ABSTRACT
Venezuelan equine encephalitis virus (VEEV) outbreaks occur sporadically. Additionally, VEEV has a history of development as a biothreat agent. Yet, no FDA-approved vaccine or therapeutic exists for VEEV disease. The sporadic outbreaks present a challenge for testing medical countermeasures (MCMs) in humans; therefore, well-defined animal models are needed for FDA Animal Rule licensure. The cynomolgus macaque (CM) model has been studied extensively at high challenge doses of the VEEV Trinidad donkey strain (>1.0 × 108 plaque-forming units [PFU]), doses that are too high to be a representative human dose. Based on viremia of two subtypes of VEEV, IC, and IAB, we found the CM infectious dose fifty (ID50) to be low, 12 PFU, and 6.7 PFU, respectively. Additionally, we characterized the pattern of three clinical parameters (viremia, temperature, and lymphopenia) across a range of doses to identify a challenge dose producing consistent signs of infection. Based on these studies, we propose a shift to using a lower challenge dose of 1.0 × 103 PFU in the aerosol CM model of VEEV disease. At this dose, NHPs had the highest viremia, demonstrated a fever response, and had a measurable reduction in complete lymphocyte counts-biomarkers that can demonstrate MCM efficacy.
Subject(s)
Encephalitis Virus, Venezuelan Equine , Encephalomyelitis, Venezuelan Equine , Viral Vaccines , Animals , Horses , Humans , Macaca fascicularis , Viremia/drug therapy , Disease Models, AnimalABSTRACT
In human speech and communication across various species, recognizing and categorizing sounds is fundamental for the selection of appropriate behaviors. However, how does the brain decide which action to perform based on sounds? We explored whether the supplementary motor area (SMA), responsible for linking sensory information to motor programs, also accounts for auditory-driven decision making. To this end, we trained two rhesus monkeys to discriminate between numerous naturalistic sounds and words learned as target (T) or non-target (nT) categories. We found that the SMA at single and population neuronal levels perform decision-related computations that transition from auditory to movement representations in this task. Moreover, we demonstrated that the neural population is organized orthogonally during the auditory and the movement periods, implying that the SMA performs different computations. In conclusion, our results suggest that the SMA integrates acoustic information in order to form categorical signals that drive behavior.
Subject(s)
Motor Cortex , Animals , Learning , Macaca mulatta , Movement , NeuronsABSTRACT
Venezuelan, eastern, and western equine encephalitis viruses (VEEV, EEEV, and WEEV) are mosquito-borne viruses in the Americas that cause central nervous system (CNS) disease in humans and equids. In this study, we directly characterized the pathogenesis of VEEV, EEEV, and WEEV in cynomolgus macaques following subcutaneous exposure because this route more closely mimics natural infection via mosquito transmission or by an accidental needle stick. Our results highlight how EEEV is significantly more pathogenic compared to VEEV similarly to what is observed in humans. Interestingly, EEEV appears to be just as neuropathogenic by subcutaneous exposure as it was in previously completed aerosol exposure studies. In contrast, subcutaneous exposure of cynomolgus macaques with WEEV caused limited disease and is contradictory to what has been reported for aerosol exposure. Several differences in viremia, hematology, or tissue tropism were noted when animals were exposed subcutaneously compared to prior aerosol exposure studies. This study provides a more complete picture of the pathogenesis of the encephalitic alphaviruses and highlights how further defining the neuropathology of these viruses could have important implications for the development of medical countermeasures for the neurovirulent alphaviruses.
