are the primary metabolites of gut bacteria, which are derived from the fermentation of dietary fibers. They activate G-protein-coupled receptor (GPCR) signaling, suppress histone deacetylase (HDAC) activity, and inhibit inflammation, facilitating the maintenance of gut health and biofunction. The aforementioned gut microbiota dysbiosis reduces SCFA levels. Treatment targeting SCFA/GPCR signaling may alleviate air pollution-associated inflammation and metabolic disorders, which involve lung-gut axis disruption.


Subject(s)
Diabetes Mellitus , Metabolic Diseases , Humans , Dysbiosis/microbiology , Inflammation/metabolism , Fatty Acids, Volatile
13.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-997270

ABSTRACT

ObjectiveTo explore the possible mechanism of Yupingfeng Granules (玉屏风散) in preventing and treating chronic obstructive pulmonary disease (COPD) from the perspective of “lung-gut axis”. MethodsThirty-two male Wistar rats were randomly divided into normal group,model group, roxithromycin group and Yupingfeng Granules group, with 8 rats in each group. Except for the normal group, the rat model of COPD was prepared by intratracheal instillation of lipopolysaccharide (LPS) combined with smoking for 12 weeks. Since the fifth week of modeling,the roxithromycin group and the Yupingfeng Granules group were given 31.5 mg/(kg·d) and 1.575 g/(kg·d) of corresponding drugs respectively by gavage,and normal group and model group were given 10 ml/(kg·d) physiolo-gical saline. Sample was collected 24 hours after the last administration. The pathological changes of lung tissue were observed using HE staining; Ultrahigh performance liquid chromatography quadrupole time of flight mass spectrometry (UHPLC-QTOFMS) was used to detect the differential metabolites in alveolar lavage fluid (BALF) in all groups but roxithromycin group;16S rDNA sequencing technology was used to detect the changes of intestinal flora, and the association analysis was conducted between the differential metabolites and the differential flora. ResultsCompared with the normal group, the model group showed an increase in goblet cells in the small bronchial wall, disappearance of the smooth muscle layer of the bronchial wall, and infiltration of inflammatory cells; compared with the model group, roxithromycin group showed slight alveolar interstital edema, and obviously reduced inflammatory cell, while no obvious alveolar interstital edema was observed in the Yupingfeng Granules group, showing a small amout of inflammatory cell infiltration. The results of the BALF differential metabolite screening showed that compared with the normal group, 12 substances were upregulated and 19 substances were downregulated in the model group; compared with the model group, 37 substances in the Yupingfeng Granules group were upregulated and 43 substances were downregulated KEGG analysis yielded a total of 2 metabolic pathways, glycerophospholipid metabolism, and unsaturated fatty acid biosynthetic metabolism; compared with the model group, choline, acetylcholine, glycerol-3-phosphate, glycerophosphate choline, palmitic acid, and arachidonic acid showed an upward trend, while stearic acid and docosahexaenoic acid showed a downward trend in Yupingfeng Granules group (P<0.05). The results of the intestinal flora showed that, there are 80 different species between the normal group and the model group, and 65 different species between the model group and Yupingfeng Granules group. Among the top 5 species with relative abundance levels,compared with the model group, the level of Prevotella_9,Ruminococcaceae_UCG-005,Ruminiclostridium_6 increase,and Lactobacillus,Bacteroides decrease(P<0.05).The results of the correlation analysis showed that, in the normal and model groups, arachidonic acid was negatively correlated with Oribacterium(r=-0.753,P<0.01); in the Yupingfeng Granules group and model group, stearic acid and Bacteroides(r=0.788), Mycobacterium(r=0.826),[Eubacterium]_Ruminantium_Group(r=0.770) was positively correlated(P<0.01), Arachidic acid was negatively correlated with Roseiarcus(r=-0.779), glycerol-3-phosphate was negatively correlated with Desulfovibrio(r=-0.758), Arachidonic acid was negatively correlated with Oribacterium(r=-0.753), and Palmitic acid was negatively correlated with Pseudolabs(r=-0.750,P<0.01). ConclusionYupingfeng Granules can affect the metabolism of BALF and the flora structure of intestinal microorganisms, and regulating the balance of “lung-gut axis” may be one of the mechanisms of Yupingfeng Granules in treatment of COPD.

