Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 453
Filter
1.
Sci Rep ; 14(1): 16085, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38992113

ABSTRACT

Volatile organic compounds (VOCs) represent a significant component of air pollution. However, studies evaluating the impact of VOC exposure on chronic obstructive pulmonary disease (COPD) have predominantly focused on single pollutant models. This study aims to comprehensively assess the relationship between multiple VOC exposures and COPD. A large cross-sectional study was conducted on 4983 participants from the National Health and Nutrition Examination Survey. Four models, including weighted logistic regression, restricted cubic splines (RCS), weighted quantile sum regression (WQS), and the dual-pollution model, were used to explore the association between blood VOC levels and the prevalence of COPD in the U.S. general population. Additionally, six machine learning algorithms were employed to develop a predictive model for COPD risk, with the model's predictive capacity assessed using the area under the curve (AUC) indices. Elevated blood concentrations of benzene, toluene, ortho-xylene, and para-xylene were significantly associated with the incidence of COPD. RCS analysis further revealed a non-linear and non-monotonic relationship between blood levels of toluene and m-p-xylene with COPD prevalence. WQS regression indicated that different VOCs had varying effects on COPD, with benzene and ortho-xylene having the greatest weights. Among the six models, the Extreme Gradient Boosting (XGBoost) model demonstrated the strongest predictive power, with an AUC value of 0.781. Increased blood concentrations of benzene and toluene are significantly correlated with a higher prevalence of COPD in the U.S. population, demonstrating a non-linear relationship. Exposure to environmental VOCs may represent a new risk factor in the etiology of COPD.


Subject(s)
Nutrition Surveys , Pulmonary Disease, Chronic Obstructive , Volatile Organic Compounds , Pulmonary Disease, Chronic Obstructive/epidemiology , Pulmonary Disease, Chronic Obstructive/blood , Humans , Volatile Organic Compounds/blood , Male , Female , Middle Aged , Cross-Sectional Studies , Aged , United States/epidemiology , Adult , Prevalence , Air Pollutants/blood , Air Pollutants/analysis , Air Pollutants/adverse effects , Air Pollution/adverse effects , Environmental Exposure/adverse effects , Risk Factors
2.
J Proteome Res ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949094

ABSTRACT

Diabetic nephropathy (DN) has become the main cause of end-stage renal disease worldwide, causing significant health problems. Early diagnosis of the disease is quite inadequate. To screen urine biomarkers of DN and explore its potential mechanism, this study collected urine from 87 patients with type 2 diabetes mellitus (which will be classified into normal albuminuria, microalbuminuria, and macroalbuminuria groups) and 38 healthy subjects. Twelve individuals from each group were then randomly selected as the screening cohort for proteomics analysis and the rest as the validation cohort. The results showed that humoral immune response, complement activation, complement and coagulation cascades, renin-angiotensin system, and cell adhesion molecules were closely related to the progression of DN. Five overlapping proteins (KLK1, CSPG4, PLAU, SERPINA3, and ALB) were identified as potential biomarkers by machine learning methods. Among them, KLK1 and CSPG4 were positively correlated with the urinary albumin to creatinine ratio (UACR), and SERPINA3 was negatively correlated with the UACR, which were validated by enzyme-linked immunosorbent assay (ELISA). This study provides new insights into disease mechanisms and biomarkers for early diagnosis of DN.