Subject(s)
Encephalitis Virus, Eastern Equine/pathogenicity , Encephalitis Virus, Venezuelan Equine/pathogenicity , Encephalitis Virus, Western Equine/pathogenicity , Encephalomyelitis, Equine/pathology , Encephalomyelitis, Venezuelan Equine/pathology , Macaca fascicularis/virology , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Female , Male , Virus ReplicationABSTRACT
BACKGROUND: The use of wide pore lightweight polypropylene mesh to improve anatomical outcomes in the surgical repair of prolapse has been hampered by mesh complications. One of the prototype prolapse meshes has been found to negatively impact the vagina by inducing a decrease in smooth muscle volume and contractility and the degradation of key structural proteins (collagen and elastin), resulting in vaginal degeneration. Recently, bioscaffolds derived from extracellular matrix have been used to mediate tissue regeneration and have been widely adopted in tissue engineering applications. OBJECTIVE: Here we aimed to: (1) define whether augmentation of a polypropylene prolapse mesh with an extracellular matrix regenerative graft in a primate sacrocolpopexy model could mitigate the degenerative changes; and (2) determine the impact of the extracellular matrix graft on vagina when implanted alone. STUDY DESIGN: A polypropylene-extracellular matrix composite graft (n = 9) and a 6-layered extracellular matrix graft alone (n = 8) were implanted in 17 middle-aged parous rhesus macaques via sacrocolpopexy and compared to historical data obtained from sham (n = 12) and the polypropylene mesh (n = 12) implanted by the same method. Vaginal function was measured in passive (ball-burst test) and active (smooth muscle contractility) mechanical tests. Vaginal histomorphologic/biochemical assessments included hematoxylin-eosin and trichrome staining, immunofluorescent labeling of α-smooth muscle actin and apoptotic cells, measurement of total collagen, collagen subtypes (ratio III/I), mature elastin, and sulfated glycosaminoglycans. Statistical analyses included 1-way analysis of variance, Kruskal-Wallis, and appropriate post-hoc tests. RESULTS: The host inflammatory response in the composite mesh-implanted vagina was reduced compared to that following implantation with the polypropylene mesh alone. The increase in apoptotic cells observed with the polypropylene mesh was blunted in the composite (overall P < .001). Passive mechanical testing showed inferior parameters for both polypropylene mesh alone and the composite compared to sham whereas the contractility and thickness of smooth muscle layer in the composite were improved with a value similar to sham, which was distinct from the decreases observed with polypropylene mesh alone. Biochemically, the composite had similar mature elastin content, sulfated glycosaminoglycan content, and collagen subtype III/I ratio but lower total collagen content when compared to sham (P = .011). Multilayered extracellular matrix graft alone showed overall comparable values to sham in aspects of the biomechanical, histomorphologic, or biochemical endpoints of the vagina. The increased collagen subtype ratio III/I with the extracellular matrix graft alone (P = .033 compared to sham) is consistent with an ongoing active remodeling response. CONCLUSION: Mesh augmentation with a regenerative extracellular matrix graft attenuated the negative impact of polypropylene mesh on the vagina. Application of the extracellular matrix graft alone had no measurable negative effects suggesting that the benefits of this extracellular matrix graft occur when used without a permanent material. Future studies will focus on understanding mechanisms.
Subject(s)
Extracellular Matrix , Surgical Mesh , Tissue Scaffolds , Uterine Prolapse/surgery , Vagina/surgery , Actins/metabolism , Animals , Apoptosis , Biocompatible Materials , Collagen Type I/metabolism , Collagen Type III/metabolism , Elastin/metabolism , Female , Glycosaminoglycans/metabolism , Guided Tissue Regeneration , Macaca mulatta , Polypropylenes , Vagina/metabolismABSTRACT
This manuscript summarizes our recent progress in examine the CYP1A1 and CYP1B1 as well as a number of nuclear receptors in the female genital and colorectal tissues of human and pigtailed macaque. Understanding the nuclear receptor mediated regulation of CYP1A1 and 1B1 expression in these tissues is necessary for identifying cancer risk factors and developing CYP1A1/1B1-targeted anti-cancer therapeutics. However, there is a lack of systematic and comparative analysis of the expression profile of CYP1A1, 1B1 and NRs in the female genital and colorectal tissues of human and clinically relevant animal models. The current study aims to fill this gap. We found CYP1A1, CYP1B1 and a number of nuclear receptors were expressed in the female genital and colorectal tissues of human and macaque. However, the mRNA level and protein localization of these CYP enzymes and NRs depended on the type of tissue examined. Cytochrome P450 (CYP) 1A1 and CYP1B1 activate hormonal and environmental procarcinogens, and are associated with carcinogenesis in female genital and colorectal tissues. Understanding the nuclear receptor (NR) mediated regulation of CYP expression in these tissues is necessary for identifying cancer risk factors and developing CYP1A1/1B1-targeted anti-cancer therapeutics. The study aims to analyze the expression profile of CYP1A1, 1B1 and NRs in the female genital and colorectal tissues of human and pigtailed macaques. We found that compared to the liver, human CYP1A1 mRNA level in the genital and colorectal tissues was significantly lower, while the CYP1B1 level was significantly higher. CYP1A1 protein was mainly localized in the plasma membrane of the uterine and endocervical epithelial cells. The CYP1B1 protein was concentrated in the nucleus of genital and colorectal tissues. Fourteen NRs in the genital tract and 12 NRs in colorectal tissue were expressed at levels similar to or higher than the liver. The expression and localization of CYP1A1, CYP1B1, and NRs in macaque tissues were usually comparable to those of human tissues. In addition, menopause did not significantly alter the ectocervical mRNA levels of CYP1A1, CYP1B1, or NRs.