14.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-962624

ABSTRACT

ObjectiveTo investigate the effect of Bufeitang on intestinal flora of rats with lung Qi-deficiency syndrome of chronic obstructive pulmonary disease(COPD), and to explore the mechanism of traditional Chinese medicine in regulating intestinal flora and thus restoring the balance of lung-gut axis. MethodA total of 84 rats were randomly divided into 7 groups, including blank group, model group, fecal bacterial transplantation(FMT) group, dexamethasone group and low, medium and high dose groups of Bufeitang, 12 rats in each group. Except for the blank group, cigarette and sawdust fumigation combined with intratracheal instillation of lipopolysaccharide(LPS) were used to establish the COPD rat model with lung Qi-deficiency syndrome in all other groups. The low, medium and high dose groups of Bufeitang were intragastric administrated with Bufeitang(3.645, 7.29, 14.58 g·kg-1), the FMT group was given fecal bacteria liquid enema(10 mL·kg-1), dexamethasone group was given dexamethasone acetate tablet suspension by gavage(0.135 mg·kg-1), the blank group and model group were given equal amount of distilled water. Fresh feces were collected after 28 d of continuous intervention for 16S rRNA gene sequencing. Lung and colon tissues were stained with hematoxylin-eosin(HE) for pathomorphological observation, and enzyme-linked immunosorbent assay (ELISA) was performed to detect the contents of tumor necrosis factor-α(TNF-α) and interleukin-8(IL-8) in lung tissues. ResultCompared with the blank group, the model group showed severe abnormal lung tissue structure with alveolar atrophy and collapse accompanied by severe inflammatory cell infiltration. Compared with the model group, the extent of injury was significantly improved, and inflammatory cell infiltration was reduced with basically normal alveolar structure in the high dose group of Bufeitang. Compared with the blank group, the model group had severely abnormal colonic tissue structure, the epithelial cells in the mucosal layer were eroded and shed, the number of inflammatory cells increased, the submucosal layer was edematous and the gap was enlarged. Compared with the model group, the extent of damage was significantly improved in the medium and high dose groups of Bufeitang, the epithelial cells in the mucosal layer were neatly and closely arranged, with only a small amount of inflammatory cell infiltration and no significant degeneration. Compared with the blank group, the TNF-α and IL-8 levels of lung tissue in the model group were significantly increased(P<0.01). Compared with the model group, the TNF-α and IL-8 levels of lung tissues in the low, medium and high dose groups of Bufeitang were significantly decreased(P<0.01). Bufeitang significantly modulated the number of bacteria species as well as alpha and beta diversity of model rats, corrected the return of intestinal flora to normal abundance and diversity, and positively regulated 4 differential phyla(such as Firmicutes, Proteobacteria) and 13 differential genera(such as Turicibacter, Lactobacillus, Anaerobiospirillum, Intestinimonas) in COPD model rats with lung Qi-deficiency syndrome, and down-regulated 2 carbohydrate metabolic pathway functions, including the pentose phosphate pathway(non-oxidative branch) Ⅰ and the Calvin-Benson-Bassham cycle. ConclusionBufeitang can modulate the abundance and diversity of intestinal flora species, affect the function of metabolic pathways, repair the structure of lung and colon tissues, regulate the level of inflammatory factors, and thus improve COPD with lung Qi-deficiency syndrome. The mechanism may be related to its regulation of inflammation-related intestinal flora to restore the balance of lung-gut axis in COPD with lung Qi-deficiency syndrome.

15.
Front Pharmacol ; 13: 1020133, 2022.
Article in English | MEDLINE | ID: mdl-36532717

ABSTRACT

Microbial communities form an important symbiotic ecosystem within humans and have direct effects on health and well-being. Numerous exogenous factors including airborne triggers, diet, and drugs impact these established, but fragile communities across the human lifespan. Crosstalk between the mucosal microbiota and the immune system as well as the gut-lung axis have direct correlations to immune bias that may promote chronic diseases like asthma. Asthma initiation and pathogenesis are multifaceted and complex with input from genetic, epigenetic, and environmental components. In this review, we summarize and discuss the role of the airway microbiome in asthma, and how the environment, diet and therapeutics impact this low biomass community of microorganisms. We also focus this review on the pediatric and Black populations as high-risk groups requiring special attention, emphasizing that the whole patient must be considered during treatment. Although new culture-independent techniques have been developed and are more accessible to researchers, the exact contribution the airway microbiome makes in asthma pathogenesis is not well understood. Understanding how the airway microbiome, as a living entity in the respiratory tract, participates in lung immunity during the development and progression of asthma may lead to critical new treatments for asthma, including population-targeted interventions, or even more effective administration of currently available therapeutics.