3.
Front Oncol ; 14: 1413273, 2024.
Article in English | MEDLINE | ID: mdl-38962272

ABSTRACT

Background: Angiogenesis plays a pivotal role in colorectal cancer (CRC), yet its underlying mechanisms demand further exploration. This study aimed to elucidate the significance of angiogenesis-related genes (ARGs) in CRC through comprehensive multi-omics analysis. Methods: CRC patients were categorized according to ARGs expression to form angiogenesis-related clusters (ARCs). We investigated the correlation between ARCs and patient survival, clinical features, consensus molecular subtypes (CMS), cancer stem cell (CSC) index, tumor microenvironment (TME), gene mutations, and response to immunotherapy. Utilizing three machine learning algorithms (LASSO, Xgboost, and Decision Tree), we screen key ARGs associated with ARCs, further validated in independent cohorts. A prognostic signature based on key ARGs was developed and analyzed at the scRNA-seq level. Validation of gene expression in external cohorts, clinical tissues, and blood samples was conducted via RT-PCR assay. Results: Two distinct ARC subtypes were identified and were significantly associated with patient survival, clinical features, CMS, CSC index, and TME, but not with gene mutations. Four genes (S100A4, COL3A1, TIMP1, and APP) were identified as key ARCs, capable of distinguishing ARC subtypes. The prognostic signature based on these genes effectively stratified patients into high- or low-risk categories. scRNA-seq analysis showed that these genes were predominantly expressed in immune cells rather than in cancer cells. Validation in two external cohorts and through clinical samples confirmed significant expression differences between CRC and controls. Conclusion: This study identified two ARG subtypes in CRC and highlighted four key genes associated with these subtypes, offering new insights into personalized CRC treatment strategies.

4.
Front Public Health ; 12: 1362392, 2024.
Article in English | MEDLINE | ID: mdl-38962762

ABSTRACT

Background: Acute respiratory infections (ARIs) are the leading cause of death in children under the age of 5 globally. Maternal healthcare-seeking behavior may help minimize mortality associated with ARIs since they make decisions about the kind and frequency of healthcare services for their children. Therefore, this study aimed to predict the absence of maternal healthcare-seeking behavior and identify its associated factors among children under the age 5 in sub-Saharan Africa (SSA) using machine learning models. Methods: The sub-Saharan African countries' demographic health survey was the source of the dataset. We used a weighted sample of 16,832 under-five children in this study. The data were processed using Python (version 3.9), and machine learning models such as extreme gradient boosting (XGB), random forest, decision tree, logistic regression, and Naïve Bayes were applied. In this study, we used evaluation metrics, including the AUC ROC curve, accuracy, precision, recall, and F-measure, to assess the performance of the predictive models. Result: In this study, a weighted sample of 16,832 under-five children was used in the final analysis. Among the proposed machine learning models, the random forest (RF) was the best-predicted model with an accuracy of 88.89%, a precision of 89.5%, an F-measure of 83%, an AUC ROC curve of 95.8%, and a recall of 77.6% in predicting the absence of mothers' healthcare-seeking behavior for ARIs. The accuracy for Naïve Bayes was the lowest (66.41%) when compared to other proposed models. No media exposure, living in rural areas, not breastfeeding, poor wealth status, home delivery, no ANC visit, no maternal education, mothers' age group of 35-49 years, and distance to health facilities were significant predictors for the absence of mothers' healthcare-seeking behaviors for ARIs. On the other hand, undernourished children with stunting, underweight, and wasting status, diarrhea, birth size, married women, being a male or female sex child, and having a maternal occupation were significantly associated with good maternal healthcare-seeking behaviors for ARIs among under-five children. Conclusion: The RF model provides greater predictive power for estimating mothers' healthcare-seeking behaviors based on ARI risk factors. Machine learning could help achieve early prediction and intervention in children with high-risk ARIs. This leads to a recommendation for policy direction to reduce child mortality due to ARIs in sub-Saharan countries.


Subject(s)
Machine Learning , Mothers , Patient Acceptance of Health Care , Respiratory Tract Infections , Humans , Africa South of the Sahara , Patient Acceptance of Health Care/statistics & numerical data , Female , Child, Preschool , Mothers/statistics & numerical data , Infant , Adult , Male , Algorithms , Infant, Newborn , Adolescent , Acute Disease , Middle Aged
5.
Indian J Orthop ; 58(7): 944-954, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38948379