ABSTRACT
This article presents a pictorial history of the free-ranging colony of rhesus monkeys (Macaca mulatta) on Cayo Santiago, Puerto Rico, in commemoration of the 75th anniversary of its establishment by Clarence R. Carpenter in December 1938. It is based on a presentation made by the authors at the symposium, Cayo Santiago: 75 Years of Leadership in Translational Research, held at the 36th Annual Meeting of the American Society of Primatologists in San Juan, Puerto Rico, on 20 June 2013.
Subject(s)
Biomedical Research/history , Ethology/history , Macaca mulatta/physiology , Animals , Behavior, Animal , History, 20th Century , History, 21st Century , Puerto Rico , ReproductionABSTRACT
This article briefly reviews the contributions of Clarence R. Carpenter in establishing the free-ranging colony of rhesus monkeys on Cayo Santiago, the Caribbean Primate Research Center and his legacy in primatology.
Subject(s)
Biomedical Research/history , Ethology/history , Primates/physiology , Animals , History, 20th Century , History, 21st Century , Macaca mulatta/physiology , Puerto RicoABSTRACT
OBJECTIVE: We sought to determine the predominant cell type (macrophage, T lymphocyte, B lymphocyte, mast cell) within the area of implantation of the prototypical polypropylene mesh, Gynemesh PS (Ethicon, Somerville, NJ); and to determine the phenotypic profile (M1 proinflammatory, M2 antiinflammatory) of the macrophage response to 3 different polypropylene meshes: Gynemesh PS (Ethicon), and 2 lower-weight, higher-porosity meshes, UltraPro (Ethicon) and Restorelle (Coloplast, Humblebaek, Denmark). STUDY DESIGN: Sacrocolpopexy was performed following hysterectomy in rhesus macaques. Sham-operated animals served as controls. At 12 weeks postsurgery, the vagina-mesh complex was excised and the host inflammatory response was evaluated. Hematoxylin and eosin was used to perform routine histomorphologic evaluation. Identification of leukocyte (CD45(+)) subsets was performed by immunolabeling for CD68 (macrophage), CD3 (T lymphocyte), CD20 (B lymphocyte), and CD117 (mast cell). M1 and M2 macrophage subsets were identified using immunolabeling (CD86(+) and CD206(+), respectively), and further evaluation was performed using enzyme-linked immunosorbent assay for 2 M1 (tumor necrosis factor-alpha and interleukin [IL]-12) and 2 M2 (IL-4 and IL-10) cytokines. RESULTS: Histomorphologic evaluation showed a dense cellular response surrounding each mesh fiber. CD45(+) leukocytes accounted for 21.4 ± 5.4% of total cells within the perimesh area captured in a ×20 field, with macrophages as the predominant leukocyte subset (10.5 ± 3.9% of total cells) followed by T lymphocytes (7.3 ± 1.7%), B lymphocytes (3.0 ± 1.2%), and mast cells (0.2 ± 0.2%). The response was observed to be more diffuse with increasing distance from the fiber surface. Few leukocytes of any type were observed in sham-operated animals. Immunolabeling revealed polarization of the macrophage response toward the M1 phenotype in all mesh groups. However, the ratio of M2:M1 macrophages was increased in the fiber area in UltraPro (P = .033) and Restorelle (P = .016) compared to Gynemesh PS. In addition, a shift toward increased expression of the antiinflammatory cytokine IL-10 was observed in Restorelle as compared to Gynemesh PS (P = .011). CONCLUSION: The host response to mesh consists predominantly of activated, proinflammatory M1 macrophages at 12 weeks postsurgery. However, this response is attenuated with implantation of lighter-weight, higher-porosity mesh. While additional work is required to establish causal relationships, these results suggest a link among the host inflammatory response, mesh textile properties, and clinical outcomes in the repair of pelvic organ prolapse.