16.
Front Nutr ; 9: 1011732, 2022.
Article in English | MEDLINE | ID: mdl-36337621

ABSTRACT

Short-chain fatty acids (SCFAs) are metabolites released by bacterial components of the microbiota. These molecules have a wide range of effects in the microbiota itself, but also in host cells in which they are known for contributing to the regulation of cell metabolism, barrier function, and immunological responses. Recent studies indicate that these molecules are important players in the gut-lung axis and highlight the possibility of using strategies that alter their intestinal production to prevent or treat distinct lung inflammatory diseases. Here, we review the effects of the SCFA butyrate and its derivatives in vitro and in vivo on murine models of respiratory disorders, besides discussing the potential therapeutic use of butyrate and the other SCFAs in lung diseases.

17.
Life Sci ; 309: 120972, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36116532

ABSTRACT

Butyrate, given by oral administration or in drinking water, has been shown to improve experimental pulmonary fibrosis (PF) in mice despite of very low bioavailability. The pharmacokinetic-pharmacodynamics disconnection attracts us to explore its anti-PF mechanism in view of the intestinal expression of anti-PF factors. In bleomycin-induced PF in mice, rectal administration of butyrate (500 mg/kg) exhibited a significant anti-PF effect, with a maximum plasma concentration largely lower than the minimum effective concentration (1 mM) at which butyrate inhibited the expression of pro-inflammatory factors by lung epithelial cells and the production of extracellular matrix by lung fibroblasts. The rectal administration of butyrate significantly upregulated the mRNA expression of hepatocyte growth factor (HGF) in the colons of PF mice, but showed no significant effect on the mRNA expression of HGF in the small intestines, lungs and livers. In colon epithelial cells, the monocarboxylate transporter inhibitor α-cyano-4-hydroxycinnamic acid (CHC) abrogated butyrate-induced expression of HGF, indicating that butyrate functions through entering into cells. Butyrate showed no significant effect on the histone acetylation in the promoter region of HGF, suggesting that it promotes HGF expression not by directly affecting the histone deacetylation of HGF but by other pathways. GW9662, the inhibitor of PPARγ, significantly attenuated the effect of butyrate to promote the mRNA expression of HGF. Butyrate was able to enhance the acetylation of PPARγ, and a targeted mutation of lysine at the position 240 (K240) of PPARγ markedly diminished the induction of butyrate on HGF expression, suggesting that butyrate promoted HGF expression in colon epithelial cells by upregulating PPARγ K240 acetylation. In summary, rectal administration of butyrate promotes the expression of HGF in colonic epithelial cells through upregulating PPARγ acetylation via inhibition of HDAC activity. The findings of the present study provide a reasonable explanation for the anti-PF action mode of butyrate based on the 'lung-gut axis', and found that intestine-derived butyrate and HGF may be involved in the modulation of the occurrence and progression of PF.


Subject(s)
Drinking Water , Pulmonary Fibrosis , Mice , Animals , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/metabolism , Hepatocyte Growth Factor/genetics , Hepatocyte Growth Factor/pharmacology , PPAR gamma/metabolism , Butyrates/pharmacology , Butyrates/metabolism , Butyrates/therapeutic use , Administration, Rectal , Lysine/metabolism , Drinking Water/adverse effects , Drinking Water/metabolism , Histones/metabolism , Bleomycin/pharmacology , Colon/metabolism , RNA, Messenger/metabolism
18.
Biosci Rep ; 42(9)2022 09 30.
Article in English | MEDLINE | ID: mdl-36052717

ABSTRACT

BACKGROUND: Chronic obstructive pulmonary disease (COPD) is often accompanied by intestinal symptoms. Myeloid-derived suppressor cells (MDSCs) possess immunosuppressive ability in cancer, chronic inflammation, and infection. The aim of this study was to verify the distribution of MDSCs in emphysema mouse model and participation in lung-gut cross-talk. METHODS: Adult male C57BL/6 mice were exposed to cigarette smoke (CS) for 6 months or injected with porcine pancreas elastase to establish emphysema models. Flow cytometry and immunohistochemistry analysis revealed the distribution of MDSCs in tissues. The expression of inflammation and MDSCs-associated genes in the small intestine and colon were analyzed by real-time PCR. RESULTS: The small intestine and colon of CS-induced emphysematous mice displayed pathological changes, CD4+/CD8+ T cells imbalance, and increased neutrophils, monocytes, and macrophages infiltration. A significant expansion of MDSCs could be seen in CS-affected respiratory and gastrointestinal tract. Importantly, higher expression of MDSCs-related effector molecules inducible nitric oxide synthase (INOS), NADPH oxidase 2 (NOX2), and arginase 1 (ARG-1) suggested the immunosuppressive effect of migrated MDSCs (P<0.05). CONCLUSION: These data provide evidence for lung-gut axis in emphysema model and the participants of MDSCs.