ABSTRACT

Objective: This study aimed to identify osteoporosis-related core genes using bioinformatics analysis and machine learning algorithms. Methods: mRNA expression profiles of osteoporosis patients were obtained from the Gene Expression Profiles (GEO) database, with GEO35958 and GEO84500 used as training sets, and GEO35957 and GSE56116 as validation sets. Differential gene expression analysis was performed using the R software "limma" package. A weighted gene co-expression network analysis (WGCNA) was conducted to identify key modules and modular genes of osteoporosis. Kyoto Gene and Genome Encyclopedia (KEGG), Gene Ontology (GO), and gene set enrichment analysis (GSEA) were performed on the differentially expressed genes. LASSO, SVM-RFE, and RF machine learning algorithms were used to screen for core genes, which were subsequently validated in the validation set. Predicted microRNAs (miRNAs) from the core genes were also analyzed, and differential miRNAs were validated using quantitative real-time PCR (qPCR) experiments. Results: A total of 1280 differentially expressed genes were identified. A disease key module and 215 module key genes were identified by WGCNA. Three core genes (ADAMTS5, COL10A1, KIAA0040) were screened by machine learning algorithms, and COL10A1 had high diagnostic value for osteoporosis. Four core miRNAs (has-miR-148a-3p, has-miR-195-3p, has-miR-148b-3p, has-miR-4531) were found by intersecting predicted miRNAs with differential miRNAs from the dataset (GSE64433, GSE74209). The qPCR experiments validated that the expression of has-miR-195-3p, has-miR-148b-3p, and has-miR-4531 was significantly increased in osteoporosis patients. Conclusion: This study demonstrated the utility of bioinformatics analysis and machine learning algorithms in identifying core genes associated with osteoporosis.

6.
J Addict Dis ; : 1-18, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38946144

ABSTRACT

BACKGROUND: Buprenorphine for opioid use disorder (B-MOUD) is essential to improving patient outcomes; however, retention is essential. OBJECTIVE: To develop and validate machine-learning algorithms predicting retention, overdoses, and all-cause mortality among US military veterans initiating B-MOUD. METHODS: Veterans initiating B-MOUD from fiscal years 2006-2020 were identified. Veterans' B-MOUD episodes were randomly divided into training (80%;n = 45,238) and testing samples (20%;n = 11,309). Candidate algorithms [multiple logistic regression, least absolute shrinkage and selection operator regression, random forest (RF), gradient boosting machine (GBM), and deep neural network (DNN)] were used to build and validate classification models to predict six binary outcomes: 1) B-MOUD retention, 2) any overdose, 3) opioid-related overdose, 4) overdose death, 5) opioid overdose death, and 6) all-cause mortality. Model performance was assessed using standard classification statistics [e.g., area under the receiver operating characteristic curve (AUC-ROC)]. RESULTS: Episodes in the training sample were 93.0% male, 78.0% White, 72.3% unemployed, and 48.3% had a concurrent drug use disorder. The GBM model slightly outperformed others in predicting B-MOUD retention (AUC-ROC = 0.72). RF models outperformed others in predicting any overdose (AUC-ROC = 0.77) and opioid overdose (AUC-ROC = 0.77). RF and GBM outperformed other models for overdose death (AUC-ROC = 0.74 for both), and RF and DNN outperformed other models for opioid overdose death (RF AUC-ROC = 0.79; DNN AUC-ROC = 0.78). RF and GBM also outperformed other models for all-cause mortality (AUC-ROC = 0.76 for both). No single predictor accounted for >3% of the model's variance. CONCLUSIONS: Machine-learning algorithms can accurately predict OUD-related outcomes with moderate predictive performance; however, prediction of these outcomes is driven by many characteristics.

7.
Sci Rep ; 14(1): 15041, 2024 07 01.
Article in English | MEDLINE | ID: mdl-38951552

ABSTRACT

The Indian economy is greatly influenced by the Banana Industry, necessitating advancements in agricultural farming. Recent research emphasizes the imperative nature of addressing diseases that impact Banana Plants, with a particular focus on early detection to safeguard production. The urgency of early identification is underscored by the fact that diseases predominantly affect banana plant leaves. Automated systems that integrate machine learning and deep learning algorithms have proven to be effective in predicting diseases. This manuscript examines the prediction and detection of diseases in banana leaves, exploring various diseases, machine learning algorithms, and methodologies. The study makes a contribution by proposing two approaches for improved performance and suggesting future research directions. In summary, the objective is to advance understanding and stimulate progress in the prediction and detection of diseases in banana leaves. The need for enhanced disease identification processes is highlighted by the results of the survey. Existing models face a challenge due to their lack of rotation and scale invariance. While algorithms such as random forest and decision trees are less affected, initially convolutional neural networks (CNNs) is considered for disease prediction. Though the Convolutional Neural Network models demonstrated impressive accuracy in many research but it lacks in invariance to scale and rotation. Moreover, it is observed that due its inherent design it cannot be combined with feature extraction methods to identify the banana leaf diseases. Due to this reason two alternative models that combine ANN with scale-invariant Feature transform (SIFT) model or histogram of oriented gradients (HOG) combined with local binary patterns (LBP) model are suggested. The first model ANN with SIFT identify the disease by using the activation functions to process the features extracted by the SIFT by distinguishing the complex patterns. The second integrate the combined features of HOG and LBP to identify the disease thus by representing the local pattern and gradients in an image. This paves a way for the ANN to learn and identify the banana leaf disease. Moving forward, exploring datasets in video formats for disease detection in banana leaves through tailored machine learning algorithms presents a promising avenue for research.