Subject(s)
Pelvic Organ Prolapse/therapy , Surgical Mesh , Animals , B-Lymphocytes/metabolism , Immunohistochemistry , Inflammation/metabolism , Macaca mulatta , Macrophages/metabolism , Mast Cells/metabolism , Pelvic Organ Prolapse/metabolism , Polypropylenes , T-Lymphocytes/metabolismABSTRACT
OBJECTIVE: The impact of polypropylene mesh implantation on vaginal collagen and elastin metabolism was analyzed using a nonhuman primate model to further delineate the mechanism of mesh induced complications. STUDY DESIGN: Forty-nine middle-aged parous rhesus macaques underwent surgical implantation of 3 synthetic meshes via sacrocolpopexy. Gynemesh PS (n = 12) (Ethicon, Somerville, NJ) and 2 lower-weight, higher-porosity, lower-stiffness meshes (UltraPro [n = 19] [Ethicon] and Restorelle [n = 8] [Coloplast, Minneapolis, MN]) were implanted, in which UltraPro was implanted with its blue orientation lines perpendicular (low stiffness direction, n = 11) and parallel (high stiffness direction, n = 8) to the longitudinal axis of the vagina. Sham-operated animals were used as controls (n = 10). Twelve weeks after surgery, the mesh-tissue complex was excised and analyzed. RESULTS: Relative to sham, Gynemesh PS had a negative impact on the metabolism of both collagen and elastin-favoring catabolic reactions, whereas UltraPro induced an increase only in elastin degradation. Restorelle had the least impact. As compared with sham, the degradation of collagen and elastin in the vagina implanted with Gynemesh PS was increased with a simultaneous increase in active matrix metalloproteinase (MMP)-1, -8, -13, and total MMP-2 and -9 (all P < .05). The degradation of elastin (tropoelastin and mature elastin) was increased in the UltraPro-implanted vagina with a concomitant increase of MMP-2, and -9 (all P < .05). Collagen subtype ratio III/I was increased in Gynemesh PS and UltraPro perpendicular groups (P < .05). CONCLUSION: Following implantation with the heavier, less porous, and stiffer mesh, Gynemesh PS, the degradation of vaginal collagen and elastin exceeded synthesis, most likely as a result of increased activity of MMPs, resulting in a structurally compromised tissue.
Subject(s)
Collagen/metabolism , Elastin/metabolism , Extracellular Matrix/metabolism , Polypropylenes , Surgical Mesh/adverse effects , Uterine Prolapse/surgery , Vagina/metabolism , Animals , Blotting, Western , Collagen Type I/metabolism , Collagen Type III/metabolism , Electrophoresis, Polyacrylamide Gel , Female , Macaca mulatta , Matrix Metalloproteinase 1/metabolism , Matrix Metalloproteinase 13/metabolism , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 8/metabolism , Matrix Metalloproteinase 9/metabolism , Procollagen/metabolism , Tropoelastin/metabolismABSTRACT
Rhesus macaques infected with the WE strain of lymphocytic choriomeningitis virus (LCMV-WE) serve as a model for human infection with Lassa fever virus. To identify the earliest events of acute infection, rhesus macaques were monitored immediately after lethal infection for changes in peripheral blood mononuclear cells (PBMCs). Changes in CD3, CD4, CD8 and CD20 subsets did not vary outside the normal fluctuations of these blood cell populations; however, natural killer (NK) and γδ T cells increased slightly on day 1 and then decreased significantly after two days. The NK subsets responsible for the decrease were primarily CD3-CD8+ or CD3-CD16+ and not the NKT (primarily CD3+CD56+) subset. Macaques infected with a non-virulent arenavirus, LCMV-Armstrong, showed a similar drop in circulating NK and γδ T cells, indicating that this is not a pathogenic event. V³9 T cells, representing the majority of circulating γδ T cells in rhesus macaques, displayed significant apoptosis when incubated with LCMV in cell culture; however, the low amount of cell death for virus-co-cultured NK cells was insufficient to account for the observed disappearance of this subset. Our observations in primates are similar to those seen in LCMV-infected mice, where decreased circulating NK cells were attributed to margination and cell death. Thus, the disappearance of these cells during acute hemorrhagic fever in rhesus macaques may be a cytokine-induced lymphopenia common to many virus infections.