Subject(s)
Emphysema , Myeloid-Derived Suppressor Cells , Pulmonary Emphysema , Animals , Arginase/genetics , Arginase/metabolism , Disease Models, Animal , Emphysema/metabolism , Emphysema/pathology , Humans , Inflammation/pathology , Lung/pathology , Male , Mice , Mice, Inbred C57BL , Myeloid-Derived Suppressor Cells/metabolism , NADPH Oxidase 2/metabolism , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/metabolism , Pancreatic Elastase/metabolism , Pancreatic Elastase/pharmacology , Pulmonary Emphysema/genetics , Pulmonary Emphysema/metabolism
19.
Molecules ; 27(18)2022 Sep 08.
Article in English | MEDLINE | ID: mdl-36144573

ABSTRACT

The lungs and large intestine can co-regulate inflammation and immunity through the lung-gut axis, in which the transportation of the gut microbiota and metabolites is the most important communication channel. In our previous study, not only did the composition of the gut microbiota and metabolites related to inflammation change significantly during the transition from ulcerative colitis (UC) to colorectal cancer (CRC), but the lung tissues also showed corresponding inflammatory changes, which indicated that gastrointestinal diseases can lead to pulmonary diseases. In order to elucidate the mechanisms of this lung-gut axis, metabolites in bronchoalveolar lavage fluid (BALF) and lung tissues were detected using UHPLC-Q-TOF-MS/MS technology, while microbiome characterization was performed in BALF using 16S rDNA sequencing. The levels of pulmonary metabolites changed greatly during the development of UC to CRC. Among these changes, the concentrations of linoleic acid and 7-hydroxy-3-oxocholic acid gradually increased during the development of UC to CRC. In addition, the composition of the pulmonary microbiota also changed significantly, with an increase in the Proteobacteria and an obvious decrease in the Firmicutes. These changes were consistent with our previous studies of the gut. Collectively, the microbiota and metabolites identified above might be the key markers related to lung and gut diseases, which can be used as an indication of the transition of diseases from the gut to the lung and provide a scientific basis for clinical treatment.


Subject(s)
Colitis, Ulcerative , Colorectal Neoplasms , Colitis, Ulcerative/drug therapy , Colorectal Neoplasms/etiology , DNA, Ribosomal , Humans , Inflammation , Linoleic Acid , Lung , Tandem Mass Spectrometry
20.
Life Sci ; 307: 120885, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-35981631

ABSTRACT

AIMS: Acute lung injury (ALI) is an acute inflammatory disorder. However, the precise mechanisms underlying the pathology of ALI remain elusive. An increasing evidence suggests the role of the gut-microbiota axis in the pathology of lung injury. This study aimed to investigate whether antibiotic-induced microbiome depletion could affect ALI in mice after lipopolysaccharide (LPS) administration. MAIN METHODS: The effects of antibiotic cocktail (ABX) on ALI in the mice after intratracheally administration of LPS (5 mg/kg) were examined. Furthermore, 16s rRNA analysis and measurement of short-chain fatty acids in feces samples and metabolomics analysis of blood samples were performed. KEY FINDINGS: LPS significantly increased the interleukin-6 (IL-6) levels in the bronchoalveolar lavage fluid (BALF) of water-treated mice. Interestingly, an ABX significantly attenuated the LPS-induced increase in IL-6 in BALF and lung injury scores. Furthermore, ABX and/or LPS treatment markedly altered the α- and ß-diversity of the gut microbiota. There were significant differences in the α- and ß-diversity of the water + LPS group and ABX + LPS group. LEfSe analysis identified Enterococusfaecalis, Clostriumtertium, and Bacteroidescaecimyris as potential microbial markers for ABX + LPS group. Untargeted metabolomics analysis identified several plasma metabolites responsible for discriminating water + LPS group from ABX + LPS group. There were correlations between the relative abundance of the microbiome and plasma metabolites. Integrative network analysis showed correlations between IL-6 levels in BALF and several gut microbes (or plasma metabolites). SIGNIFICANCE: These data suggest that ABX-induced microbiome depletion could protect against LPS-induced ALI via the gut-microbiota-lung axis.


Subject(s)
Acute Lung Injury , Microbiota , Acute Lung Injury/metabolism , Animals , Anti-Bacterial Agents , Bronchoalveolar Lavage Fluid , Interleukin-6/metabolism , Lipopolysaccharides/pharmacology , Lung/metabolism , Mice , Mice, Inbred C57BL , RNA, Ribosomal, 16S/genetics , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...