Subject(s)
Machine Learning , Musa , Neural Networks, Computer , Plant Diseases , Plant Leaves , Algorithms
8.
Sci Rep ; 14(1): 15009, 2024 07 01.
Article in English | MEDLINE | ID: mdl-38951638

ABSTRACT

Ulcerative colitis (UC) is a chronic inflammatory bowel disease with intricate pathogenesis and varied presentation. Accurate diagnostic tools are imperative to detect and manage UC. This study sought to construct a robust diagnostic model using gene expression profiles and to identify key genes that differentiate UC patients from healthy controls. Gene expression profiles from eight cohorts, encompassing a total of 335 UC patients and 129 healthy controls, were analyzed. A total of 7530 gene sets were computed using the GSEA method. Subsequent batch correction, PCA plots, and intersection analysis identified crucial pathways and genes. Machine learning, incorporating 101 algorithm combinations, was employed to develop diagnostic models. Verification was done using four external cohorts, adding depth to the sample repertoire. Evaluation of immune cell infiltration was undertaken through single-sample GSEA. All statistical analyses were conducted using R (Version: 4.2.2), with significance set at a P value below 0.05. Employing the GSEA method, 7530 gene sets were computed. From this, 19 intersecting pathways were discerned to be consistently upregulated across all cohorts, which pertained to cell adhesion, development, metabolism, immune response, and protein regulation. This corresponded to 83 unique genes. Machine learning insights culminated in the LASSO regression model, which outperformed others with an average AUC of 0.942. This model's efficacy was further ratified across four external cohorts, with AUC values ranging from 0.694 to 0.873 and significant Kappa statistics indicating its predictive accuracy. The LASSO logistic regression model highlighted 13 genes, with LCN2, ASS1, and IRAK3 emerging as pivotal. Notably, LCN2 showcased significantly heightened expression in active UC patients compared to both non-active patients and healthy controls (P < 0.05). Investigations into the correlation between these genes and immune cell infiltration in UC highlighted activated dendritic cells, with statistically significant positive correlations noted for LCN2 and IRAK3 across multiple datasets. Through comprehensive gene expression analysis and machine learning, a potent LASSO-based diagnostic model for UC was developed. Genes such as LCN2, ASS1, and IRAK3 hold potential as both diagnostic markers and therapeutic targets, offering a promising direction for future UC research and clinical application.


Subject(s)
Colitis, Ulcerative , Machine Learning , Humans , Colitis, Ulcerative/genetics , Colitis, Ulcerative/diagnosis , Algorithms , Gene Expression Profiling/methods , Transcriptome , Interleukin-1 Receptor-Associated Kinases/genetics , Male , Female , Lipocalin-2/genetics , Case-Control Studies , Biomarkers , Adult
9.
World J Urol ; 42(1): 396, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38985296

ABSTRACT

PURPOSE: To investigate and implement semiautomated screening for meta-analyses (MA) in urology under consideration of class imbalance. METHODS: Machine learning algorithms were trained on data from three MA with detailed information of the screening process. Different methods to account for class imbalance (Sampling (up- and downsampling, weighting and cost-sensitive learning), thresholding) were implemented in different machine learning (ML) algorithms (Random Forest, Logistic Regression with Elastic Net Regularization, Support Vector Machines). Models were optimized for sensitivity. Besides metrics such as specificity, receiver operating curves, total missed studies, and work saved over sampling were calculated. RESULTS: During training, models trained after downsampling achieved the best results consistently among all algorithms. Computing time ranged between 251 and 5834 s. However, when evaluated on the final test data set, the weighting approach performed best. In addition, thresholding helped to improve results as compared to the standard of 0.5. However, due to heterogeneity of results no clear recommendation can be made for a universal sample size. Misses of relevant studies were 0 for the optimized models except for one review. CONCLUSION: It will be necessary to design a holistic methodology that implements the presented methods in a practical manner, but also takes into account other algorithms and the most sophisticated methods for text preprocessing. In addition, the different methods of a cost-sensitive learning approach can be the subject of further investigations.


Subject(s)
Machine Learning , Meta-Analysis as Topic , Systematic Reviews as Topic , Urology , Urology/education , Humans , Algorithms
10.
Heliyon ; 10(12): e32720, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38975113

ABSTRACT

There is an evident requirement for a rapid, efficient, and simple method to screen the authenticity of milk products in the market. Fourier transform infrared (FTIR) spectroscopy stands out as a promising solution. This work employed FTIR spectroscopy and modern statistical machine learning algorithms for the identification and quantification of pasteurized milk adulteration. Comparative results demonstrate modern statistical machine learning algorithms will improve the ability of FTIR spectroscopy to predict milk adulteration compared to partial least square (PLS). To discern the types of substances utilized in milk adulteration, a top-performing multiclassification model was established using multi-layer perceptron (MLP) algorithm, delivering an impressive prediction accuracy of 97.4 %. For quantification purposes, bayesian regularized neural networks (BRNN) provided the best results for the determination of both melamine, urea and milk powder adulteration, while extreme gradient boosting (XGB) and projection pursuit regression (PPR) gave better results in predicting sucrose and water adulteration levels, respectively. The regression models provided suitable predictive accuracy with the ratio of performance to deviation (RPD) values higher than 3. The proposed methodology proved to be a cost-effective and fast tool for screening the authenticity of pasteurized milk in the market.

11.
Annu Rev Biomed Eng ; 26(1): 331-355, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38959390

ABSTRACT

Recent advancements in soft electronic skin (e-skin) have led to the development of human-like devices that reproduce the skin's functions and physical attributes. These devices are being explored for applications in robotic prostheses as well as for collecting biopotentials for disease diagnosis and treatment, as exemplified by biomedical e-skins. More recently, machine learning (ML) has been utilized to enhance device control accuracy and data processing efficiency. The convergence of e-skin technologies with ML is promoting their translation into clinical practice, especially in healthcare. This review highlights the latest developments in ML-reinforced e-skin devices for robotic prostheses and biomedical instrumentations. We first describe technological breakthroughs in state-of-the-art e-skin devices, emphasizing technologies that achieve skin-like properties. We then introduce ML methods adopted for control optimization and pattern recognition, followed by practical applications that converge the two technologies. Lastly, we briefly discuss the challenges this interdisciplinary research encounters in its clinical and industrial transition.


Subject(s)
Machine Learning , Robotics , Wearable Electronic Devices , Humans , Robotics/methods , Skin , Equipment Design , Biomedical Engineering/methods
12.
Int J Legal Med ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38862820

ABSTRACT

In the field of forensic anthropology, researchers aim to identify anonymous human remains and determine the cause and circumstances of death from skeletonized human remains. Sex determination is a fundamental step of this procedure because it influences the estimation of other traits, such as age and stature. Pelvic bones are especially dimorphic, and are thus the most useful bones for sex identification. Sex estimation methods are usually based on morphologic traits, measurements, or landmarks on the bones. However, these methods are time-consuming and can be subject to inter- or intra-observer bias. Sex determination can be done using dry bones or CT scans. Recently, artificial neural networks (ANN) have attracted attention in forensic anthropology. Here we tested a fully automated and data-driven machine learning method for sex estimation using CT-scan reconstructions of coxal bones. We studied 580 CT scans of living individuals. Sex was predicted by two networks trained on an independent sample: a disentangled variational auto-encoder (DVAE) alone, and the same DVAE associated with another classifier (Crecon). The DVAE alone exhibited an accuracy of 97.9%, and the DVAE + Crecon showed an accuracy of 99.8%. Sensibility and precision were also high for both sexes. These results are better than those reported from previous studies. These data-driven algorithms are easy to implement, since the pre-processing step is also entirely automatic. Fully automated methods save time, as it only takes a few minutes to pre-process the images and predict sex, and does not require strong experience in forensic anthropology.

13.
Plant Biotechnol J ; 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38875130

ABSTRACT

Epistasis refers to nonallelic interaction between genes that cause bias in estimates of genetic parameters for a phenotype with interactions of two or more genes affecting the same trait. Partitioning of epistatic effects allows true estimation of the genetic parameters affecting phenotypes. Multigenic variation plays a central role in the evolution of complex characteristics, among which pleiotropy, where a single gene affects several phenotypic characters, has a large influence. While pleiotropic interactions provide functional specificity, they increase the challenge of gene discovery and functional analysis. Overcoming pleiotropy-based phenotypic trade-offs offers potential for assisting breeding for complex traits. Modelling higher order nonallelic epistatic interaction, pleiotropy and non-pleiotropy-induced variation, and genotype × environment interaction in genomic selection may provide new paths to increase the productivity and stress tolerance for next generation of crop cultivars. Advances in statistical models, software and algorithm developments, and genomic research have facilitated dissecting the nature and extent of pleiotropy and epistasis. We overview emerging approaches to exploit positive (and avoid negative) epistatic and pleiotropic interactions in a plant breeding context, including developing avenues of artificial intelligence, novel exploitation of large-scale genomics and phenomics data, and involvement of genes with minor effects to analyse epistatic interactions and pleiotropic quantitative trait loci, including missing heritability.

14.
Water Res ; 260: 121861, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38875854

ABSTRACT

The rapid and efficient quantification of Escherichia coli concentrations is crucial for monitoring water quality. Remote sensing techniques and machine learning algorithms have been used to detect E. coli in water and estimate its concentrations. The application of these approaches, however, is challenged by limited sample availability and unbalanced water quality datasets. In this study, we estimated the E. coli concentration in an irrigation pond in Maryland, USA, during the summer season using demosaiced natural color (red, green, and blue: RGB) imagery in the visible and infrared spectral ranges, and a set of 14 water quality parameters. We did this by deploying four machine learning models - Random Forest (RF), Gradient Boosting Machine (GBM), Extreme Gradient Boosting (XGB), and K-nearest Neighbor (KNN) - under three data utilization scenarios: water quality parameters only, combined water quality and small unmanned aircraft system (sUAS)-based RGB data, and RGB data only. To select the training and test datasets, we applied two data-splitting methods: ordinary and quantile data splitting. These methods provided a constant splitting ratio in each decile of the E. coli concentration distribution. Quantile data splitting resulted in better model performance metrics and smaller differences between the metrics for both the training and testing datasets. When trained with quantile data splitting after hyperparameter optimization, models RF, GBM, and XGB had R2 values above 0.847 for the training dataset and above 0.689 for the test dataset. The combination of water quality and RGB imagery data resulted in a higher R2 value (>0.896) for the test dataset. Shapley additive explanations (SHAP) of the relative importance of variables revealed that the visible blue spectrum intensity and water temperature were the most influential parameters in the RF model. Demosaiced RGB imagery served as a useful predictor of E. coli concentration in the studied irrigation pond.

15.
Materials (Basel) ; 17(12)2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38930404

ABSTRACT

Ultra-high-performance concrete (UHPC) has been used in building joints due to its increased strength, crack resistance, and durability, serving as a repair material. However, efficient repair depends on whether the interfacial substrate can provide adequate bond strength under various loading scenarios. The objective of this study is to investigate the bonding behavior of composite U-shaped normal strength concrete-ultra-high-performance fiber reinforced concrete (NSC-UHPFRC) specimens using multiple drop-weight impact testing techniques. The composite interface was treated using grooving (Gst), natural fracture (Nst), and smoothing (Sst) techniques. Ensemble machine learning (ML) algorithms comprising XGBoost and CatBoost, support vector machine (SVM), and generalized linear machine (GLM) were employed to train and test the simulation dataset to forecast the impact failure strength (N2) composite U-shaped NSC-UHPFRC specimen. The results indicate that the reference NSC samples had the highest impact strength and surface treatment played a substantial role in ensuring the adequate bond strength of NSC-UHPFRC. NSC-UHPFRC-Nst can provide sufficient bond strength at the interface, resulting in a monolithic structure that can resist repeated drop-weight impact loads. NSC-UHPFRC-Sst and NSC-UHPFRC-Gst exhibit significant reductions in impact strength properties. The ensemble ML correctly predicts the failure strength of the NSC-UHPFRC composite. The XGBoost ensemble model gave coefficient of determination (R2) values of approximately 0.99 and 0.9643 at the training and testing stages. The highest predictions were obtained using the GLM model, with an R2 value of 0.9805 at the testing stage.

16.
Ann Med Surg (Lond) ; 86(6): 3233-3241, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38846869

ABSTRACT

Background: Hypothyroidism is one of the most common endocrine diseases. It is, however, usually challenging for physicians to diagnose due to nonspecific symptoms. The usual procedure for diagnosis of Hypothyroidism is a blood test. In recent years, machine learning algorithms have proved to be powerful tools in medicine due to their diagnostic accuracy. In this study, the authors aim to predict and identify the most important symptoms of Hypothyroidism using machine learning algorithms. Method: In this cross-sectional, single-center study, 1296 individuals who visited an endocrinologist for the first time with symptoms of Hypothyroidism were studied, 676 of whom were identified as patients through thyroid-stimulating hormone testing. The outcome was binary (with Hypothyroidism /without Hypothyroidism). In a comparative analysis, random forest, decision tree, and logistic regression methods were used to diagnose primary Hypothyroidism. Results: Symptoms such as tiredness, unusual cold feeling, yellow skin (jaundice), cold hands and feet, numbness of hands, loss of appetite, and weight Hypothyroidism gain were recognized as the most important symptoms in identifying Hypothyroidism. Among the studied algorithms, random forest had the best performance in identifying these symptoms (accuracy=0.83, kappa=0.46, sensitivity=0.88, specificity=0.88). Conclusions: The findings suggest that machine learning methods can identify Hypothyroidism patients who show relatively simple symptoms with acceptable accuracy without the need for a blood test. Greater familiarity and utilization of such methods by physicians may, therefore, reduce the expense and stress burden of clinical testing.

17.
Clin Transl Oncol ; 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38902493

ABSTRACT

BACKGROUND: Colorectal cancer has a high incidence and mortality rate due to a low rate of early diagnosis. Therefore, efficient diagnostic methods are urgently needed. PURPOSE: This study assesses the diagnostic effectiveness of Carbohydrate Antigen 19-9 (CA19-9), Carcinoembryonic Antigen (CEA), Alpha-fetoprotein (AFP), and Cancer Antigen 125 (CA125) serum tumor markers for colorectal cancer (CRC) and investigates a machine learning-based diagnostic model incorporating these markers with blood biochemical indices for improved CRC detection. METHOD: Between January 2019 and December 2021, data from 800 CRC patients and 697 controls were collected; 52 patients and 63 controls attending the same hospital in 2022 were collected as an external validation set. Markers' effectiveness was analyzed individually and collectively, using metrics like ROC curve AUC and F1 score. Variables chosen through backward regression, including demographics and blood tests, were tested on six machine learning models using these metrics. RESULT: In the case group, the levels of CEA, CA199, and CA125 were found to be higher than those in the control group. Combining these with a fourth serum marker significantly improved predictive efficacy over using any single marker alone, achieving an Area Under the Curve (AUC) value of 0.801. Using stepwise regression (backward), 17 variables were meticulously selected for evaluation in six machine learning models. Among these models, the Gradient Boosting Machine (GBM) emerged as the top performer in the training set, test set, and external validation set, boasting an AUC value of over 0.9, indicating its superior predictive power. CONCLUSION: Machine learning models integrating tumor markers and blood indices offer superior CRC diagnostic accuracy, potentially enhancing clinical practice.

18.
Cureus ; 16(5): e59906, 2024 May.
Article in English | MEDLINE | ID: mdl-38854295

ABSTRACT

The integration of artificial intelligence (AI) and machine learning (ML) in healthcare has become a major point of interest and raises the question of its impact on the emergency department (ED) triaging process. AI's capacity to emulate human cognitive processes coupled with advancements in computing has shown positive outcomes in various aspects of healthcare but little is known about the use of AI in triaging patients in ED. AI algorithms may allow for earlier diagnosis and intervention; however, overconfident answers may present dangers to patients. The purpose of this review was to explore comprehensively recently published literature regarding the effect of AI and ML in ED triage and identify research gaps. A systemized search was conducted in September 2023 using the electronic databases EMBASE, Ovid MEDLINE, and Web of Science. To meet inclusion criteria, articles had to be peer-reviewed, written in English, and based on primary data research studies published in US journals 2013-2023. Other criteria included 1) studies with patients needing to be admitted to hospital EDs, 2) AI must have been used when triaging a patient, and 3) patient outcomes must be represented. The search was conducted using controlled descriptors from the Medical Subject Headings (MeSH) that included the terms "artificial intelligence" OR "machine learning" AND "emergency ward" OR "emergency care" OR "emergency department" OR "emergency room" AND "patient triage" OR "triage" OR "triaging." The search initially identified 1,142 citations. After a rigorous, systemized screening process and critical appraisal of the evidence, 29 studies were selected for the final review. The findings indicated that 1) ML models consistently demonstrated superior discrimination abilities compared to conventional triage systems, 2) the integration of AI into the triage process yielded significant enhancements in predictive accuracy, disease identification, and risk assessment, 3) ML accurately determined the necessity of hospitalization for patients requiring urgent attention, and 4) ML improved resource allocation and quality of patient care, including predicting length of stay. The suggested superiority of ML models in prioritizing patients in the ED holds the potential to redefine triage precision.

19.
Biosens Bioelectron ; 262: 116530, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38943854

ABSTRACT

The progression of gastric cancer involves a complex multi-stage process, with gastroscopy and biopsy being the standard procedures for diagnosing gastric diseases. This study introduces an innovative non-invasive approach to differentiate gastric disease stage using gastric fluid samples through machine-learning-assisted surface-enhanced Raman spectroscopy (SERS). This method effectively identifies different stages of gastric lesions. The XGBoost algorithm demonstrates the highest accuracy of 96.88% and 91.67%, respectively, in distinguishing chronic non-atrophic gastritis from intestinal metaplasia and different subtypes of gastritis (mild, moderate, and severe). Through blinded testing validation, the model can achieve more than 80% accuracy. These findings offer new possibilities for rapid, cost-effective, and minimally invasive diagnosis of gastric diseases.

20.
Bioengineering (Basel) ; 11(6)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38927813

ABSTRACT

BACKGROUND: Recent advancements in deep learning have significantly impacted ophthalmology, especially in glaucoma, a leading cause of irreversible blindness worldwide. In this study, we developed a reliable predictive model for glaucoma detection using deep learning models based on clinical data, social and behavior risk factor, and demographic data from 1652 participants, split evenly between 826 control subjects and 826 glaucoma patients. METHODS: We extracted structural data from control and glaucoma patients' electronic health records (EHR). Three distinct machine learning classifiers, the Random Forest and Gradient Boosting algorithms, as well as the Sequential model from the Keras library of TensorFlow, were employed to conduct predictive analyses across our dataset. Key performance metrics such as accuracy, F1 score, precision, recall, and the area under the receiver operating characteristics curve (AUC) were computed to both train and optimize these models. RESULTS: The Random Forest model achieved an accuracy of 67.5%, with a ROC AUC of 0.67, outperforming the Gradient Boosting and Sequential models, which registered accuracies of 66.3% and 64.5%, respectively. Our results highlighted key predictive factors such as intraocular pressure, family history, and body mass index, substantiating their roles in glaucoma risk assessment. CONCLUSIONS: This study demonstrates the potential of utilizing readily available clinical, lifestyle, and demographic data from EHRs for glaucoma detection through deep learning models. While our model, using EHR data alone, has a lower accuracy compared to those incorporating imaging data, it still offers a promising avenue for early glaucoma risk assessment in primary care settings. The observed disparities in model performance and feature significance show the importance of tailoring detection strategies to individual patient characteristics, potentially leading to more effective and personalized glaucoma screening and intervention.

SELECTION OF CITATIONS
SEARCH DETAIL
...